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ABSTRACT. This paper addresses the Traveling Salesman Problem with Priority Prizes (TSPPP), an ex-

tension of the classical TSP in which the order of the node visits is taken into account in the objective

function. A prize pki is received by the traveling salesman when node i is visited in the k-th order of the

route, while a travel cost ci j is incurred when the salesman travels from node i to node j . The aim of the

TSPPP is to find the maximum profit n-node tour. The problem can be seen as a TSP variant with a more

general objective function, aiming at solutions that in some way consider the quality of customer service

and the delivery priorities and costs. A natural representation for the TSPPP is here grounded in the point

of view of Koopmans and Beckmann approach, according to which the problem is seem as a special case of

the quadratic assignment problem (QAP). Given the novelty of this TSP variant, we propose different mixed

integer programming models to appropriately represent the TSPPP, some of them based on the QAP. Com-

putational experiments are also presented when solving the MIP models with a well-known optimization

software, as well as with a tabu search algorithm.

Keywords: Traveling Salesman Problem with Priority Prizes, mixed integer linear programming, quadratic

assignment problem, routing with priorities, flow formulations, tabu search.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is among the most widely studied problems in network

optimization and has a wide variety of practical applications [2, 5, 20, 24]. The problem consists
in defining an optimal tour that visits customers from a depot and since the pioneering work of
Dantzig and collaborators [7, 8], several models and methods have been proposed to effectively

represent and solve large problem instances. Many variants of the TSP have been studied in the
literature and seminal mathematical programming models are often the basis of most of these
variants [4,11,22,28].
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The Traveling Salesman Problem with Priority Prizes (TSPPP) is an extension of the classic
TSP, in which all customers (nodes) have to be visited by the traveling salesman and the order
of the customers visits are directly taken into account in the objective function. A prize pki is
received by the traveling salesman if customer i is visited in the k-th order of the tour, while a
travel cost ci j is incurred when traveling from customer i to customer j in the tour. Note that pki

can include a prize that the traveling salesman gets when visiting node i, independently of the
order k in which i is visited, plus a priority prize that he/she collects when visiting node i at the
k-th order of the route, which is dependent on his/hers visit order. The objective of the TSPPP
is to find a maximum profit sequence of the n-customer visits, considering the prizes and costs
involved in the tour.

The problem can be seen as a TSP variant with a more general objective function with opposite
criteria, aiming at solutions that in some way consider the quality of service to the customers
and the delivery priorities, maximizing the collected prizes while minimizing the delivery costs.
A simple example of the TSPPP is a van or minibus that picks up a group of tourists at an airport
and delivers each tourist to his/her hotel. Instead of equally sharing the cost of the minimum cost
tour, some tourists are willing to pay more if their hotels were visited at the first positions of
the tour, while other tourists are not. The driver would like to choose the most profitable tour,
however, complying with these priority prizes may increase the total distance traveled and hence,
the tour cost. Another example arises in the context of machine scheduling problems. Single
Machine Scheduling with sequence-dependent set up costs is a referential problem in production
planning and it is a well-known application of the TSP in which the machine owner seeks the
minimum set up cost production plan. When job priority prizes are also taken into account, the
problem becomes an application of the TSPPP.

We are not aware of other studies that have directly dealt with the TSPPP, although related
problems can be found in the literature. One example is the Minimum Latency Problem (MLP)
[14], also known as the Traveling Repairman Problem, the Traveling Deliveryman Problem or the
Traveling Salesman Problem with Cumulative Costs [4, 6, 10, 22, 28]. In the MLP, the traveling
salesman is required to visit each customer in such a way that the overall waiting time for all
customers is minimized (in this case costs are given by ci jk = (n − k)ci j if arc (i, j ) is the
k-th arc traversed in the tour). The MLP can also be interpreted as a Single Machine Scheduling
Problem with sequence-dependent processing times, in which one seeks to minimize the total
flow time of the jobs [6]. It can also be seen as a special case of the Time-Dependent Traveling
Salesman Problem (TDTSP) [15, 22, 25], in which the cost of traversing an arc between two
nodes i and j may vary with the position of this arc (i, j ) along the Hamiltonian tour [22] (i.e.,
dikj (k+1) = ci jk ). In fact, the TDTSP is strongly related to the TSPPP of the present study, as
discussed in next section. An extension of the MLP is the Single Vehicle Delivery Problem.
Instead of working with a general time-dependent cost function as in the TDTSP, this extension
requires a different amount of demand di to be delivered at each node i (note that it is reduced to
the MLP when the demand for each customer is a single unit, i.e., di = 1).

Other related TSP variants are the Multicommodity Traveling Salesman Problem, which encom-
passes heterogeneous node demands dk and also includes unitary flow costs ci jk that are specific
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to the type of commodity k being transported across an arc (i, j ); the Target Visitation Problem,

in which one seeks a tour that visits all nodes in order to maximize a function representing the
preference of visiting a node i before (but not necessarily immediately before) another node j ,
while minimizing travel costs [17]; and the Traveling Salesman Problem with Profits [9], where

a profit pi is associated to each customer i (node) and the traveling salesman does not need to
visit all customers. The problem consists of finding a tour on a subset of customers in order
to maximize a profit measure while minimizing travel costs. In other words, the aim is to find

a route that maximizes the collected profit minus the transportation cost. When penalty terms
for unvisited nodes are also added to the objective function, the problem is known as the Prize-
Collecting Traveling Salesman Problem [3, 9]. Other two related problems in which customers

have to be selected are the Traveling Purchaser Problem and the Generalized Traveling Salesman
Problem. In the first, each node holds commodities, each with its own associated purchase cost.
In the second, nodes are partitioned in clusters and the aim is to find a minimum cost tour visiting
at least one node from each cluster ( [9]).

In this study, to cope with the node visitation order, we first explore a representation for the
TSPPP grounded on the Quadratic Assignment Problem (QAP) in Koopmans and Beckmann
[18, 19]. We present different mixed integer linear programming (MIP) models derived from
the QAP as well as other models to deal with the TSPPP. We also present an adaptive tabu

search algorithm that systematically changes selected tabu elements based on the analysis of
search trajectories patterns. Given the novelty of this TSP variant, the main contributions of
this paper are threefold: the presentation of MIP formulations that appropriately represent the

problem, the presentation of an effective metaheuristic capable to solve larger instances, and the
analysis of some numerical experiments with the models and the metaheuristic, comparing their
computational performances and highlighting an interesting problem insight: as the pki values

become larger and with higher dispersion and the ci j become smaller and with smaller dispersion,
the TSPPP becomes easier to optimally solve as it tends to a linear assignment problem.

The paper is organized as follows. Section (2) introduces a pure integer quadratic programming
model to represent the TSPPP based on the QAP in Koopmans and Beckmann [18]. Section (3) is

devoted to the development of linearisations of this model for the TSPPP, thus providing two MIP
formulations and a third two-assignment formulation. As these formulations are able to solve
only problems of moderate size, Section (4) describes the tabu search implementation to cope

with larger problem instances. Section (5) describes and analyses some numerical experiments
from solving the MIP formulations using the optimization sofware CPLEX and by applying the
heuristic algorithm. Finally, section (6) presents our final remarks and some perspectives for

future research.

2 INTEGER QUADRATIC PROGRAM FOR TSPPP

A natural formulation for the TSPPP can be conceived as an integer quadratic programming
problem with a quadratic objective function and linear constraints. The problem is to find a

maximal profit Hamiltonian circuit over a directed graph G(N , A), where N is the set of n nodes

Pesquisa Operacional, Vol. 38(3), 2018
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(customers) and A is the set of m arcs (conecting the customers). The model parameters are

provided by two square matrices, P and C, both of order n. Each entry pki ≥ 0 of matrix P is
the prize received by the traveling salesman when node i is visited in order k of the route. Note
that pki can be viewed as a “semi-net” revenue from the visit of node i in order k, which may

include a prize the traveling salesman gets when visiting node i (say, pi ), independently of order
k, plus a priority prize that he collects when visiting node i at the k-th order of the route (say,
p′

ki ), which is dependent on the visit order. It is assumed that pki = p′
ki + pi is independent of

the prizes of other nodes.

Each entry ci j > 0 of the non-symmetric matrix C evaluates the transportation cost of the sales-
man when traveling from node i to node j , and it is defined only for the arcs in A. For the diag-
onal of C and for nodes i and j not linked by a direct arc in A, the entries are either disregarded

or considered as cii = ∞ and ci j = ∞, (i, j ) /∈ A. The assumption of positive coefficients
ci j is here made to simplify the discussion, but it can be relaxed in other applications. It is also
assumed that the costs ci j satisfy the triangular inequality, i.e., ci j ≤ cih + ch j , and that they are

independent of the order assignments.

Unless stated otherwise, the graph is complete, with a number of m = n(n − 1) arcs. The model
size depends upon the number of nodes n and the number of arcs m. The binary variables are
defined by n2 variables xki . Each variable xki is equal to 1 if node i is visited in order k, and 0

otherwise. Without loss of generality, we assume that the origin of the salesman (depot) is node
1 and this node is also the last node to be visited, so that variable xn1 is fixed to 1 and variables
xk1, k = 1, . . . , n −1, are null. As a consequence, the problem has in fact only (n −1)2 variables
to be determined. The quadratic traveling salesman problem with priority prizes can be defined

as:

max
n∑

k=1

n∑

i=1

pki xki −
n−1∑

k=1

∑

(i, j)∈A

ci j xki x(k+1) j −
∑

(1, j)∈A

c1 j x1 j (1)

subject to:

n−1∑

k=1

xki = 1 ∀ i = 2, . . . , n (2)

n∑

i=2

xki = 1 ∀ k = 1, . . . , n − 1 (3)

xki ∈ {0, 1} ∀ k = 1, . . . , n ∀ i = 1, . . . , n (4)

The objective function (1) subtracts the transportation costs incurred in the sequence of node
visits from the received priority prizes, that is, it is the total net revenue of the traveling salesman
(“semi-net” revenue minus transportation costs). We remark that the last parcel accounts for the

transportation cost incurred in the first node visit of the salesman, i.e. from the depot to the
first visited node. Equalities (2) and (3) are the assignment constraints: equalities (2) assure that
each node i is visited in a unique order, whereas equalities (3) state that each visit order k is

Pesquisa Operacional, Vol. 38(3), 2018
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assigned to a unique node (assuming xn1 = 1 and xk1 = 0, k = 1, . . . , n − 1). Constraints (4)

prescribe that the components of vector x are binary variables. We remind that the visit order
n is previously fixed for the depot node 1 (i.e., xn1 = 1), indicating that the traveling salesman
returns to the depot 1 at the tour end.

Koopmans and Beckman [18] studied problems of assigning plants to locations, considering

“semi-net” revenues pki from the operation of plant k in location i, transportation costs ci j be-
tween locations i and j , and nonegative numbers bkl representing required commodity flows
from plant k to plant l. These assignment problems were modeled as QAP maximizing the total

net revenue, where the classic TSP can be interpreted as a particular case when all pki and bkl are
null, except for bk(k+1) = 1 and bn1 = 1 (depot). We note that the integer quadratic formulation
(1)-(4) is also a particular case of Koopmans and Beckman’s QAP which, instead of assuming a

null linear parcel as in the TSP, it also includes the term
∑

k,i pki xki in the objective function of
the traveling salesman problem. A plant k of the original QAP formulation in [18] is interpreted
as the visit order k for the TSPPP, and the flows among the plants (orders) are maintained but

restricted to subsequent orders. The starting point (depot) is node 1 that should be visited by
the traveling salesman again in the last order n, while each other node should be visited at some
order k < n.

Model (1)-(4), based on the input parameters pki and ci j , is also directly related to quadratic

assignment models for the TDTSP based on input cost parameters dikjl ( [21,25]), as well as for
one-machine scheduling problems, in which the cost of crossing an arc between two nodes may
vary with the position of this arc along the Hamiltonian tour [15,25]. By defining dikj (k+1) = ci jk

for i, j = 1, . . . , n, i �= j , k = 1, . . . , n − 1, as the “cost” incurred when the salesman travels

from node i to node j at the k-th position of its route and dikjl = 0 for the remaining cases,
both models are related by minimizing this “cost” ci jk defined as ci j − pki .

We observe that as the pki values become large and the ci j values become small, one would

expect that model (1)-(4) becomes easier to solve, as it tends to the Linear Assignment Problem
(LAP) (with the linear “semi-net” revenue term of the objective function (1) dominating the last
two terms), which is an easy problem in class P. On the other hand, as pki becomes small and
ci j becomes large, it is expected that the problem becomes difficult to solve as it tends to the

classic TSP, with the quadratic transportation cost term of the objective function (1) dominating
the first term.

Although the TDTSP is a generalization of the TSPPP as stated in model (1)-(4), it requires the
more general formulation of Lawler [21] for the QAP, thus departing from the original model

of Koopmans and Beckmann [18] and hence loosing the appealing interpretation of matrices P,
B and C of the original model. Here we prefer to maintain this original interpretation, which
emphasizes the role of matrix P in the linear part of the model, as discussed with the following

example. A classical TSP application concerns the one-machine scheduling problem with set up
costs. A corresponding application of the TSPPP concerns the extension that consider priority
prizes in this class of scheduling problems. Consider the problem where n jobs must be scheduled

on a single machine. Job 1 denotes the initial state of the machine, which will be again in this

Pesquisa Operacional, Vol. 38(3), 2018
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state after processing all the remaining n − 1 jobs. A set of n − 1 jobs, denoted by 2, . . . , n,

are to be performed on the machine and a set up cost ci j is incurred when job j is processed
immediately after job i. A prize pki is received by the machine owner when job i is processed in
order k. The objective is to find a maximal profit sequence of the n jobs, in such a way that the

problem can be cast as a TSPPP.

A notable characteristic of the TSPPP is that it can be easily extended to cope with priority
prizes in time dependent TSP. The Time Dependent TSPPP (TDTSPPP) is a generalization of
the TSPPP where the cost of any given arc depends on its position in the tour. In terms of single

machine scheduling, instead of ci j , in this case a set up cost ci jk is incurred when job j is
processed immediately after job i in order k. The quadratic time dependent traveling salesman
problem with priority prizes is:

max
n∑

k=1

n∑

i=1

pki xki −
n−1∑

k=1

∑

(i, j)∈A

ci jk xki x(k+1) j −
∑

(1, j)∈A

c1 j x1 j (5)

subject to the assignment constraints (2) – (4).

The simple procedure of introducing the set up cost ci jk , instead of ci j , enables the use of the
Koopmans and Beckmann’s point of view to cope with time dependence in extensions of both

the classical TSP and the TSPPP here studied. Apart this observation, we do not pursue further
in the question of time dependence in this paper. The idea is to focus on the priority prizes as the
main aspect to be studied in the original quadratic TSP.

3 MIXED INTEGER LINEAR PROGRAMS FOR TSPPP

This section discusses how to obtain equivalent mixed integer linear programming models for

the TSPPP. The idea here is to adapt and apply for the TSPPP the same linearisation suggested
by Koopmans and Beckman in [18] for the more general QAP. The flow balance equations that
enable a linear formulation for the QAP are given by:

bkl xki +
∑

(h,i)∈A

f kl
hi = bkl xli +

∑

(i, j)∈A

f kl
i j ∀ k, l = 1, . . . , n ∀ i = 1, . . . , n (6)

where bkl is defined in previous section and f kl
i j is the flow from location i to location j of the

commodity which is supplied by plant k to plant l. These equations specify that total inflow of
an “intermediate commodity” (k, l) to a location i (

∑
(h,i)∈A f kl

hi ), added to its “production” at
that location (bkl xki ), equals the total outflow of (k, l) from i (

∑
(i, j)∈A f kl

i j ), plus its “consump-

tion” at that same location (bkl xli ) (Figure 1). Here we rewrite these equations for the particular
bk(k+1) = 1 corresponding to the TSPPP and as a consequence, f k(k+1)

i j is simply the unit flow
from location i to location j of an “intermmediate commodity” supplied by the “plant” at order

k to the “plant” at the consecutive order k + 1, and all the remaining f kl
i j are null. In the words

of Koopmans and Beckmann, the one and only one “intermediate commodity” now is a travel-
ing salesman who is required to call once at each location and return to his point of departure.

Pesquisa Operacional, Vol. 38(3), 2018
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Inspired by this interpretation, the following two subsections present flow formulations to ap-

propriately represent the TSPPP problem. The third subsection presents a mixture of two linear
assignment problems which also represents the TSPPP.

Figure 1 – Flow balance equations.

3.1 Transshipment Flow Formulation for TSPPP

In a refined interpretation, the “commodity” of a salesman visit at each node i is differentiated

by the corresponding visit order k, as far as node i offers different prizes pki for its alternative
visit orders. In the TSPPP, a flow variable f k

hi equal to one indicates a visit order k − 1 for
node h in a tour where node i is the immediate sucessor of node h. For instance, if i is the

first node to be visited, then one unit of outflow f 1
hi emerges from the predecessor node h and

constitutes one unit of inflow to node i, where “commodity 1” (i.e., visit order 1) is consumed at
prize p1i . An outflow of one unit of “commodity 2” then emerges from that node i, thus forcing

a corresponding unit of inflow to some other node j where this commodity (visit order 2) is
consumed. The tour goes on to nodes with visit orders 3, 4 and so on. At last, a node l is visited
in order n − 1, from which emerges one unit of flow f n

l1 that will be consumed at the origin node

h = 1 (the depot in visit order n). As before, we assume that the visit order n is previously fixed
for node 1 (i.e., xn1 = 1), indicating that the traveling salesman returns to the origin 1 at the end
of the tour.

A number of n3 flow variables f k
i j is here required, instead of working with the n4 flow variables

of the QAP in [18] (we note that f k
ii = 0). Our quadratic formulation (1-4) can then be linearised

with the introduction of such related flow variables. A MIP model for the traveling salesman
problem with priority prizes can be defined as (assuming xn1 = 1 and xk1 = 0, k = 1, . . . , n−1):

max
n∑

k=1

n∑

i=1

pki xki −
n∑

k=1

∑

(h,i)∈A

chi f k
hi (7)

Pesquisa Operacional, Vol. 38(3), 2018
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subject to the assignment constraints (2) – (4) and to:

xni +
∑

(h,i)∈A

f 1
hi = x1i +

∑

(i, j)∈A

f 1
i j ∀ i = 1, . . . , n (8)

x(k−1)i +
∑

(h,i)∈A

f k
hi = xki +

∑

(i, j)∈A

f k
i j ∀ k = 2, . . . , n ∀ i = 1, . . . , n (9)

f k
hi ≥ 0 ∀ (h, i) ∈ A ∀ k = 1, . . . , n (10)

The linear objective function (7) sums the received priority prizes less the transportation costs
incurred in the sequence of node visits. Observe that now, in a tour where node h is the imme-

diate predecessor of node i, instead of a quadratic term, a linear term chi f k
hi accounts for the

transportation cost chi that is incurred when visit order k is assigned to node i. As in the previous
quadratic formulation, the assignment constraints (2) - (4) refer only to the x variables. Equali-

ties (2) assure that each node is visited in an unique order and equalities (3) state that a generic
visit order k is assigned for an unique node. Constraints (4) mean that the components of vector
x assume values 0 or 1.

The flow balance equations (8) – (9) are the coupling constraints of variables x and f . These

equations have a transshipment interpretation for each “commodity” at each different node, in
the same spirit of the original QAP formulation in [18]. Observe that the flow balance equations
(9) refers to the commodities k = 2, . . . , n. The total inflow of an “intermediate commodity” to
a location i (

∑
(h,i)∈A f k

hi ), added to its “production” at that location (x(k−1)i ), equals the total

outflow from i (
∑

(i, j)∈A f k
i j ), plus its “consumption” at that same location (xki ) (Figure 2).

Figure 2 – Flow balance equations of the transshipment flow formulation.

Pesquisa Operacional, Vol. 38(3), 2018
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Because only two subsequent visit orders relates the corresponding components of vectors x and

f , observe that such coupling constraints (8) – (9) are quite sparse. With respect to a visit order
k ≥ 2, if node i in an optimal tour is visited before order k − 1 or after order k, then (9) for pair
k, i is trivially satisfied with all terms null. On the other hand, if node i is related to orders k − 1

or k, then node i is either producer or consumer of commodity k, in such a way that equations
(9) account for the correct balance. In complement, equations (8) refers to some node i that is
served in order k = 1. We remark that this commodity 1 is not consumed and is specifically

produced at some starting node h, from which an inflow f 1
hi = 1 is generated to the first served

node i.

As stated, this transhipment flow formulation (7) – (10) may have alternative optimal solutions
which involve subcycles in the flow variables f k

i j . In order to avoid this, the following (redundant)

valid inequalities can be added to the model which, together with the objective function, ensure
that if xk−1,h = 1 and xki = 1, then f k

hi = 1 (similarly, if xn1 = 1 and x1i = 1, then f 1
1i = 1):

f 1
1i ≥ xn1 + x1i − 1 ∀ (1, i) ∈ A (11)

f k
hi ≥ x(k−1)h + xki − 1 ∀ (h, i) ∈ A ∀ k = 2, . . . , n (12)

The mixed integer linear formulation (7) – (10) (or (7) – (12)) enables the use of standard MIP

packages to search for exact solutions for the problem. A variant of this model, which is a
stronger formulation, is presented in next subsection. Large instances could eventually be solved
in reasonable time to provide references for the faster TS algorithm that we present in Section 4.
Decomposition strategies could also be devised to cope with memory problems in many of such

large instances. All these possibilities are open for future work.

3.2 Transportation Flow Formulation for TSPPP

The linearisation (7) – (10) may reveal weak for many instances, since constraints (8) to (10)
can be satisfied with zero flows between facilities. A similar linearisation was applied to a QAP
in [18], for which the prize pki is equal to a constant, say pk , regardless of node i. The linear pro-
gramming relaxation yielded a trivial solution, with xki = 1/n for each pair (k, i), consequently
producing low quality linear programming lower bounds.

An alternative is to work with a bipartite flow formulation for the TSPPP, as suggested in [23]

with respect to the QAP linearised Koopmans and Beckmann model. Instead of working with the
balance equations (8) and (9), we rewrite each of these constraints as two equivalent sets. Note
in (9) that as x(k−1)i + xki ≤ 1 (see 2) and x(k−1)i + x(k−1)h ≤ 1 (see 3), then if x(k−1)i = 1, it

follows that xki = 0 and
∑

(h,i)∈A f k
hi = 0 because x(k−1)h = 0, which implies that x(k−1)i =∑

(i, j)∈A f k
i j for some j , for which xkj = 1 (consumption). On the other hand, if x(k−1)i = 0,

then
∑

(i, j)∈A f k
i j = 0, which implies that

∑
(h,i)∈A f k

hi = xki . Similarly to the flow balance

constraint (8). Moreover, if xki = 1, it follows that x(k−1)i = 0 and
∑

(i, j)∈A f k
i j = 0, which

implies that
∑

(h,i)∈A f k
hi = xki for some h, for which x(k−1)h = 1 (production). On the other

hand, if xki = 0, then
∑

(h,i)∈A f k
hi = 0, which implies that x(k−1)i = ∑

(i, j)∈A f k
i j .

Pesquisa Operacional, Vol. 38(3), 2018
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We are interested to represent the flow balance at the origin and the destination points for each

commodity k. By analogy with the classical transshipment and transportation problems, we are
now interested in a transportation version of our problem based on a bipartite graph. The stronger
MIP model for the TSPPP has the same objective function (7), subject to the assignment con-

straints (2) – (4) (assuming xn1 = 1, xk1 = 0, k = 1, . . . , n − 1, and f k
ii = 0), to the non-

negativity constraints (10) and to:
∑

(i, j)∈A

f 1
i j = xni ∀ i = 1, . . . , n (13)

∑

(i, j)∈A

f k
i j = x(k−1)i ∀ k = 2, . . . , n ∀ i = 1, . . . , n (14)

∑

(h,i)∈A

f 1
hi = x1i ∀ i = 1, . . . , n (15)

∑

(h,i)∈A

f k
hi = xki ∀ k = 2, . . . , n ∀ i = 1, . . . , n (16)

The above flow formulation imply non-zero flows and is able to produce better linear program-

ming relaxation bounds when compared to the original (7) – (10) formulation. This alternative
flow formulation has the same number of variables. On the other hand, it has the double of con-
straints. It also detaches information, sparing the cost and prize matrices, taking advantage of the

demand matrix sparsity. The idea here is to obtain a well balanced mixed integer programming
formulation, with a reasonable linear programming lower bound, being easy to solve.

3.3 Two-assignment Formulation for TSPPP

A pure integer linear program for the TSPPP can be written with a mixure of the two well known

linear assignment problems that support the TSP. The idea is to include the previously defined x
variables and the assignment variables yi j equal to 1 if arc (i, j ) is included in the route and 0
otherwise, together with appropriate coupling constraints. A small and weak pure integer linear

program for the TSPPP can be stated as (assuming xn1 = 1, xk1 = 0, k = 1, . . . , n − 1, and
yii = 0):

max
n∑

k=1

n∑

i=1

pki xki −
∑

(h,i)∈A

chi yhi (17)

subject to the assignment constraints (2) – (4) and to:

n∑

j=1

yi j = 1 ∀ i = 1, . . . , n (18)

n∑

i=1

yi j = 1 ∀ j = 1, . . . , n (19)
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y1 j ≥ xn1 + x1 j − 1 ∀ (1, j ) ∈ A (20)

yi j ≥ x(k−1)i + xkj − 1 ∀ (i, j ) ∈ A ∀ k = 2, . . . , n (21)

yi j ∈ {0, 1} ∀ i = 1, . . . , n ∀ j = 1, . . . , n (22)

As before, the linear objective function (17) sums the received priority prizes less the transporta-
tion costs incurred in the sequence of node visits. The assignment constraints (2) – (4) refer only
to the x variables, while the assignment constraints (18) – (19) to the y variables. Equalities (18)

assure that the outflow from each node is unique, whereas equalities (19) state that the inflow to
each node is unique. Constraints (20) – (21) are the coupling constraints of variables x and y in
a similar way as constraints (11) – (12). And constraints (22) define the domain of the variables;

we note that the integrality of the y-variables can be relaxed without loss of generality, given that
the integrality of the x-variables is maintained in (4), and in this case the y-variables are viewed
as flow variables.

Some of the existing TSP formulations are so-called extended formulations and provide infor-

mation about the orderings of the nodes in addition to an optimal tour by means of auxiliary
variables. One famous example is the MTZ formulation [26]. Model (17)-(22) can be modified
to cope with the MTZ formulation by replacing the coupling constraints (20) - (21) by the con-

straints: ui −u j + (n −1)yi j ≤ n −2 for all i, j = 2, . . . , n, 1 ≤ ui ≤ n −1 for all i = 2, . . . , n
and kxki ≤ ui for all k, i = 1, . . . , n, where ui is a positive auxiliary variable that returns the
ordering of node i in the optimal tour. This is also a valid formulation for the TSPPP; however,

different of model (17)-(22), the integrality of the y-variables can no longer be relaxed. As the
linear relaxation of this model was not tighter than model (17)-(22) and its computational per-
formance was not better than model (17)-(22) when solving the problem instances of Section 5,

it was disregarded in this work. We also tested the linear ordering constraints yi j + y ji ≤ 1 and
yi j + y jl + yli ≤ 2 for all i, j, l = 1, . . . , n and i �= j, i �= l, j �= l in model (17)-(22), but the
results did not improve.

Other MIP formulations presented in the literature for the TDTSP can also model the TSPPP
by making some adjustments in their objective functions based on the redefinition of the time-
dependent cost ci jk as ci j − pki , as discussed before. For instance, [25] presented a three-index
formulation for the TDTSP based on binary variables yi jk that specify whether node i is in
position k and is followed immediatly by node j in the traveling salesman route. Four other

different MIP models were proposed in [11] (pages 1019 and 1020) and in [15] (pages 72 and
74) also based on variables yi jk (we note that the second model in [15] – model NO2 – becomes
similar to the transportation flow formulation of previous subsection after some adjustments in its

objective function). Some of these models will be considered in the computational experiments
of Section 5, together with the MIP models presented in this section.
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4 TABU SEARCH ALGORITHM FOR TSPPP

Given the intrinsic difficulties in solving larger TSPPP instances by exact methods, we describe
a tabu search algorithm. The TSPPP can be seen as a permutation problem and our motivation

for choosing a tabu search metaheuristic, instead of other possible metaheuristics proposed in
the literature for solving permutation problems, is our previous experience with tabu search and
its good performance when solving other permutation problems, as in [12] for the capacitated

clustering problem and in [27] for the vehicle routing problem with time windows and multiple
deliverymen. Our goal was to produce an algorithm capable to provide high quality solutions in
short computational times for all instances tackled in this paper (Section 5) with few changes in

parameters values. In fact, except for the tabu tenure, we use the single setting presented in this
section. The convergence to a single setting required extensive experiments; even though other
settings seem particularly favorable to specific instances, they do not work well for others.

The algorithm is based on the adaptive tabu search approach proposed in [12] and [27]. The ap-

proach consists of an integrated intensification/diversification mechanism that changes the tabu
activation rule [13] according to search trajectory patterns (the curve of solution value vs. it-
eration) during local search. Basically, it assumes that general search trajectory patterns reflect

the restrictiveness level imposed by tabu parameters values, e.g. by the tabu tenure and the tabu
activation rule. Therefore, the main goal of the adaptive tabu search algorithm is to alter restric-
tiveness levels in order to intensify the exploration when trajectories identify possibly promising
regions, and promote diversification if improvements seem to be miminal.

In order to identify the current trajectory pattern, the search process is dynamically divided into
stages, and for each two consecutive stages g − 1 and g, the average solution value in stage g
(μg) is compared to the average solution value in stage g − 1 (μg−1). If these average values
are approximately the same and the coefficient of variation (ratio of the standard deviation σ to

the mean of the two stages) is close to zero, the search describes a stagnated trajectory. On the
other hand, if μg is larger than μg−1, an ascent trajectory is taking place. Similarly, a descent
trajectory is identified if μg is smaller than μg−1.

Once the trajectory pattern is identified, changes in restrictiveness levels are prescribed for τh
iterations, where h is an integer randomly generated within a pre-specified range [hmin , hmax]
and τ is a tuning factor associated to the observed trajectory pattern. Prior to trajectory evalua-
tion, it is verified if any improvement with respect to the best solution found so far was obtained

in the last stage; in this case, levels of restrictiveness and the tuning factor value are also set.
That is, the approach reacts to improvement phases, stagnation, ascent trajectories and descent
trajectories, which means that four possible tuning factor values are used in order to define the

duration of restrictiveness levels changes. The period of application of a new setting corresponds
to a new stage g + 1 and once stage g + 1 ends, a new trajectory pattern evaluation is performed
using the average values of stages g and g +1, and so forth. Figure 3 illustrates the identification

of a descent trajectory and the changes of restrictiveness levels suggested by the analysis. For
the TSPPP, ascent trajectories and improvement phases indicate promising regions for which no
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changes or lower restrictiveness levels are prescribed, while under descent trajectories, tabu re-

strictions are mildly relaxed to stop diversification. Finally, when search stagnation is observed,
it is imposed high restrictiveness levels aiming at promoting diversification.

A high-level description of the Tabu Search algorithm (henceforth called TS) for the TSPPP is
presented below:

1. Read the input data. Let n be the number of nodes to be routed.

2. (Tour construction) Starting from a partial tour S comprising a randomly chosen node i
(i �= 1) and node 1 fixed in the n-th order of the tour, expand S by selecting the un-
routed node j and its insertion position that provides the greatest profit. Repeat the step
until all nodes are routed.

3. Initialize the current iteration, set standard parameters and apply local search for two consec-
utive stages g − 1 and g.

4. Repeat until the maximum runtime Tmax elapses:

4.1 If no solution improvement is obtained in stage g, identify the current trajectory pattern

described by the stages g − 1 and g (as discussed in previous paragraphs of this section).

4.2 Set tabu parameters according to the trajectory pattern (discussed in Section 4.1) or improve-

ment phase. Apply local search for the prescribed number of iterations, obtaining a new
search stage g + 1. Make g − 1 = g and g = g + 1.

5. Return the best found solution.

4.1 Local Search and the Adaptive Approach

Starting tours produced by the tour construction heuristic (step 2) are improved by applying two
move types: (a) two-opt arc exchange and (b) order exchange of two nodes. Even though other

types such as three-opt moves and the move of a single node to a different order in the tour have
been tried, they usually delay or impede the convergence to the best solution found during the
experiments in some instances.

Added (removed arcs) in recent moves are labeled as tabu-active for the adopted tabu tenure

whenever a new move prescribe their removal (addition), and as mentioned in the previous sec-
tion, restrictiveness levels are manipulated by the tabu activation rule. This rule prescribes the
maximum number of tabu-active arcs for each of the two move types in a given search stage,

here called tolerance. Note the smaller the tolerance, the more constrained the search process is.
Tolerance values for two-opt moves are given by parameter T L , while tolerance values for ex-
change moves are given by T E . In step 3, initial tolerance values (T L , T E) = (1, 1) are applied
through the first two search stages. The first stage comprises all solutions between the starting

solution and the first local optimum, while the second stage starts with the solution that follows
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the first local optimum and ends with the solution found h iterations ahead and drawn from the

range [hmin, hmax] = [50, 100], also used to generate other stage lengths. The tabu tenure t for
each added or deleted arc in a move is also randomly drawn from the range [tmin, tmax], whose
lower and upper limits depend on the range of the instance size (see Section 5).

In step 4.2, if any solution improvement is obtained in the last stage, tolerance values (T L , T E)

and tuning factor τ are set to (1, 2) and 0.1, respectively. These tolerance values aim to intensify
the exploration in possibly promising regions. Although they do not seem high, larger values
almost invariably lead to cycling. We use low τ (resulting in relatively small number of iterations)

because for some instances there is usually just a few subsequent improving moves.

Low tolerances (T L , T E) = (0, 1) with τ = 0.5 are imposed when search stagnation takes
place, specifically, when the absolute value of the percent deviation of the solutions current stage
average from the previous stage average is less than or equal to 5% and the coefficient of variation

of the two stages average is less than or equal to 0.2. That is, stagnation is identified when:

|μg−1 − μg

μg−1
| ≤ 0.05, σ/μ ≤ 0.2 (23)

If the average solution value increases (an ascent trajectory and possibly promising region), no

tolerance changes are applied and τ = 2. Finally, if the average solution value decreases, toler-
ances are set to (T L , T E) = (1, 1) and τ = 1. Table 1 summarizes the adopted setting for all
instances.

Table 1 – Parameter setting of algorithm TS used in the experiments.

Trajectory/phase Identification (T L , T E) τ [hmin, hmax ]
Improving Improvement (1, 2) 0.1 [50, 100]
Stagnation see (23) (0, 1) 0.5 [50, 100]

Ascent μg−1 < μg current 2 [50, 100]
Descent μg−1 > μg (1, 1) 1 [50, 100]

5 COMPUTATIONAL RESULTS

In this section we present some computational results of the MIP models of Section 3 and the TS
algorithm of Section 4 for solving TSPPP instances. For simplicity, the transhipment flow for-
mulation, the transportation flow formulation and the two-assignment formulation are henceforth

referred as models TF, TFr and KB-DFJ, respectively. This section also includes the results with
the 3-index formulation in [25] (model 3PQ) and the first 3-index formulation in [11] (model
FGG), both addressed to the TDTSP (the second formulation in [11] was not considered here as

it has a weaker linear relaxation than FGG [15]). As discussed in Section 3, the objective function
of these two models were appropriately modified in order to cope with the TSPPP.

For the analysis, we use some well-known examples from benchmark instances with 12 and 30
nodes (Nug12 and Nug30) provided in the QAPLIB database (http://www.seas.upenn.
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edu/qaplib/inst.html) and with 51 and 100 nodes (Eil51 and KroA100) from TSPLIB95

(http://www.seas.upenn.edu/qaplib/inst.html), for which the TSP optimal so-
lutions are known. The input data of these examples were slightly modified for the TSPPP: the
original costs ci j were maintained, either explicitly or computed from given node coordinates,

while the prize values pki , depicted in Table 2, were generated. Although these literature ex-
amples have symmetric costs (i.e., ci j = c ji ), the MIP models and the TS algorithm can be
also applied to the more general non-symmetric case. Note that examples Nug12a and Nug12b

are variations of Nug12 by simply modifying the values pki (similarly for Nug30a-Nug30d, and
Eil51a-Eil51e). In order to impose node 1 as the last one visited (that is, at order k = n) in
algorithm TS, pn1 was set to a sufficiently large number when compared to the other prizes

(e.g., > 1, 000).

Table 2 – Prize values in examples.

Example Prizes

Nug12a pki = 2 ∀ k = 1 . . . 12, i = 1 . . . , 12
Nug12b pki = 2 ∀ k = 1 . . . 12, i = 1 . . . , 12, except p1,7 = p2,10 = 5

Nug30a pki = 2 ∀ k = 1 . . . 30, i = 1 . . . , 30
Nug30b pki = 2 ∀ k = 1 . . . 30, i = 1 . . . , 30, except p1,10 = p2,20 = 5 p3,30 = 10

Nug30c pki randomly sorted in [2, 10] ∀ k = 1 . . . 30, i = 1 . . . , 30
Nug30d pki randomly sorted in [10, 100] ∀ k = 1 . . . 30, i = 1 . . . , 30

Eil51a pki = 10 ∀ k = 1 . . . 51, i = 1 . . . , 51
Eil51b pki = 10 ∀ k = 1 . . . 51, i = 1 . . . , 51, except p1,6 = 21

Eil51c pki randomly sorted in [10, 20] ∀ k = 1 . . . 51, i = 1 . . . , 51
Eil51d pki randomly sorted in [20, 100] ∀ k = 1 . . . 51, i = 1 . . . , 51

Eil51e pki randomly sorted in [100, 1000] ∀ k = 1 . . . 51, i = 1 . . . , 51

KroA100 pki = 300 ∀ k = 1 . . . 100, i = 1 . . . , 100

The modeling language GAMS with the optimization solver CPLEX 12.5 was used to implement

and solve the MIP models. The CPLEX branch-and-cut was executed on Windows 7 with all
its default parameters and within a runtime limit of 1000 seconds. TS was coded in Delphi 7
and run on Windows 7. Given the probabilistic nature of the algorithm, five runs starting from

different initial solutions were performed within a runtime limit Tmax of 100 seconds per run
and under the parameter settings depicted in Section 4.1. The tabu tenure t for each added or
deleted arc in a move was randomly drawn from the range [tmin, tmax] = [10, 20] for all Nug12,

Nug30 and Eil51 instances, and from the range [tmin, tmax] = [50, 60] for Kroa100 instance. All
experiments were conducted on a notebook Intel Core i7 2.00 GHz with 6 GB RAM.

Regarding examples Nug12a and Nug12b with n = 12 nodes, all models TF, TFr, KB-DFJ,
FGG and 3PQ were able to find an optimal solution and prove its optimality in a few seconds.

In Nug12a, the ci j values vary from 0, 1, . . . , 5 and all pki are equal to 2, i.e. they are constant
and independent of order k and node i. Therefore, the optimal solution of Nug12a with value
12 correctly gets a total prize of 2n = 24 and as expected, follows the minimum cost route
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of the corresponding TSP, known as 12. In case of Nug12b, as p1,7 = p2,10 = 5, there are

priority prizes of value 5 if the traveling salesman visits nodes 7 and 10 in the first and second
orders of its route, respectively. In fact, the optimal solution of Nug12b with value 14 involves
the collection of these higher prizes in nodes 7 and 10 in these required orders, obtaining a total

prize of 30 but paying a higher transportation cost than before, equal to 16. Figure 4 illustrates
the optimal solutions of examples Nug12a and Nug12b found with model TFr (there are many
other alternative optimal solutions for these examples). These solutions were also obtained by

algorithm TS in less than one second.

Figure 4 – Optimal routes of examples Nug12a and Nug12b.
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As we move to the larger examples Nug30a and Nug30b with n = 30 nodes, all models were

also able to find an optimal solution and prove its optimality, however, the computer required
runtimes vary from a few seconds to several minutes or even hours. In Nug30a, the ci j values
vary from 0, 1, . . . , 9 and all pki are equal to 2. Its optimal solution with value 30 correctly gets

a total prize of 2n = 60 and follows the minimum cost route of the corresponding TSP, known
as 30. In case of Nug30b, as p1,10 = p2,20 = 5, p3,30 = 10, there are priority prizes of values 5,
5 and 10 if the traveling salesman visits nodes 10, 20 and 30 in the first, second and third orders

of its route, respectively. The optimal solution of Nug30b with value 35 shows that it does not
pay off to get the priority prize in node 10 in the first visit of the route, despite the high value of
this prize. However, it is worth collecting the priority prizes in nodes 20 and 30 in the second

and third visits of the route, obtaining a total prize of 71 but paying a higher transportation cost
than before, equal to 36.

Table 3 summarizes the results obtained for examples Nug30a and Nug30b. Columns Total
profit, Collected prizes, Travel costs, Gap and Time show the best solution values, the optimality
gaps (%) and the CPU runtimes (in seconds) required by GAMS/CPLEX and TS when applied
to these examples. The gaps were computed accordingly to the formula used by CPLEX (the
difference between the best upper bound provided by CPLEX and the best solution value, divided
by the best solution value) and the symbol “> 100” means gaps larger than 100%. The last two
columnns LR and LRTime of the table show respectively the linear relaxation bounds and the
CPU runtimes (in seconds) obtained by solving the linear formulations without their variable
integrality constraints. The solution values for TS were already decremented by the adopted
pn1, so that they can be directly compared to GAMS/CPLEX results. The values in brackets
correspond to the worst and best solution values found by TS in five runs, the gaps are computed
based on the best upper bound found by CPLEX and the runtimes reported are the five TS run
average. Note that besides TS, only models TFr and 3PQ were able to optimally solve both
examples in a few seconds, which are also the formulations with best RL bounds for these and
the other examples.

At the end of section 2 we have observed that as the pki values become larger and with higher
dispersion and the ci j values become smaller and with smaller dispersion, one would expect
that the TSPPP becomes easier to solve, as it tends to the LAP, which is an easy problem. In
order to verify this comment, Table 4 compares the model performances when solving examples
Nug30c and Nug30d with randomly generated pki values in the intervals [2,10] and [10,100],
respectively (the sorted values were then rounded to the nearest integer). Note that the pki values
of example Nug30d are relatively large if compared to the values of example Nug30c, while the
ci j values of both examples are the same. Then we expect that Nug30d should be less difficult to
solve than Nug30c, and that Nug30c should be less difficult to solve than Nug30a and Nug30b,
which are confirmed by the model results of Table 4. Again, models TFr and 3PQ had better
performances than the other models. In fact, these results would be expected because: (i) model
TF has a weaker linear relaxation than model TFr as discussed in section 3, (ii) model FGG has
a weaker linear relaxation than model 3PQ, which is equivalent to model NO2 (presented in [15]
for the TDTSP) in terms of linear relaxations, as pointed out in [15], (iii) models NO2 and TFr
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Table 3 – Results of examples Nug30a and Nug30b (*Proven optimal solution).

Example
Solution Total Collected Travel Gap Time LR LRTime

approach profit prizes costs (%) (sec) (%) (sec)

Nug30a TF 22 60 38 > 100 1000 50.6 0.1

Nug30a TFr 30* 60 30 0.0 7.2 30.0 0.4

Nug30a KB-DFJ 30* 60 30 0.0 385.9 30.0 0.2
Nug30a FGG 30* 60 30 0.0 4.3 30.0 0.2

Nug30a 3PQ 30* 60 30 0.0 3.6 30.0 0.7
Nug30a TS [30*,30*] 60 30 0.0 0.1

Nug30b TF 29 71 42 8.2 1000 54.0 0.1

Nug30b TFr 35* 71 36 0.0 10.5 35.0 0.3
Nug30b KB-DFJ 35* 71 36 0.0 995.6 38.0 0.4

Nug30b FGG 33 71 38 6.0 1000 40.6 0.2
Nug30b 3PQ 35* 71 36 0.0 5.5 35.0 0.9

Nug30b TS [35*,35*] 71 36 0.0 0.1

Table 4 – Results of examples Nug30c and Nug30d (*Proven optimal solution).

Example
Solution Total Collected Travel Gap Time LR LRTime

approach profit prizes costs (%) (sec) (%) (sec)

Nug30c TF 232* 286 54 0.1 1000 247.8 0.2

Nug30c TFr 232* 286 54 0.0 12.4 238.8 0.2
Nug30c KB-DFJ 232* 286 54 0.9 1000 258.0 0.1

Nug30c FGG 227 279 52 7.8 1000 261.4 0.2
Nug30c 3PQ 232* 286 54 0.0 5.7 238.8 0.4

Nug30c TS [232*,232*] 286 54 0.0 0.1

Nug30d TF 2750* 2830 80 0.0 0.6 2755.2 0.1

Nug30d TFr 2750* 2830 80 0.0 0.4 2751.5 0.1
Nug30d KB-DFJ 2750* 2830 80 0.0 18.6 2785.4 0.1

Nug30d FGG 2750* 2830 80 0.0 19.5 2799.2 0.1
Nug30d 3PQ 2750* 2830 80 0.0 1.1 2751.5 0.1

Nug30d TS [2750*,2750*] 2830 80 0.0 0.1

are similar after some adjustments in their objective functions. Note that in all of its five runs,
algorithm TS was able to optimally solve each of these examples in less than one second.

The limitations of GAMS/CPLEX for solving the MIP models are more evident in examples
Eil51a and Eil51b, with n = 51 nodes. None of the models were able to solve these examples
within the runtime limit of 1000 seconds (and not even in one hour). The best feasible solutions
among the models were found with TFr and 3PQ, but still with high optimality gaps (Table 5).
Note that for some cases the collected prizes are lower than the travel costs, resulting in negative
total profits.
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Table 5 – Results of examples Eil51a and Eil51b (*Proven optimal solution).

Example
Solution Total Collected Travel Gap Time LR LRTime
approach profit prizes costs (%) (sec) (%) (sec)

Eil51a TF –94 510 604 > 100 1000 457.7 0.4

Eil51a TFr 22 510 488 > 100 1000 126.2 1.3
Eil51a KB-DFJ –213 510 723 > 100 1000 133.0 3.9

Eil51a FGG –198 510 708 > 100 1000 127.2 1.1
Eil51a 3PQ 34 510 476 > 100 1000 126.2 1.2

Eil51a TS [84*,84*] 510 426 0.0 4.2

Eil51b TFr 39 510 471 > 100 1000 127.4 1.4

Eil51b 3PQ 66 521 455 58.7 1000 127.4 1.3
Eil51b TS [85,85] 521 436 23.2 9.8

Differently from the MIP models, TS is able to find the best solutions for these examples in a few
seconds. The TS solution of example Eil51a with profit 84 is also optimal as all prizes of this
example are equal (total of 510) and the route of this solution corresponds to the minimum cost
route of the TSP, with value 426. In this solution, node 6 is visited at the 37th order of the route,
and this same solution is found if we change p1,6 from 10 to any integer value ranging from 11
to 20; however, when p1,6 = 21 (as prescribed in example Eil51b), it more profitable to serve
node 6 at the first order of the route.

Similarly to the results observed in Table 4 for examples Nug30c and Nug30d, as we increase the
pki values relatively to the ci j values, examples Eil51 become easier to solve with the models.
Table 6 compares the model performances when solving examples Eil51c, Eil51d and Eil51e with
randomly generated pki values in the intervals [10,20], [20,100] and [100,1000], respectively (the
sorted values were then rounded to the nearest integer). Note that the pki values of Eil51e are
relatively large if compared to the ones of Eil51d, which are relatively large if compared to the
ones of Eil51c, which are large if compared to Eil51a and Eil51b, while the ci j values of all
these examples are the same. As expected, the results of Table 6 reinforce that for the models,
Eil51e is easier to solve than Eil51d, which is easier to solve than Eil51c, and so forth. Note that
differently from the MIP models, again TS is able to find the best solutions for all examples in a
few dozens of seconds.

Regarding the performance of TS, Table 7 summarizes additional information (columns Best TS
and Mean TS) along with the best solution provided by all exact approaches for each example
(column Best model). Column z presents the best solution value of all models and columns zb,
T imeb , z̄ and σz correspond to the best solution value, the shortest runtime to the best solution
value, the average solution value and the standard deviation of the solution values of the five TS
runs, respectively. Column Gain is the average improvement from the starting solutions in the
five TS runs. We observe that the average improvement can be larger than the mean best total
profit, for example, for Nug12a in the first line of the table, Gain = 13.2 and z̄ = 12 because
the mean starting solution value is negative (-1.2). Finally, column T ime is the average runtime
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Table 6 – Results of examples Eil51c, Eil51d and Eil51e (*Proven optimal solution).

Example
Solution Total Collected Travel Gap Time LR LRTime

approach profit prizes costs (%) (sec) (%) (sec)

Eil51c TFr 412 903 491 17.6 1000 492.4 1.7

Eil51c 3PQ 371 897 526 30.7 1000 492.4 1.4

Eil51c TS [424,430] 890 460 12.8 41.4

Eil51d TFr 4045* 4769 724 0.0 836 4108.8 1.6
Eil51d 3PQ 4045* 4769 724 0.5 1000 4108.8 1.6

Eil51d TS [4043,4045*] 4769 724 0.0 41.1

Eil51e TFr 47971* 49251 1280 0.0 2.6 48006.8 0.6

Eil51e 3PQ 47971* 49251 1280 0.0 14.4 48006.8 1.6
Eil51e TS [47949,47971*] 49251 1280 0.0 66.3

to the best solution of the five runs. Note in column Best TS that in addition to finding proven
optimal solutions in 8 examples, for instances Eil51a and Eil51b, the large percent increase
presented by TS in the models best solution (column zb−z

z ) reinforces the observed difficulties of
the previous exact approaches when prizes become lower and less dispersed.

Table 7 – Performance comparison and additional information (*Proven optimal solution).

Example

Best Best Mean
model TS TS

z Time zb T imeb
zb−z

z z̄ σz Gain T ime

(sec) (sec) (%) (sec)

Nug12a 12* 0.1 12* 0.0 0.0 12.0 0.0 13.2 0.0

Nug12b 14* 0.1 14* 0.0 0.0 14.0 0.0 17.6 0.0
Nug30a 30* 3.6 30* 0.1 0.0 30.0 0.0 77.8 0.1

Nug30b 35* 5.5 35* 0.1 0.0 35.0 0.0 80.2 0.1
Nug30c 232* 5.7 232* 0.1 0.0 232.0 0.0 159.0 0.1

Nug30d 2750* 0.4 2750* 0.1 0.0 2750.0 0.0 1175.6 0.1

Eil51a 34 1000 84* 0.1 147.1 84.0 0.0 1230.2 4.2
Eil51b 66 1000 85 1.0 28.8 85.0 0.0 1197.6 9.8

Eil51c 412 1000 430 17 4.4 428.8 2.4 1298.4 41.4
Eil51d 4045* 836 4045* 11 0.0 4043.8 1.0 2549.8 41.1

Eil51e 47971* 2.6 47971* 46 0.0 47957.2 9.1 21497.2 66.3

Note also that the simplicity of the tour construction heuristic (step 2 in Section 4) often results in
low quality starting solutions, therefore the high average improvement, short average times to the
best solution, high means and low standard deviations of the five run incumbents (columns Gain ,
T ime, z̄ and σz, respectively) produced by the improvement phase (step 4 in Section 4) reveal
that TS is little sensitive to the starting solutions for this set of instances. On the other hand, z̄,
T ime and σz get worse as the prizes increase and become more dispersed. That is, differently
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from the exact approaches, TS tends to have a better performance (higher quality best solutions,
shorter average time to the best solution and lower standard deviation among the best solutions)
when prizes are homogeneous or exhibit low variation.

We also analyze the performance of plain local search by applying 2-opt moves to the same
five starting solutions. Even though improvements are substantial (reaching 14075.0 for instance
eil51e), 2-opt solutions show total profit reductions between 12.7% and 40.8% when compared
to TS. The experiments also show an average standard deviation of 103.7, which is considerably
higher than what is found with TS. These results suggest that the solution landscapes are charac-
terized by local optima of widely varying quality, as one might have expected. As the goodness of
solutions obtained by local search is highly dependent on the starting solution, a method capable
to cross the barriers between local optima (such as TS), appears as a much better alternative.

While all models were unable to obtain solutions with positive total profit for example KroA100
within the time limit of 1000 seconds, TS found a solution of value 8718 in 97 seconds, which is
optimal as all prizes are identical (total of 30000) and the route of this solution corresponds to the
minimum cost route of the TSP, with value 21282. The last three nodes visited by the travelling
salesman in this tour before returning to the depot are nodes 27, 92 and 46, respectively. If the
customers of nodes 27 and 92 double their priority prizes for being visited in the last position of
the tour (i.e., p99,27 = 600, p99,92 = 600 and all remaining prizes are pki = 300), the best route
found by TS visits node 92 in the last order (just after visiting node 27 in the penultimate order),
obtaining a higher profit (30300 − 21295 = 9005) than before (30000 − 21282 = 8718), but
with a slightly higher travelling cost. If on the other hand, the customer of node 27 doubles the
priority prize for being visited in the first order of the tour (i.e., p1,27 = 600, p99,92 = 600 and
all remaining prizes are pki = 300), the best found solution does not change and node 27 is still
visited in the penultimate position. However, if customers of nodes 27 and 92 pay priority prizes
of p1,27 = 900, p99,92 = 900 for being visited in the first and last order of the tour, respectively,
then the best found route follows these orders to collect these higher prizes and obtain higher
profits (31200 − 21767 = 9433).

These and the former examples illustrate the performance of the models and algorithm TS when
solving the TSPPP. We also replaced the assignment equalities (2) – (3) by corresponding as-
signment inequalities in models TF and TFr, but the results obtained for all these examples in
most cases did not improve.

6 CONCLUDING REMARKS

A traveling salesman is basically motivated to make a tour in order to sell commodities. Cost
minimization is only a consequence of a maximal profit objective. This point of view has been
explored in different studies to cope with situations in which the standard approach of trans-
portation cost minimization not necessarily implies the salesman maximal profit objective. This
paper studies the particular situation where different priority prizes are paid by the customers
depending on the order they are visited in the traveling salesman route, called the Traveling
Salesman Problem with Priority Prizes (TSPPP). This type of salesman benefit is detached in
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the linear parcel of an integer quadratic program that formalizes the problem. To the best of our
knowledge, there is no other studies in the literature that have directly dealt with the TSPPP. To
cope with the node visit order, we explore a representation for the TSPPP grounded on the QAP
in Koopmans and Beckmann [18]. We present different MIP models derived from this QAP and
other models to deal with the TSPPP, as well as an effective tabu search algorithm, capable to
solve larger problem instances.

An interesting perspective for future research would be to investigate the use of more effective
TDTSP formulations to deal with the TSPPP [1, 16], as well as to explore the application of
TSPPP approaches in real-life situations, such as in single machine scheduling problems with
priority prizes and in the planning of touristic tours [29]. Another future research would be to
compare the present tabu search algorithm with other metaheuristics for this problem, such as
variable neighborhood search and evolutionary algorithms. Furthermore, the condition imposing
the visit to all nodes in the traveling salesman route may not be pertinent for some applications,
thus another interesting line of research would be to extend the present approaches to deal with
the prize-collecting version of the TSPPP.
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