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ABSTRACT. The scheduling of jobs over a single machine with sequence dependent setups is a classical
problem setting that appears in many practical applications in production planning and logistics. In this
work, we analyze six mixed-integer formulation paradigms for this classical context considering release
dates and two objective functions: the total weighted completion time and the total weighted tardiness. For
each paradigm, we present and discuss a MIP formulation, introducing in some cases new constraints to
improve performance. A dominance hierarchy in terms of strength of their linear relaxations bounds is de-
veloped. We report extensive computational experiments on a variety of instances to capture several aspects
of practical situations, allowing a comparison regarding size, linear relaxation and overall performance.

Based on the results, discussions and recommendations are made for the considered problems.

Keywords: Single machine scheduling, Sequence-dependent setup, Release dates.

1 INTRODUCTION

Scheduling research is concerned with the allocation of scarce resources to activities over time
with the goal of optimizing one or more objectives. This vast family of problems is explicitly or
implicitly present in countless applications, from production planning to bioinformatics related
problems. Its study goes back to early the 1950s, were, from the perspective of Operations
Research, the first problems on industrial applications began to be identified and formulated. This
article deals with one of its simplest forms, a single machine environment, which is a challenging
combinatorial optimization problem. Furthermore, we deal with mixed integer programming
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(MIP) formulations for the single machine scheduling problem with sequence-dependent setup
times and release dates (SMSDRD).

For the considered problem we define a set J = {1, ..., n} of jobs to be processed on a single
machine. Preemptions are not allowed, i.e., once the job is allocated to the machine, the job
holds the machine busy until the task is completed. The following data are associated with job
J: the processing time p;, i.e., the amount of time in which the job holds the machine; the
release date r;, i.e., the earliest time at which job j can start its processing; and the weight w ;,
i.e., importance of job j relative to the other jobs in the system. Moreover, the non-symmetric
sequence-dependent setup time s;; is associated with jobs i and j. The setup times represent the
clean-up time between two distinct jobs. We consider the SMSDRD with two variants for the
objective function. The first objective to be considered is the total weighted completion time.
The second one is the total weighted tardiness, where due date d; is associated with job j. This
date may represent the committed shipping or completion date (date promised to the customer).

Blazewicz et al. [1] were the first, to the best of our knowledge, to compile MIP formulations
for machine scheduling problems. Queyranne et al. [2] analyzed MIP formulations for machine
scheduling problems from a polyhedral theory point of view. Allahverdi et al. [3] provided a
comprehensive review involving different setup considerations on several machines scheduling
settings. The review was next expanded and updated by Allahverdi et al. [4] to cover several fea-
tures such as static, dynamic, deterministic, and stochastic problems for all shop environments.
Keha et al. [5] and Unlu & Mason [6] compare the computational performance of (MIP) formu-
lations for machine scheduling. The first work address several single machine problems, while
the latter focuses on parallel machines environment. No sequence-dependent setup is considered.
Adamu & Adewumi [7] proposed a review focused on the weighted number of tardy jobs on a
single machine.

As discussed above, several works are found in the literature on similar problems; however only
a few of them proposed mathematical formulations considering sequence-dependent setups, even
on a single machine environment. When considering the makespan (the maximum completion
time) as objective function, the problem can be treated as the classical traveling salesman problem
(TSP). In the survey of Oncan et al. [8] a comparison of mixed integer programming formulations
(MIP) for the TSP problem is analyzed; however, the characteristics of the problem diverge from
the single machine scheduling problem (SMSP) discussed in this work. Therefore, all formula-
tions presented in this work reflect in a specific concept on how the variables and parameters are
defined, requiring particular changes and definitions.

The MIP formulations for the SMSDRD we investigate can be grouped into four paradigms
according to their decision variables: (i) completion time and precedence; (ii) assignment and
positional date; (iii) time-indexed; and (iv) arc-time-indexed. A fifth paradigm formulation de-
nominated “Linear Ordering” by Keha et al. [5] and Unlu & Mason [6] is not considered, as in a
single machine scenario with sequence-dependent setup times, this formulation is equivalent to
the “Completion Time and Precedence”. Our purpose is to analyze the dominance relationships
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concerning strength of their linear relaxations bounds, and then to compare the computational
performance when trying to solve them with a standard optimization package.

A summary of the literature review with these MIP formulations approaches for scheduling prob-
lems is presented in Tables 1 and 2. Table 1 depicts research works in alphabetical order, with the
same objective functions adopted in this article (3_; w;C; and }_; w;T;) and Table 2 organizes
other related works.

Table 1 — Previous specific research works for scheduling problems. The field “MIP Formulation”
indicates the formulation paradigm. The field “Problem Parameters” is divided into “no parame-

LLY3

ters”, “r; and s;;” and “with s;;”. The first presents works without parameters in the scheduling
environment, the second presents works with both parameters, and the last presents works with the

parameter s;; in the formulation. The field “Performance Measures” defines the objective functions.

MIP Problem Performance Measures
Formulations Parameters > jwiCj > wiT;
no parameters [51, [9] [S], [10]
Completion Time and Precedence rj and no s;; [5] [5]
with s;; [11] [11]
no parameters [1], [1],
[12], [5] [51, [10]
Linear Ordering rj and no Sij [13], [5], [5]
[2], [6]
with s; i [14]
no parameters [5], [10], [5]
Assignment and Positional Date (151, 21
rj and no s;; [5] (5]
Others [16]
no parameters [5], [10] [17], [16],
[51, [18],
Time-Indexed [19], [20],
[21], [22], [23]
r; and no s;; [24], [5], [2] [51, [2]
Arc-Time-Indexed no parameters [25]

Manne [28] initially proposes the completion time and precedence (CTP) formulation for the
job shop problem, see also Balas et al. [33]. It is characterized by continuous variables defining
the completion time of each job, and by binary variables describing the precedence relations
between pairs of jobs. Formulations according to this paradigm have been proposed for a variety
of scheduling problems. For instance, Maffioli & Sciomachen [40] used this formulation as an
exact approach for solving the sequential ordering problem. In the assignment and positional
date (APD) formulation, introduced by Wagner [48], a sequence to be processed on the machine
is a permutation of the n jobs. Binary variables assign jobs to positions in the permutation.
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Table 2 — Previous general research works for scheduling problems. The field “MIP Formulation”
indicates the formulation paradigm. The field “Problem Parameters” is divided into “no parame-

2

ters”, “r; and s;;” and “with s;;”. The first presents works without parameters in the scheduling
environment, the second presents works with both parameters, and the last presents works with the

parameter s;; in the formulation. The field “Performance Measures” defines the objective functions.

MIP Problem Performance Measures
Formulations Parameters Other Objective Functions
no parameters [26], [7], [5],
[27], [28]
rj andno s;; [71, [29], [13],
[51, [30]
with s;; [31], [32], [33],

Completion Time and Precedence (341, [35]. [36].

(371, [38], [39],
[40], [41], [42],
[11], [2], [43],
[44], [45], [30]

Linear Ordering no parameters [5]
rj and no s;; [5], [46], [19]
no parameters [47], [5], [48]
Assignment and Positional Date g \j}rilir;?jsij [5[41‘]9’]]:5[;: 52}: g;]
Others [54], [55], [56], [57]
no parameters [58], [59], [60],

[61], [62], [5],
[63], [64], [21],
[22], [65], [23], [66]

. rj andno s;; [67], [68], [69],
Time-Indexed (51, [70], [2].
[6], [71]
with Sij [72], 73], [74],

[70], [63], [75],
[76], [77], [78], [79]
with 5;; [801, 811, [82],
[83], [42]

Arc-Time-Indexed
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Lee & Asllani [52] modeled a dual criteria problem — minimizing the number of tardy jobs and
makespan — based on APD formulation. More recently, Dauzere-Péres & Monch [47] modeled
a single batch processing problem.

The time index (TI) formulation is based on a time-discretization of the planning horizon. TI
formulations have been investigated in the literature because they are likely to provide better
LP-relaxation bounds than other formulations for scheduling problems. Sousa & Wolsey [22]
proposed a variety of valid inequalities derived from the knapsack problem. Van den Akker et
al. [84] developed column generation techniques to deal with the models of large dimensions
yielded by such formulations, see also Bigras et al. [17]. Avella et al. [24] and Sourd [21] used
TI formulations into Lagrangean relaxation schemes. Paula et al. [78] proposed a non-delayed
relax-and-cut algorithm, based on a Lagrangean relaxation of a time-indexed formulation for
scheduling problems on unrelated parallel machines. Tanaka et al. [23] proposed a TI formulation
and successive sublimation dynamic programming method to minimize the total job completion
cost, see also Tanaka & Araki [14]. Davari et al. [16] developed branch-and-bound techniques
based on TI and APD formulations for single-machine scheduling with time windows and prece-
dence constraints. Recently, Cota et al. [85] proposed a TI formulation for scheduling trucks on a
crossdocking facility, modeling as a flow shop scheduling problem with precedence constraints.
Pessoa et al. [25] proposed the arc-time-indexed (ATI) formulation where each variable is in-
dexed by a pair of jobs and a completion time. The authors prove that ATT formulation dominates
the TI formulation. Pessoa et al. [25] developed a powerful branch-and-price algorithm making
use of a number of techniques to deal with highly degenerated problems yielded by formulations
of pseudo-polynomial size. Keshavarz et al. [74] used ATI formulation into a Lagrangian-based
branch-and-bound algorithm for a group scheduling problem. Nogueira et al. [42] proposed an
ATT formulation with real applications for scheduling trains on a single track-line, modeling as a
SMSP with sequence-dependent setup times and release dates.

This article is organized as follows. Section 2 presents the MIP formulations for the SMSDRD.
In Section 3 the strengths of their linear relaxations are analyzed. In Section 4 we report com-
putational experiments comparing their performances. Finally, Section 5 presents our conclu-
sions remarks.

2 MATHEMATICAL FORMULATIONS

In all single machine scheduling problem environments, n jobs must be processed without pre-
emption. We further assume that all parameters are known and given in integer values. The
following notation summarizes the sets, parameters, and variables used in all mathematical
formulations:

Sets

J —set of jobs, indexed j € {1, ..., n}.
H — set of time periods, indexed ¢ € {0, ..., h}.
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Parameters

h — time horizon length.

pj — processing time of job j.

dj — due date of job j.

r;j —release date of job j.

w; — priority or weight of job j.

s;j — sequence-dependent setup time between jobs i and j.

Decision variables

C; — Completion time of job j; non-negative; used in minimizing total weighted completion
time.

T; — Tardiness of job j; T; = max{0, C; — d;}; used in minimizing total weighted tardiness.

We assume setup times satisfying the triangle inequality, i.e., s;; < si + p; + sy;, for any given
triple i, j,I € J,i # j # [. It is important to point out that, except for Assignment and
Positional Date, and Arc-Time-Indexed formulations, all others require a setup time that satisfy
the triangle inequality. The total weighted completion time and the total weighted tardiness are
regular performance measures, which means they are non-decreasing functions of the completion
time. A scheduling concept to be used in the sequel is that of active schedule (see, for instance,
Pinedo [86]). A feasible non preemptive schedule is active if by changing the order of jobs, it
is not possible to construct a schedule with at least one job finishing earlier without delaying
another job. Given that the objective functions considered are regular, there exists an optimal
schedule for the SMSDRD that is active.

In the next sections we present the constraint set of each formulation analyzed in this study. The
continuous variables C; are common to all models, and give the completion time of each job j.
The objective of total weighted completion time is given by

min Z w;C; 1)
jelJ
while the objective of total weighted tardiness is given by
min Z w;T; )
jelJ

where T; = max(C; — d;, 0) is the tardiness of job j.

2.1 Completion time and precedence formulation

The completion time and precedence (CTP) formulation is characterized by the binary variables
vij that describe precedence relations between each pair of jobs i and j. Given a pair i, j of jobs,
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vij assumes 1 if i is processed before j (not necessarily immediately before), and O otherwise.
The constraint sets (3)-(6) composes the CTP formulation:

Cj =2 Ci+sij+pj— Ml —yj) Vi,jeld,i#]j, (3)
Yij +vii =1 Vi,jelJ, i<}, “4)
Ci>rj+pj Vjiel, &)
yii € (0, 1) Vijed, i ©)

Constraint set (3) makes use of a large positive constant M;; defined for each pair (i, j) € J x J,
as it can be asymmetric. These constraints ensure that if job j is to be processed after job i, then
it finishes no earlier than the completion time of job i plus the sequence-dependent setup time
and its processing time. Constraint set (4) imposes that either job i is processed before job j or
vice versa. Constraint set (5) ensures that completion time of job j is greater than or equal to its
release date plus its processing time. Constraints (6) impose the integrality of variables y;;.

We next give a proposition to compute a value for M;; that preserves all active schedules.

Proposition 1. All feasible active schedules for SMSDRD satisfy constraint (3) if for all
(i, j) € J x J the value of M;; is computed as follows:

Mij = M; —rj + sij,

with

M; = max {ri, max r; + E p+ E max slk} + pi.
led I#i,j o . ked.k#l,j
led, l#i,j led, l#i,j

Proof. For a given job i, M; is an upper bound for its completion time C;, as it considers
the relation of its release time. If y;; = 1, constraints 3 generates the following constraint
C;j = C; +s;j + pj. On the contrary, if y;; = 0, constraints 3 generates the following constraint
C; > Ci +sij + pj — M;j. M;; has to be big enough so that the completion time C; does not
generate a restriction in the completion time C;. Besides the relation with a job i, C; needs to
satisfy its relation with j’s release date, that is, C; + s;; + pj — M;; < r; + pj, thus M;; >
M; — rj + sij. [

Within the CTP paradigm, y;; can be used to indicate that job j follows immediately job i, when
equal to one. Such a formulation, which we denote as arc-flow completion time and precedence
(AFCTP), has been used to model the asymmetric traveling salesman problem, see for instance
Ascheuer et al. [31]. In this case, completion time variables are redefined as C;;. If y;; = 1,
variable C;; gives the completion time of job i, and job j starts at min(C;;, r;). Otherwise,
vij = 0 implies C;; = 0. Completion time variables in CTP and AFCTP formulations are
related by Cj = >y x2; Cjk- The AFCTP formulation uses a fictitious job 0 indicating only
the starting and ending point of the sequence, therefore its parameter values must be null for no
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impact in objective function values. For this reason, the new set J' is defined as J U {0}. The
constraint sets (7)-(11) composes the AFCTP formulation:

dYooCi+ Y pit+sipvii< Y, Cu Yjel. @)
iel,i] ieJ %] keJ' k]

> owi=1 Viel, (8)
JeJi#]

Yoovi=1 vjelt, ©)
ieJ %]
vij(ri + pi) < Cij < yijM,; Vi,jelJi# ], (10)
vij € {0, 1} Vi,jeldi#]. (11)

Constraints (7) have the same meaning as (3). Constraints (8) and (9) establish that each job is
succeeded and preceded by exactly one job. Constraint set (10) defines the C;; domain, where
M; is a large positive constant as defined in Proposition 1. Constraints (11) impose the integrality
of variables y;;.

2.2 Assignment and positional date formulation

The assignment and positional date (APD) formulation makes use of binary variables to represent
the assignment of the n jobs to the n positions of the production sequence. A binary variable
vjr assumes 1 if job j is assigned to the k™ position, and O otherwise. Variable C, defines
the completion time of the job at position k. The constraint sets (12)-(17) composes the APD

formulation:
n
> k=1 Vjeld, (12)
k=1
> k=1 k=1,...,n, (13)
jelJ
Ce =) i+ pj)vik k=1,....n, (14)
jelJ
C;/(EC;/(_l+(Ui(k—1)+l}jk—1)(sij +pj) Vi,jelJ,i#jk=2,...,n, (15)
C; > C, — My(1 —vjp) Vieldk=1,...,n, (16)
vk € {0, 1) Viedk=1,...,n. (17)

Constraints (12) and (13) establish that a job is assigned to exactly one position in the production
sequence and that each position is occupied by exactly job, respectively. Constraint set (14) en-
sures that the completion time of a job at position & is greater than or equal to its release date plus
its processing time. Constraints (15) compute completion times for the jobs at positions2, ..., n.
Constraints (16) relate the completion time of job j with its assigned position. Constraint set (17)
imposes the integrality of variables v .
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Completion times in successive positions can also be modeled by introducing auxiliary contin-
uous variables. A variable /Sikj assumes 1 if job i is assigned to the k™ position and job j to the
(k + D position, an 0 otherwise. In all feasible solutions to APD formulation, /Sikj assumes
naturally a binary value when defined by the following constraints:

Bl < vik Vi,jeld,i#jk=1,...,n, (18)
Bl < vjk+n) Vi,jeld,i#jk=1,...,n—1, (19)
Bz 1—Q—vik—vjgrn) Vijedi#jk=1...n—1, (20)
B =0 Vi,jeld,i#jk=1,...,n. (1)

Then, constraints (15) are replaced by

Co=Co+ Y pivik+ ) D B sy k=2...n (22)
JjeJ ieJ /e#J
JF

Analogously to the CTP formulation, in the APD formulation it is necessary to give a value for
the positive large constant M. So, the next proposition shows how to compute a value for Mj
that preserves all active schedules.

Proposition 2. All feasible active schedules for SMSDRD satisfy constraint (16) if for each
positionk, k =1, ..., n, My is computed as follows:

My =5} (pj+r)) + 1) (pj + 57, (23)

where function . ]l <7 (xj) returns the sum of the | larger values of a parameter or variable x,
for j e J,and 0 = 0.

Proof. Let (K, k") be two adjacent job positions in an active schedule and (j, ji~) its respec-
tive jobs. For each position k" an upper bound My for the completion time at position k" can be
defined. The completion time (C},) is at least max{C}, +p ., +Sjs jurs T +Pjonr }> @S yjlej (pj+
i)+ yj{cgj—l (pj+ s}"flx) is an upper bound for max{CjA( + Pjur +Sjisjuns i + P 3> Cir can be
redefined. Thereby, generalizing for all n positions, M = yjle Jpj+rj)+ y]?‘e— 11 (p; + s;.”‘”

is a valid upper bound. O

Keha et al. [5] and Unlu & Mason [6] showed that the APD formulation usually provides stronger
linear relaxation lower bounds. However, when release dates and sequence-dependent setup
times are introduced it is necessary to establish a positive large constant M in the constraint set
(16). Keha et al. [S] mentions that the linear relaxation bound performance of the formulation
decreases with the increase of M’s value. Therefore, the weaker linear relaxation of an APD
formulation in the problem treated in this work can be justified by Keha et al. [5] work.
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2.3 Time-indexed formulation

Integer programming formulations making use of variables indexed by a job and a discrete time
period have been proposed to a variety of scheduling problems, see Sousa & Wolsey [22]. In
the time-indexed (TI) formulation, the planning horizon is divided into periods. Let H denote
the set of periods. The duration of each period is A, and it is assumed that release and due
dates and processing and setup times for all jobs are multiple of A. Leth; = M;/A, j € J,
where M is given in Proposition 1. The set of time periods is defined as H = {0, ..., h}, where
h = maxjey{h;}. Abinary variable x; assumes 1 if job j starts at time period ¢, and 0 otherwise.
The constraint sets (24)-(27) composes the TI formulation:

> ox=1 Vjel, (24)

min{t+p_,'+s_,',~—1,h;—p,~+1}

X+ > X<l Vijjedi#jtelry, ... hj—pi+1}, (25
s=max{r;,t—p;—s;j+1}
hj—pj+1
Ci= ) @)+p, R (26)
1=rj
x;e{o,l} Vjied,tefrj,....hj —pj+ 1} (27)

Constraints (24) ensure that each job j is assigned to a time period 7. Constraint set (25) avoids
overlaps, since given a job j assigned to a period ¢ no other job i (i # j) can be scheduled
between periods 1 — p; — s;; + 1 and t + p; + s;; — 1. Constraints (26) computes the com-
pletion time of a job j as its starting time plus its processing time. Constraint set (27) imposes
the integrality of variables x;. It must be highlighted that for Time-indexed formulations the
continuous variables C; and T are unnecessary, once they can be indirectly defined as parame-
ters (C; and T; , respectively). These parameters define the values that the continuous variables
can assume for each job j in each period of time ¢. The C; can be defined as w;t and Tj’ as
max{t — dj, 0}t. Therefore, the constraints associated for continuous variables C; and 7T be-
comes unnecessary, and, the objective function changes from ) jw;Cjto > X jtc; and from
Zj ijj to th Xj;T;.

Keha et al. [5] and Unlu & Mason [6] showed that the TI formulation usually provides stronger
linear relaxation lower bounds compared to other formulations, but the linear programming prob-
lems associated are harder to solve. However, the computational experiments reported by Paula et
al. [78] suggested that when sequence-dependent setup times are introduced the linear relaxation
bounds provided by TI formulation are not as strong. Because the machine is available immedi-
ately after the completion of a job when no setup is involved, the non overlapping constraint in
such cases can be verified for each period ¢ taking the sum over all jobs, see Sousa & Wolsey [22].
In the presence of dependent sequence setup times, however, the constraint have to be verified for
each period and each pair of jobs separately since the machine may take more or fewer periods
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to become available depending upon the pair of jobs being processed subsequently. This may ex-
plain a weaker linear relaxation of TI formulations in the presence of sequence-dependent setup
times. We try to somehow overcome this difficult by introducing a valid inequality to improve
the lower bounds provided by TI formulation for the SMSDRD.

In the linear relaxation of TI formulation the time index variables of two distinct jobs i, j €
J,i # j with strictly positive values may be feasible for constraints (25), which means both i
and j scheduled in the interval between max{r;, t — p; —s;; + 1} and min{t + p; +s;; — 1, h; —
pi + 1}. The following constraints limit to 1 the sum between max{t — p; — SMin; + 1, r;} and
min{z, h; — p; + 1} of the time indexed variables for all i € J, where SMin; is the minimum
setup time from ¢ for any other job:

min{¢,h;—p;+1}
> > <1 VieH. (28)
ieJ s=max{t—p;—SMin;+1,r;}

The motivation is to reduce the number of jobs sequenced simultaneously for a given time inter-
val. Constraints (28) are valid for TI formulation, as SMin; does not depend on the sequence.
We refer to TI formulation plus constraint (28) as time-indexed improvement (TII) formulation.

2.4 Arc-time-indexed formulation

The arc-time-indexed (ATI) formulation proposed by Pessoa et al. [25] consists in an extended
network-flow based formulation assigning jobs to time periods while considering precedence
relations. As in the TI formulation, the planning horizon is divided into a set of time periods
H ={0,...,h}. Given two jobs i and j,i # j, xl?j assumes 1 if, at time 7, job i and the setup
to job j has been completed and job j starts, and 0 otherwise. We remark that in the formulation
proposed by Pessoa et al. [25] x; j is not defined. Indeed, the authors showed by an example that
such variables would weaken the formulation. A fictitious job 0 is created and variables xl?o and
x(’;f‘s take into account § periods of idle time between jobs i and j. In the presence of sequence
setup times, however, we cannot use this approach since we would lose the sequence information
to carry setup times. Thus, given jobs i and j to be processed subsequently, a variable xl? ; assumes
1 for each period the machine is idle, if any, before starts job j. The set J' is defined as J U {0},
and the fictitious job O with pg = 0 and s9; = sj0 =0, j € J, starts and ends the sequence. Our
formulation uses the parameter s; ; whichis p; +s;; if i # j,and 1if i = j. The constraint sets
(29)-(32) composes the ATI formulation:

hj—pj+1

YooY =1 vjel, (29)

icJ’ t=max{r,~+s;/,r_,'}

i#]
t H'S;/ .
E Xji— E X ‘=0Vield,telr,...,hi —pi +1}, (30)
jel’ jel’
z>rv+s//l. r_/gz+s;/gh_/—p_v+|

=J J
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j—pjtl

h
Ci=>, > axip+p; Vijel 31)

ieJ" t=max{r;+s...r;
i# rictsijri)

xi; € {0, 1) Vi, je J withi #0or j #0, (32)
t € {max{r; —i—sl{j,rj},...,hj —pj+ 1}.

Constraint set (29) ensures that every job is processed. Constraint set (30) is the flow conservation
constraint establishing the sequence and avoiding overlaps. Idle times and setup times are taken
into account in (30) with the use of parameters s; i Constraints (31) compute the completion time
of a job j as its starting time plus its processing time. Constraints (32) impose the integrality of

variables x/ -

We illustrate the use of variables xl?i with an example with two jobs, J = {1, 2}, and the following

data:
pelon] =V we[a ] weloe]

In this example, independent of the objective function (1) or (2), an optimal solution is obtained
by starting job 1 at time 0 and job 2 at time 6. From constraint (30), with i = 1 and x16 =1,
t +5), = 6, and we have that }© ey sz.l = 1. Since x%,] = 1 would delay the completion

. /
22rjtsy

time of job 1, we have that xlz,1 = 1. Analogously, withi = 1 and xlz,1 =1,t+ s;,l = 2, and
we have xll,1 = 1. Finally, withi = 1 and xll,1 =1,t+ s;,l = 1, and since job 0 is the one that
satisfies > jel x?l =1, we have x8,1 = 1. Note that variables xll,1 =1 and xlz,1 = 1 account

0=r; +s'.
for the two pé;idiils the machine is idle between processing jobs 1 and 2. But this does not mean
that the machine is idle exactly in periods 1 and 2. In fact, variable x8,1 = 1 indicates that job 1
starts at time 0, and its completion time after two periods is correctly computed due to constraint
(31). Thus, a variable xl? ; = L indicates the machine is idle during a period before processing the

next job, but not necessarily during period ¢ itself.

3 DOMINANCE HIERARCHY

In Oncan et al. [8] is defined that the efficiency of the enumeration depends on the linear relax-
ation of a given formulation. Furthermore, the author state that for minimization problems the
larger relaxation values are better. The strengths of LP relaxations, or equivalently the strengths
of two formulations, can also be compared by using polyhedral information. The authors de-
fine that one formulation is a better formulation than other since the lower bound obtained by
solving its LP relaxation is at least equal to the one obtained by solving the LP relaxation of
other. Briefly, dominance is defined in terms of the strength of their linear relaxations, therefore
a given mathematical formulation dominates another if its solution space is contained within the
other one.

Pesquisa Operacional, Vol. 39(1), 2019



THIAGO H. NOGUEIRA, CARLOS R.V. DE CARVALHO, MARTIN G. RAVETTI and MAURICIO C. DE SOUZA 121

We develop dominance relationships between some formulations presented in Section 2. To help
in this analysis we define an instance with three jobs, J = {I, 2, 3}, where the objective is to
minimize the total weighted completion time with the following data:

pi=[24 6] s= =023 4] w=[10 3 50|

[SSI S B ]
wn O =
S B~

An optimal sequence is given by processing first job 3, followed by job 1, and at last job 2. These
proofs apply for the total weighted tardiness or any other regular objective as well. Furthermore,
these propositions are based on methodology used by Oncan et al. [8] and Pessoa et al. [25],
which converts one formulation for the space of the variables of other to aim compares them.

Proposition 3. The ATI formulation dominates the TII formulation.

Proof. Any solution g of the linear relaxation of ATI formulation with cost z can be converted

into a solution E of the linear relaxation of TII formulation with the same cost by setting

;z Z xl?j,Vj eJ,telrj,....,hj—pj+1}.
ic) i#j

As g satisfies constraints (29), E satisfy (24). Likewise, the scheduling constraints (30) on xf J
imply constraints (25) and (28) on E Thus, all feasible solutions for the linear relaxation of ATI

can be converted to a feasible solution of TII with the same objective function value.

On the other hand, the value of the linear relaxation bound provided by TII for the proposed
instance is lower than the one provided by ATI. The solution of the linear relaxation of TII, with

cost 1,210.9, is a combination of several pseudo-schedules: x12, x19, xllz, x114 for job 1, xg, xg,

xg s x%o, x%6 for job 2, and xg‘, xg s x%l, x§3, x§8 for job 3. Therefore, the linear relaxation of TI
allows the schedule of jobs and idle times when jobs may repeat. This occurs as TII allows for
any pair of distinct jobs i, j € J,i # j, that the sum of jobs scheduled simultaneously in the
time interval between max{r;, t — p; — s;; + 1} and min{t + p; +s;; — 1, h; — p; + 1} may be
larger than 1. Constraints (28) reduce this time interval but does not eliminate the effect. For the
ATI, however, the sum of jobs scheduled simultaneously in this time interval is at most 1 (see

constraint (30)). The optimal solution of the ATT relaxation is integral for this instance. U

Proposition 4. The TII formulation dominates the TI formulation.

Proof. The constraint set (28) is valid and restrict the time interval in which the sum of the
scheduled jobs may be larger than 1; therefore the TII formulation has a smaller solution space,
and, consequently dominates TI. U

Proposition 5. The TI formulation dominates the CTP formulation.

Pesquisa Operacional, Vol. 39(1), 2019



122 ANALYSIS OF MIP FORMULATIONS FOR SMSP WITH SEQUENCE DEPENDENT SETUP TIMES

Proof. Given a feasible solution E for the linear relaxation of TI with cost z, let C; =

.....

iify the completion time constraints (5). Likewise, the scheduling constraints (25) and (28) on
x;. imply constraints (3) and (4) on C_]

The linear relaxation bound provided by TI formulation is better than the one provided by CTP
formulation for the proposed instance. The solution of the linear relaxation of CTP, with cost
750, is composed by the jobs starting their processing at the release dates, i.e., C1 =4, Cr =7
and C3 = 10 (C; = r; + p;). This fact occurs due to the relaxation of the precedence relation
variables, y;; (see (6)), allowing that the constant M disable the schedule constraints (3) and (4).
The solution of the linear relaxation of TI has an objective value of 1,060. U

Proposition 6. The CTP formulation dominates the APD formulation.

Proof. Any solution C_] of the linear relaxation of CTP with cost z can be converted into a
solution of the linear relaxation of APD with the same cost. As C_] satisfy the completion time
constraints (5), it also satisfies the assignment constraints (12) and (13), the completion time
constraints (14) and (16). Likewise, the scheduling constraints (3) and (4) on C_] imply also
constraints (20) and (15).

The solution of the linear relaxation of the APD for the proposed instance, with cost 0, is com-
posed by the jobs finishing their processing at time 0, i.e., C; = 0, C; = 0 and C3 = 0.
This fact occurs due to the relaxation of the assignment position variables, v, (see (17)). The
relaxation allows the constant M to disable the completion time constraint set (16), removing
any association between C_] and r; + p;. The relation is maintained only for C_,’( (see 14). In
CTP the constraint (5) takes into account this relationship. Therefore, in the linear relaxation of
CTP, variables C_] respect the completion time conditions (r; + p;), obtaining a solution with
cost 750. [

Proposition 7. The AFCTP formulation dominates the CTP formulation.

Proof. Any solution C_]l of the linear relaxation of AFCTP formulation with cost z can be
converted into a C_] solution of the linear relaxation of CTP formulation with the same cost
by setting C; = Y ;. Jikj Cji,¥j € J. As C; satisfy the completion time constraints (5),
also satisfy constraints (10). Likewise, the scheduling constraints (3) and (4) on C; also imply
constraints (7), (8) and (9).

In the solution of the linear relaxation of the CTP formulation for the proposed instance, the jobs
start their processing at their release dates, i.e., C1 =4, C; =7 and C3 = 10(C; = r; + pj),
and the cost is 750. This solution is obtained due to the relaxation of the precedence relationships
variables, y;; (see (6)), disabling the schedule constraints (3) and (4). However, in the AFCTP
formulation the schedule constraint cuts-off such a solution, and an optimal solution is given by
C1 =9.74, Co = 7 and C3 = 10 with cost 807 .4. O
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Proposition 8. The Time-Indexed and Arc-Flow Completion Time and Precedence formulations
are incomparable.

Proof. Consider, for example, the instances of class 4 with 5 jobs in Table A.4 in section
Additional Tables (A). For these instances, the percentage gap from the optimum of the lin-
ear relaxation bounds corresponding to Arc-Flow Completion Time and Precedence, and Time-
Indexed formulation is slightly lower for the first. Though for 7 jobs, the Time-Indexed formula-
tion presents lower gap. For more details see the supplementary material in the section Additional
Tables (A). U

Figure 1 summarizes the dominance relationships. In the Figure, we include an empirical re-
sult, the dominance of TI over AFCTP formulation. Although, we were not able to prove the
propositional dominance, an extensive computational analysis supports the hypothesis.

A dominates B by propositions
<—> A and B are incomparable ‘
----> A dominates B by empirical tests

Arc-Time-Indexed ‘

\ 4
‘ Time-Indexed Improvement ‘

- \
‘Arc-FIow Completion Time and Precedence F—»‘ Time-Indexed ‘
\/

‘ Completion Time and Precedence ‘

\ 4
‘ Assignment and Positional Date ‘

Figure 1 — Dominance relationships between SMSP formulations

4 SIZE OF FORMULATIONS

The sizes of the formulations of CTP, AFCTP and APD proposed in this article have a polynomial
number of constraints and variables in the number of jobs. However, this is not the case for Time-
indexed MIP based formulations, as they also are strongly dependent on /2. Table 3 shows the
number of constraints and binary variables associated with each paradigm. It is worth noting
that as & >> n, h o« n, TI, TII and ATI formulations will increase their size faster than other
formulations.
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Table 3 — Model Size for each Formulation Paradigm for Problems 1|r;, s;;| > Jwj Cjand
lrj, sijl > W) T;. For the formulations, “Variables” indicate the number of associated

variables and “Constraints” the number of constraints with each formulation paradigm.

MIP Formulations Model Order Size for Both Problems

Variables Constraints
CTP 0n?) 0(n?)
AFCTP on?) 0(n?)
APD o) o)
TI O(nh) o’ h)
T O(nh) O(n?h)
ATI 0n?h) O(nh)

5 COMPUTATIONAL EXPERIMENTS

We conduct computational experiments to validate the propositional dominance defined in Sec-
tion 3 and, furthermore, to capture the strength and weaknesses of each formulation. For this
purpose 660 instances divided into 6 classes are defined. The instances were randomly generated
using uniform distribution as shown in Table 4.

5.1 Benchmark

Six different classes of instances are artificially created. All instances’ parameters are randomly
generated from a uniform distribution, and their minimal and maximal values are based on spe-
cific scale parameters. A similar methodology can be found in [6, 18,44,87-90] and [91]. The
instance classes and its scale parameters are listed in Table 4.

Table 4 — Distribution values of the instances.

Input data Distribution value
Processing Time (p ) U1, 2150)
Setup time (s;;) U(l,a210)
Priority (w;) U(l,n)
Release date (r ) U, a%—g/)
Due date (d ) U(max;{p;}. &)

The k' was defined as the sum of processing times plus the sum of maximum setup times
> iPj + Zi max ;{s;;}). The scale parameters a1, a2, @3 and a4 define the distribution scenario
of “Processing Time”, “Setup time”, “Release date ” and “Due date” respectively. o1 € {1, 4}
modifies the process time extent, ap € {1, 5} defines the setup time impact, oz € {1, 5} the
availability level and a4 € {1, 4} the congestion level.

In each class (1 to 6) there is a change in one scale parameter. The created classes are namely:
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Class 1: all scale parameters have minimum values;

Class 2: «; has the maximum value (4) and other scale parameters have minimum values;
Class 3:  «» has the maximum value (5) and other scale parameters have minimum values;
Class 4: «3 has the maximum value (5) and other scale parameters have minimum values;
Class 5: a4 has the maximum value (4) and other scale parameters have minimum values;

Class 6: all scale parameters have maximum values.

Each class presents special characteristics. The “Class 17 is our base scheduling system. “Class
2” considers a long planning horizon and the system is slightly affected by setup times. This class
is closer to single machine scheduling problems withoutsetup times (p; > sij) - 1[rj| }_; w;C;
and 1|r;| ) jw;T;. The “Class 3” considers a moderate planning horizon with setup times hav-
ing a great impact in the scheduling system. This class is closest to the traveling salesman prob-
lem - 1]s;;] 3-; w;C;j and 1]s;;| 3 ; w; T;. “Class 4” presents a moderate planning horizon with
longer release dates. The “Class 5 defines a scheduling system with high congestion level,
reducing its due date values. “Class 6” determines a scheduling system with emphasized condi-
tions. The last defines a complex scheduling system, presenting long planning horizons, a mod-
erate impact of setup times, an impact on the job’s release dates and a considerable congestion
level. For the problem 1|r;, s;;| > jwj C; the classes 1 and S are redundant.

For each class, ten independent instances are considered with size n € {5,7,9, 11, 13, 15, 20,
30, 50, 75, 100}. Thus, 660 instances are randomly and independently generated. All instances
are slightly modified to satisfy the triangle inequality of the setup times (s;; < Six + pr + Sk,
where i, jand k € J andi # j # k).

5.2 Results

The mathematical formulations are modeled and solved using AMPL and CPLEX 12.1 with
default settings. Experiments are run on a Linux Maya with a single 2.4 GHz processor and 4GB
memory. The runs are ended after one hour of CPU time.

To compare the performance of the different formulations, we compute the optimality gap after
3600 seconds, the linear programming relaxation GA P, CPU times and its dimensions. Linear
programming relaxation gap is defined as the relative difference between the best integer solution
found for each instance between all formulations analyzed and the LP (linear programming)
relaxation value. The average results of the experiments are presented in Tables 6 and 7.

Table 6 depicts the average GAP results for the two problems considering both problems for
each instance class, while Table 7 shows the average results for each size. Table 9 presents 95%
confidence interval (CI) for all formulations in all sizes, while Table 8 presents 95% confidence
interval (CI) for all formulations in all Classes. Finally, Table 5 presents the average G A P results
for the two problems considering both problems for each instance class in small (until 15 jobs)
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and large sizes (larger than 15 jobs). The GAP is computed for each formulation and instance
as the relative difference between the best integer solution found by all formulations and its LP
relaxation value. It must be highlighted that in several occasions the Time-Indexed based formu-
lations (TI, TII and ATT formulations) are unable to load the whole problem into the solver. In
those cases, the GAP is defined as 100% and its computational time as 3600 seconds. Individual
results for each class and each instance size are presented in Section Additional Tables (A).

5.2.1 Linear Programming Relaxation Problems

The analysis of the LP relaxation is presented in Tables 6 and 7. The ATI formulation presents a
generally tighter linear relaxation GAP until the 30 jobs when the formulation is unable to solve
the problem. Constraints (28) have significant impact strengthening TI formulation, improving
GAP results around 40% to 5% (TII), but with the same disadvantages found in ATI.

Time-Indexed based formulations (TI, TII, and ATT) are not able to load the linear programming
problems into the solver for most instances greater than 30 jobs. These formulations require
column generation based methods to exploit their full potential to provide tight lower bounds in
reasonable time, see Pessoa et al. [25] and Van den AkKer et al. [84]. On the other hand, CTP,
AFCTP, and APD linear programming relaxations are solved quickly for all instance sizes but
leading to poor lower bounds (GAPs between 20% and 100% for F1 and between 1% and 100%
for F2). Note that APD obtained zero as lower bound in almost all cases. We argue that stand-
alone TI formulation is not the best choice in this scenario, as it gives lower bounds comparable
to those obtained with CTP and AFCTP in much larger computational times.

When we analyze the effect of the instance classes, time-Indexed based formulations present
better GAP results for instances with shortest and moderate planning horizon length (classes 1,
4 and 5) and worse results for long planning horizon (classes 2 and 6), with its Gaps up to five
times larger than others. These formulations present the worst results for relaxed problem F2 in
instances with high congestion level and emphasized conditions (classes 5 and 6). Considering
(class 3 (TSP scenario) the TI formulation worsens its GAPs in comparison to results in class 1).
For this class, ATI presents no significant variation.

The CTP, AFCTP and APD formulations have lower computational time values, but generally,
producing weak lower bound results. Nevertheless, for the relaxed problem F2, the CTP and
AFCTP formulations produce strong lower bounds for instances with shortest and moderate
planning horizon length (classes 1 to 4). The AFCTP formulation presents better GAP results
in relaxed problem F1 consuming more computational time than CTP. As the number of jobs
increases, the GAP difference is irrelevant. There is no noticeable difference between the results
for relaxed problem F2. However, the CTP formulation presents lower computational times. The
APD formulation presents the worst GAP results in all classes.

Analyzing Tables 6 and 8 for the relaxed problem F1, the CTP and AFCTP formulations present
better GAP results for instances with moderate and long planning horizon length (classes 4 and
6) and worse results for base system (classes 1 and 5), which have Gaps until three times larger
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than others. When considering the relaxed problem F2, they perform worse for high congestion
level and emphasized conditions (classes 5 and 6). In the TSP scenario, class 3, for problem F1
the formulations CTP, AFCTP and APD worsens their results.

Summarizing the results, we argue that when the planning horizon length is small or moder-
ated, i.e., the number of jobs is low, or the processing time of the jobs are small, and the jobs
are ready to start at the beginning of the planning horizon, we recommend time-indexed based
formulations TII and ATI. Otherwise, the CTP and AFCTP formulations are a good alternative
for generating lower bounds in small computational times. These formulations present their best
results in scenarios with large planning horizon length or for difficult release dates. This analysis
considers stand-alone formulations, but, CTP and AFCTP formulations can be incorporated in
Relax-and-Fix framework (see [92]). In high congestion level scenario, all formulations have dif-
ficulties for solving the problems studied. Furthermore, with exception to ATI, all formulations
present increase of its GAPs in the TSP scenario.

It is interesting to notice that for the cases where TII formulation solves the problem F1, the
improvement over TI is less significant for class 2 in the 1[r;| ) j w;C; scenario, and more
significant for class 3 in the 1]s;;| ) ;j w;C;j scenario (see Table 8 for more details). Furthermore,
for small instances in 1]r;| ) jwj C; scenario (until 15 jobs) the linear relaxation GAP of TI
and TII are similar, while for 1]s;;| > jwj C; scenario the TII GAP is half than the TI GAP.
The low performance of TII in 1|r;| )" jw;Cj scenario occurs due to the improvement of its
computational time by added constraints without important GAP improvements. In this scenario,
the computational time of TII increases significantly more than TI. It is possible to state that
constraints (28) are more effective for class 3, that is with setup times varying in a wider range.

No formulations solve larger instances with emphasized conditions. In the problem F2 is no-
ticeable that all formulation present large GAPs in small-sized problems with high congestion
level.

5.2.2 Mixed Integer Programming Problems

Tables 6 and 7 show how in average all formultations have difficulties as the number of jobs
increases. It is possible to notice that the TII and ATI formulations managed to optimality solve
some instances, but as the number of variables and constraints increase, the MIP problems be-
come rapidly unmanageable by the commercial solver. Section A presents a detailed description
of the results for each instance size in each class. In Tables A.1 to A.6 we can see that the time-
indexed based formulations (TI, TII and ATI formulations) can solve instances of up to 20 jobs
for both MIP problems (F1 and F2), depending on the class. These formulations present better
GAP results for MIP problem F1 for instance with shortest and moderate planning horizon length
(classes 1, 4 and 5) and worse performance for long planning horizon (classes 2 and 6. When
considering the MIP problem F2, they perform worse for instances with high congestion level
and emphasized conditions (classes 5 and 6). In the TSP scenario (class 3) for problem F1 only
TI worsens its GAPs significantly when compared with its best scenario. The linear relaxation
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Table 5 — Average Relaxation GAP Results for Single Machine Scheduling Problems for Six MIP Formulations for All Classes in Small and Large Sizes. The GAP
indicates the average value of the average linear relaxation gap for each classes in Small and Large sizes. The GAP is computed for each formulation and instance as the
relative difference between the best integer solution and its LP relaxation value. The Small sizes are the instances with until 15 jobs, while Large sizes with more than 15

jobs. T(s) indicates the average value of the average CPU time. F 1 and F2 denote the objective functions ) W Cj and 3 W) T, respectively.

Mixed Integer Program Formulations
Objective  Instance  Size Problem CTP AFCTP APD TI TIL ATI
Function Class GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s)
1 Small 613% 00 458% 1.3 100.0% 0.0 52.7% 140.8 4.7% 711.7 0.0% 25.8
Large 77.0% 02  73.8% 137  100.0% 1384  96.4% 33242 827% 34505 80.0%  2932.7
2 Small 603% 1.1  442% 5.3 100.0% 5.4 64.7%  1844.1  669% 27422 0.0% 125.4
Large 762% 68 727% 172  100.0% 1763 100.0% 3600.0 100.0% 3600.0  96.0%  3472.7
3 Small 60.1% 15 46.8% 0.0 100.0% 0.4 50.9% 756.9 21.7% 1079.7 0.3% 37.3
F1 Large 682% 63  659% 8.3 100.0% 2923  90.8% 32034 100.0% 3600.0 84.9%  3179.1
4 Small 27.0% 04  21.8% 0.8 100.0% 0.3 21.7% 240.2 3.7% 638.7 0.0% 11.1
Large 26.1% 1.0 255% 307 100.0% 2852  85.0%  3186.7 813% 34669  80.0%  2887.3
5 Small 60.6% 58  45.6% 5.4 100.0% 0.5 51.6% 104.0 5.7% 585.2 0.0% 26.8
Large 764% 6.8  73.1% 627 100.0% 1532  969% 33305 86.4% 34490 84.0% 29215
6 Small 256% 00  20.8% 2.7 100.0% 0.3 39.5% 17944  60.7% 28344 0.2% 151.8
Large 238% 1.8 23.1% 130.0 100.0% 2489 100.0% 3600.0 100.0%  3600.0 100.0%  3532.3
1 Small 4.0% 0.0 4.0% 0.0 10.0% 0.0 7.3% 1040.1 7.1% 1312.6 3.7% 68.2
Large 8.6% 0.1 8.6% 26.8 520%  120.6  52.0%  3600.0 52.0%  3600.0 482% = 3467.6
2 Small 0.0% 0.0 0.0% 0.2 3.3% 0.1 3.3% 1845.7 3.3% 2324.5 0.0% 621.5
Large 182% 0.1 182%  35.7 68.0% 90.4 64.0%  3600.0 64.0%  3600.0 674%  3600.0
3 Small 6.7% 0.0 6.7% 0.0 20.0% 0.1 133%  1867.1  20.0%  2003.6 2.1% 210.8
> Large 0.9% 0.1 0.9% 21.6 72.0% 1056  72.0%  3457.1 72.0%  3600.0 68.0%  3229.5
4 Small 3.7% 0.0 3.7% 1.2 56.7% 0.3 22.6% 11245 17.7% 1274.6 0.9% 142.9
Large 5.6% 0.1 5.6% 359  100.0% 147.7 100.0% 3600.0 100.0% 3600.0 80.8%  3274.4
5 Small 99.0% 0.0  99.2% 0.0 100.0% 0.2 98.9% 928.7 75.8% 14677  48.0% 178.6
Large 97.6% 9.7 97.8% 1292 100.0% 187.1 100.0% 3600.0 100.0% 3600.0  88.2%  3464.0
6 Small 59.7% 00  59.5% 0.8 100.0% 0.9 86.2%  2340.3  824%  2789.7 18.3% 782.8
Large 41.1% 120 41.1% 539 100.0% 1948 100.0% 3600.0 100.0% 3600.0  92.6%  3600.0
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of these formulations are not strong enough to avoid a significant number of branching, and to
solve the linear relaxation in each node of the branch-and-bound tree is very time-consuming.

As mentioned before, even presenting weak lower bound values, the linear relaxation of CTP and
AFCTP are solved much faster, around a few seconds. These formulations solve more instances,
especially in large sizes, and gets better gaps than TI or TII even though generating a much larger
number of nodes in the branch-and-bound tree (see Table 3), especially the CTP formulation.
CTP and AFCTP formulations can solve instances of up to 100 jobs, depending on the MIP
problem and the class. For the MIP problem F1, formulations based on completion time variables
(CTP, AFCTP formulations) can solve instances of up to 50 jobs. For the MIP problem F2 the
number increases to 100 jobs for completion time-based formulations. Analyzing the results
for the MIP problem, in F1 the CTP and AFCTP formulations present better GAP results for
instance classes with moderate and long planning horizon length (classes 4 and 6) and worse
results for base system instances (classes 1 and 5). When the F2 problem, they perform worse for
classes with high congestion level and emphasized conditions (classes 5 and 6), specially when
we consider high congestion level scenario. It seems that for using a pure solver to minimize
the completion time CTP is the best alternative when ATI generates large linear programs, as it
obtains better gaps than the other formulations.

The size of the M constant impacts directly in the bounds quality. In the analysis of the Tables
6 and 7, it is noticeable that the mathematical formulations without constant M (time-indexed
based formulations) present tighter bounds. However, the Time-Indexed based formulations can
solve the smallest number of instances. In the AFCTP formulation, the value of the constant M is
smaller than the CTP formulation value. AFCTP formulation presents lower bounds stronger or
equal in all analyzed instances compared to CTP formulation. This difference is more apparent in
the problem F1 for small instances. For the problem F2 these formulations present the same LP
relaxation results. As the number of jobs increases, the GAP and the computational time increase
faster for AFCTP. Therefore, the AFCTP formulation solves a smaller number of instances for
LP and MIP than CTP.

Summarizing the MIP formulations results, we highlight that some formulations are affected by
the differences between classes. When the linear relaxation problem can be solved efficiently by
time-indexed based formulations, it is possible to solve the MIP problem. Therefore, such as in
linear problem relaxation analysis, the larger instances with a long planning horizon are more
difficult for these formulations. Furthermore, the TI formulation is the most influenced by setup
times presence. The MIP problems generated with time-indexed based formulation are bigger
for classes with a long planning horizon since processing times tend to be longer. In general,
all formulations perform better in class 4 since release dates are spread over time. Considering
the point of view of an optimization package user, we argue that the CTP formulation is the best
choice to tackle total weighted tardiness, problem F2. In this problem, the CTP also obtained
better results for classes with moderate planning horizon (classes 3 and 4), solving all instances.
Minimizing total weighted tardiness when we have early due dates, high congestion level, is a
challenging problem.
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Table 6 — Average GAP Results for Single Machine Scheduling Problems for Six MIP Formulations for All Classes in All Sizes. For the LP (linear programming) relaxation problem, the GAP
indicates the average value of the average linear relaxation gap for all classes in all sizes, computed for each formulation and instance as the relative difference between the best integer solution and

its LP relaxation value. For the MIP (mixed integer programming) problem, the GAP is the average value of the average optimality gap for all classes in all sizes. T(s) indicates the average value of

the average CPU time for all classes in all sizes, and SD is the Standard Deviation for each metric. 1 and F2 denote the objective functions MU\. w;C;j and MU\. w; T, respectively.
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Instance  Objective Mixed Integer Program Formulations
Classes  Function CTP AFCTP APD TI TII ATI
GAP T(s) D GAP D T(s) D GAP D T(s) GAP D T(s) D GAP SD T(s) SD GAP T(s)
1 Fl1 68.5% 10.4% 0.1 0.2 58.5% 17.7% 6.9 153 100.0% 0.0% 62.9 149.5 72.5% 243% 15878 17135 | 40.1% 47.5%  1956.6 15653 | 36.4% 50.4%  1347.1  1787.7
2 Fl1 67.5% 10.5% 37 8.1 57.2% 18.1% 10.7 152 100.0% 0.0% 83.1 1932 80.8% 24.6% 26422 14710 | 81.9% 39.7% 31321 1038.5 | 43.7% 50.4% 16469 1761.6
3 Fl1 63.8% 5.7% 37 6.7 55.5% 12.4% 38 8.0 100.0% 0.0% 133.1 326.2 69.0% 238% 1869.0 14143 | 57.3% 42.6% 22253 1503.1 | 38.7% 49.1% 14654 17458
4 Fl1 26.6% 4.6% 0.6 0.9 23.5% 4.8% 14.4 30.0 100.0% 0.0% 129.8 3532 50.4% 39.3% 15795 16588 | 39.0% 48.4% 19242 1580.5 | 36.4% 50.4% 13185 1759.9
5 Fl1 67.8% 9.7% 6.3 9.4 58.1% 17.0% 314 65.1 100.0% 0.0% 69.9 163.1 72.2% 24.6% 1570.6 17289 | 42.4% 46.3% 18869 1618.6 | 382% 49.4% 13425 17543
W 6 Fl1 24.8% 3.1% 0.8 1.9 21.9% 3.4% 60.6 87.0 100.0% 0.0% 1133 279.9 67.0% 383% 26151 1349.1 | 78.5% 377% 31824  962.6 | 45.5% 52.1% 16884 17749
% F1 Average 53.2% 7.4% 2.5 4.5 458% 122% 21.3 36.8 100.0% 0.0% 98.7 2442 | 68.7% 29.1% 19774 15559 | 56.6%  43.7% 2384.6 1378.1 | 39.8% 50.3% 1468.1 1764.0
W Standard Deviation 21.3% 3.3% 24 4.0 17.9% 6.6% 21.5 320 0.0% 0.0% 30.7 87.2 10.1% 7.5% 516.9 1645 | 19.5% 4.4% 610.5 295.8 3.9% 1.1% 163.3 15.0
m 1 F2 6.1% 8.6% 0.0 0.1 6.1% 8.6% 122 28.1 29.1% 32.7% 54.8 1355 27.6% 335% 22037 16025 | 27.5% 33.6% 23524 1581.0 | 23.9% 343% 16133 17872
ATn 2 F2 8.3% 12.2% 0.1 0.1 8.3% 12.2% 16.3 36.7 32.7% 39.3% 41.1 103.4 30.9% 383% 26431 13333 | 30.9% 383% 29043 1297.0 | 30.7% 40.2% 19754 16663
W 3 F2 4.1% 7.9% 0.0 0.1 4.1% 7.9% 9.8 27.1 43.6% 35.6% 48.1 133.1 40.0% 38.0% 25899 14725 | 43.6% 35.6% 27292 13727 | 32.1% 42.4%  1583.0 16738
M 4 F2 4.6% 4.4% 0.1 0.1 4.6% 4.4% 17.0 33.1 76.4% 32.0% 673 139.7 57.8% 454% 22497 15349 | 55.1% 46.7%  2331.6 15125 | 372% 49.8% 15663 17059
] 5 F2 98.3% 1.2% 44 12.6 98.6% 1.3% 587 1783 100.0% 0.0% 852 2121 99.4% 1.4% 21429 16804 | 86.8% 15.6%  2436.9 1530.7 | 66.3% 29.5% 16720 17350
6 F2 51.3% 12.9% 55 13.5 51.2% 12.6% 249 65.7 100.0% 0.0% 89.0 206.4 92.5% 125% 29129 1239.0 | 90.4% 21.6% 31580 9974 52.1% 40.3% 20633 16474
F2 Average 28.8% 7.8% 17 44 28.8% 7.8% 232 61.5 63.6% 23.3% 64.3 155.1 | 58.0%  282% 2457.0 1477.1 | 55.7%  31.9% 26521 13819 | 404% 394% 17455 1702.6
Standard Deviation 38.7% 4.5% 2.5 6.7 38.7% 4.4% 18.2 59.0 32.7% 18.2% 19.7 439 31.2% 17.3% 305.2 166.0 | 27.3% 11.4% 336.0 216.3 | 15.8% 7.0% 216.9 518
LP Relaxation Average | 41.0% 7.6% 2.1 4.5 37.3% 10.0% 222 49.1 81.8% 11.6% 815 199.6 63.3%  28.7% 2217.2 15165 | 56.1%  37.8% 2518.3 1380.0 | 40.1%  44.9% 1606.8 1733.3
Standard Deviation 32.4% 3.7% 24 5.3 30.1% 5.8% 19.0 47.0 29.1% 17.3% 30.5 80.6 22.8% 12.7%  476.0 162.9 | 22.6% 10.3%  490.1 247.1 11.0% 7.4% 2334 485
1 Fl1 33.3% 35.6% 20706 1787.3 | 40.6% 342% 25320 1639.6 | 50.0% 44.2% 23574 17348 | 42.1% 47.9%  2281.0 1651.1 | 38.6% 48.9% 24709 16257 | 36.4% 50.5% 14746 1714.6
2 Fl1 32.0% 35.0%  2049.5 1800.0 | 40.1% 344% 25885 1657.6 | 49.4% 46.6% 23375 1736.1 | 73.5% 374% 33968 673.8 50.2% 48.6% 27749 12660 | 45.5% 522% 18819 1693.4
3 Fl1 28.0% 324%  1888.7 18004 | 35.1% 309% 25243 1644.7 | 48.9% 43.1% 24146 16824 | 53.7% 42.5% 28960 1317.6 | 48.4% 44.2%  2899.1 13317 | 383% 49.3% 16647 17459
4 Fl1 8.8% 124%  1583.1 18132 | 122% 13.9%  2083.0 17649 | 41.4% 45.5% 22186 1747.0 | 38.6% 49.0% 20394 16537 | 36.9% 50.1%  2087.0 16520 | 36.4% 50.5% 14352 1748.1
5 Fl1 32.0% 35.6% 19783 1796.8 | 38.8% 34.6% 24970 1641.0 | 50.1% 45.1% 23503 17419 | 46.3% 48.2% 22727 15744 | 39.0% 48.7% 23764 1579.1 | 382% 49.4%  1428.7 17450
6 Fl1 8.00%  10.80% 1600.7 18083 | 11.16% 12.35% 20989 17703 | 42.96% 46.82% 21940 17239 | 62.78% 44.06% 33747 5850 | 70.21% 43.61% 3261.1 9609 | 4556% 52.12% 1951.5 1662.5
s F1 Average 237% 270% 1861.8 1801.0 | 29.7%  26.7%  2387.3 1686.4 | 47.1% 452% 231 1727.7 | 528%  44.9% 2710.1 12426 | 47.2% 47.3% 26449 14026 | 40.0% 50.7% 16394 1718.2
m Standard Deviation 120%  12.0% 218.6 9.0 141%  10.6% 231.5 63.3 3.9% 1.4% 86.4 235 13.4% 4.5% 595.5 4914 | 12.6% 2.7% 418.3 269.0 4.3% 1.3% 2324 350
% 1 F2 0.4% 1.3% 188.3 350.9 24.7% 39.0%  1105.7 15474 | 29.2% 459% 12085 16128 | 43.6% 50.5% 1713.6  1709.3 | 49.1% 50.1% 18685 17553 | 49.1% 50.1%  1935.1 1761.7
W 2 F2 3.1% 7.3% 648.1 1280.0 | 22.3% 384% 10779 15275 | 28.8% 42.8%  1160.7 15488 | 582% 47.7% 24342 14139 | 65.5% 45.7% 25413 1514.1 | 60.0% 49.0% 25135 15064
W 3 F2 0.0% 0.0% 529 1178 14.9% 31.3% 904.1 1399.1 25.5% 43.7%  1107.0 1592.1 | 47.3% 47.6% 18745 16445 | 51.6% 48.0% 20427 16572 | 54.5% 474% 22722 16450
4 F2 0.0% 0.0% 1721 378.5 16.0% 26.7% 18044 1701.7 | 34.4% 47.6%  1461.8 1756.1 | 42.1% 49.5%  1677.7 17485 | 40.0% 49.0% 17406 1708.7 | 49.1% 50.1%  1896.6  1735.7
5 F2 42.1% 46.5% 18385 17583 | 49.8% 45.8% 22757 17237 | 50.7% 49.6% 21770 17453 | 62.9% 45.5% 27919 14109 | 65.5% 43.3% 29480 12536 | 55.4% 44.1%  2780.3 13009
6 F2 13.53% 17.75% 15462 1795.6 | 26.09% 28.78% 2042.6 1709.5 | 43.89% 47.80% 2052.6 17358 | 84.35% 26.56% 34828  388.7 | 82.73% 32.13% 33718 5722 | 59.05% 45.00% 2797.6 1292.5
F2 Average 9.9% 12.1% 741.0 946.8 | 25.6% 350% 15351 16015 | 354% 46.2% 15279 16652 | 56.4%  44.5% 2329.1 1386.0 | 59.1% 44.7% 24188 1410.2 | 54.5%  47.6% 23659 1540.4
Standard Deviation 16.6%  18.1% 769.9 755.7 12.7% 7.3% 578.0 131.2 9.9% 2.6% 472.2 90.9 16.0% 9.0% 716.4 509.7 | 152% 6.6% 649.2 448.7 4.7% 2.6% 398.6 208.8
MIP Average 16.8% 19.6% 1301.4 1373.9 | 27.6%  30.9% 1961.2 1643.9 | 41.3% 45.7%  1920.0 16964 | 54.6%  44.7% 2519.6 13143 | 53.1%  46.0% 25319 14064 | 47.3%  49.1% 2002.7 1629.3
Standard Deviation 15.6% 16.6% 796.1 677.2 12.9% 9.7% 611.8 107.7 9.4% 2.1% 522.0 71.2 14.2% 6.8% 658.8  483.2 14.7% 5.0% 533.9 3528 8.7% 2.5% 490.6 170.3
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Table 7 — (Continuation).

Instance Objective Mixed Integer Program Formulations
Sizes Function cTP AFCTP APD TI TII ATI
GAP SD T(s) SD GAP SD T(s) SD GAP SD T(s) SD GAP SD T(s) SD GAP SD T(s) SD GAP SD T(s) SD
5 Fl1 0.0% 0.0% 0.4 0.6 0.0% 0.0% 0.3 0.5 0.0% 0.0% 0.1 0.1 0.0% 0.0% 546.3 769.5 0.0% 0.0% 81.2 158.7 0.0% 0.0% 42 6.9
7 Fl1 0.0% 0.0% 0.5 1.1 0.0% 0.0% 1.1 0.5 0.0% 0.0% 1.0 0.3 5.2% 9.3% 1223.0 16386 0.3% 0.8% 888.1 1193.2 0.0% 0.0% 194 294
9 Fl1 0.0% 0.0% L5 25 0.0% 0.0% 371 302 0.0% 0.0% 244 13.8 11.4% 14.0% 17415 16717 3.3% 6.3% 1416.0  1383.1 0.0% 0.0% 61.1 729
11 Fl1 0.0% 0.0% 15.1 12.1 3.1% 3.3% 1778.9  1369.1 0.0% 0.0% 625.0 394.0 17.0%  263% 22614 14720 | 11.2% 21.8% 21160 1329.3 0.0% 0.0% 1437 1525
13 Fl1 0.9% 1.4% 458.7 492.5 19.1% 147% 28574 1151.0 | 20.7% 155% 31823 6173 273%  339% 26233 12056 | 25.1% 38.1% 31245 848.6 0.1% 0.3% 389.9 4513
15 Fl1 9.0% 8.2% 22149 1651.0 | 298% 18.3% 3585.4 358 40.3% 18.4%  3600.0 0.0 518% 41.6% 34155 3936 312% 373% 34682 3229 0.1% 0.2% 7774 705.3
20 Fl1 312% 202% 3388.8 3279 | 40.6% 19.2%  3600.0 0.0 73.8% 8.7%  3600.0 0.0 68.5%  31.8%  3600.0 0.0 48.4%  433%  3600.0 0.0 40.2%  47.2%  2238.1 1275.1
30 Fl1 44.7%  23.8%  3600.0 0.0 50.0%  23.3%  3600.0 0.0 88.1% 10.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 Fl1 513%  27.9%  3600.0 0.0 56.3%  26.8%  3600.0 0.0 95.5% 4.6%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 Fl1 59.9%  25.9%  3600.0 0.0 622%  253%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 Fl1 63.7%  26.0%  3600.0 0.0 652%  24.9%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F1 Average 237% 12.1% 1861.8  226.2 | 29.7% 14.2% 23873 2352 | 47.1% 52% 23121 93.2 528% 143% 27101  650.1 | 47.2% 134% 26449 476.0 | 40.0% 43% 16394 2449
W Standard Deviation | 26.7% 124% 1741.0 5014 | 26.5% 11.2% 1621.6  509.2 | 44.7% 6.9% 17169 2100 | 42.3% 162% 11179 7210 | 44.2% 18.0% 1300.7 5883 | 49.0% 14.2% 16753 4119
% 5 F2 0.0% 0.0% 0.0 0.0 0.0% 0.0% 0.3 0.5 0.0% 0.0% 0.1 0.1 3.9% 9.6% 396.3 938.0 3.3% 8.2% 313.1 707.2 0.0% 0.0% 38 2.6
W 7 F2 0.0% 0.0% 0.0 0.0 0.0% 0.0% 0.9 L5 0.0% 0.0% 0.6 0.8 7.9% 193% 7442 14130 3.5% 8.6% 679.0 11618 1.8% 3.0% 343.8 480.2
W 9 F2 0.0% 0.0% 0.2 0.4 0.0% 0.0% 53 6.6 0.0% 0.0% 6.2 9.6 11.5%  28.3% 1071.6 13819 | 13.8% 27.6% 12025 15259 | 43% 7.6% 826.0 890.1
11 F2 0.0% 0.0% L5 32 0.0% 0.0% 175.8 219.9 0.0% 0.0% 78.1 1332 22.6%  372% 15217 1680.5 | 312% 40.0% 1636.5 1691.1 7.5% 149% 14089 13126
13 F2 0.0% 0.0% 76.7 186.1 4.5% 9.1% 805.5 11322 0.4% 1.0% 531.8 902.0 373%  389% 1907.7 15729 | 44.6%  42.0% 22259 15820 | 26.4% 23.7% 23045 14649
15 F2 2.6% 6.4% 295.6 7164 | 11.2% 20.1% 14269 1562.5 | 128%  233% 11609 1760.6 [ 50.0%  48.6% 2269.5 1344.1 [ 633% 427% 2639.0 11095 | 59.7%  26.6% 3137.8  601.5
20 F2 126% 258% 1031.5 1629.3 | 28.9% 29.7% 2166.6 16339 | 33.1% 41.1% 18413 1473.1 | 872% 154% 33094  321.0 90.0%  24.5% 35109 2184 | 1000%  0.0%  3600.0 0.0
30 F2 20.1%  37.5% 1201.4 18579 | 27.4% 37.3% 2085.8 15335 | 51.0% 46.5% 2571.8 1167.2 | 100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F2 20.3%  38.1% 1433.8 17051 | 41.3% 32.7% 3018.7 885.2 92.1% 10.0% 34164 2856 | 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F2 264% 372% 21555 15603 | 77.4% 21.4%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F2 264% 39.8% 19548 15788 | 91.1% 10.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 9.9% 168%  741.0 839.8 | 25.6% 14.6% 15351 6342 | 354% 11.1% 15279 5211 | 564% 17.9% 2329.1 7865 | 59.1% 17.6% 24188 7269 | 54.5% 6.9% 23659  432.0
Standard Deviation | 11.4% 18.5%  841.7 820.5 | 324% 143% 14447 7178 | 431% 17.7% 15347 6751 | 41.5% 18.0% 12682 7204 | 41.1% 18.1% 12811 707.6 | 46.5% 102% 1455.0  565.7
MIP Average 16.8% 145% 13014 5330 | 27.6% 144% 1961.2 4347 | 41.3% 81% 19200 307.2 | 54.6% 16.1% 2519.6 7183 | 53.1% 155% 25319 6014 | 47.3% 5.6% 20027 3384
Standard Deviation | 21.3% 15.6% 14525 7341 | 29.0% 125% 1560.9 640.7 | 43.2% 13.5% 1639.0 5348 | 409% 168% 11828 7068 | 42.1% 17.8% 12651 6479 | 472% 121% 15757 4923
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Table 9 — Confidence Interval (CI) for Single Machine Scheduling Problems for Six MIP Formulations for All Sizes. For the LP (linear programming) relaxation problem, the “GAP”
indicates the 95% confidence interval value of the average linear relaxation gap, computed for each formulation and instance as the relative difference between the best integer solution
and its LP relaxation value. For the MIP (mixed integer programming) problem, the “GAP” indicates the 95% confidence interval value of the average optimality gap. “T(s)” indicates

95% confidence interval value of the average CPU time. F'1 and F2 denote the objective functions MU\. w;C;j and MU\. w; T}, respectively.
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Instance  Objective Mixed Integer Program Formulations
(# jobs) Function cTP AFCTP APD TI TII ATI
GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s) GAP T(s)
5 Fl1 (33.4%.50.7%) (0.0,1.2) (20.6%,28.8%) (0.2,1.6) (100.0%,100.0%) (0.1,0.4) (27.0%.39.0%) (0.0,324.9) (1.6%.,5.4%) (0.0,205.9) (0.0%.,0.1%) (0.0.3.8)
7 Fl1 (40.2%.57.8%) (0.0.2.2) (29.0%.39.7%) (0.0,0.0) (100.0%,100.0%) (0.0,0.1) (32.2%.48.8%) (19.0,453.3) (3.5%.,8.3%) (80.9,1828.8) (0.0%.,0.0%) (0.6,4.0)
9 Fl1 (38.4%.,60.8%) (0.0,0.5) (29.1%.44.8%) (0.0,0.0) (100.0%,100.0%) (0.0,0.1) (35.3%.52.4%) (102.9,1643.4) (7.0%.,55.2%) (293.0,2267.9) (0.0%.,0.1%) (2.2,24.6)
1 Fl1 (38.9%.61.5%) (0.0,0.1) (32.0%.49.0%) (0.1.2.5) (100.0%,100.0%) (0.0,1.0) (33.4%.54.9%) (79.0,1436.8) (8.3%.,65.6%) (672.7,2357.6) (0.0%.,0.2%) (15.0,55.8)
13 Fl1 (38.0%.64.0%) (0.6,3.3) (32.2%.53.5%) (0.9.3.0) (100.0%,100.0%) (0.0.9.5) (38.5%.66.0%) (354.9,1944.8) (10.9%.69.2%) (1400.6,2870.5) (0.0%.,0.2%) (43.8,149.8)
15 Fl1 (39.6%.66.3%) (0.0,11.7) | (34.7%.56.7%) (3.3,19.6) (100.0%,100.0%) (0.5.3.8) (49.1%.85.3%) (772.0,2679.7) (17.6%.74.3%) (2115.0,3093.5) (0.0%.,0.4%) (90.5,366.6)
20 Fl1 (38.7%.66.9%) (0.0,10.5) | (35.0%.59.5%) (0.0.45.3) (100.0%,100.0%) (0.7.2.9) (57.8%.93.2%) (2055.1,3095.8) (30.2%.87.2%) (2992.6,3484.8) 1.2%,63.7%) (600.3,2298.4)
30 Fl1 (39.0%.70.4%) (0.0,12.0) | (37.0%.,65.9%) (0.0,52.5) (100.0%,100.0%) (3.5,10.9) (96.8%,100.0%) (3336.3,3654.3) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3446.2,3597.9)
50 Fl1 (38.1%.73.6%) (0.0,10.2) | (37.3%.,71.7%) (3.79.2) (100.0%,100.0%) (30.7,50.6) (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0)
75 Fl1 (45.4%.78.0%) (0.7.3.8) (45.0%.77.1%)  (22.6,136.3) (100.0%,100.0%)  (196.7,251.1) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0)
W 100 Fl1 (48.5%.80.9%) (1.0.3.3) (48.3%.80.3%)  (42.2,139.4) (100.0%,100.0%)  (620.7,989.2) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0)
% F1 Average (39.9%,66.5%) (0.0,5.3) (34.6%,57.0%) (5.4,37.2) (100.0%,100.0 %) (77.4,119.9) (60.9%,76.4%) (1588.1,2366.6) (43.6%,69.6%) (1995.7,2773.5) (37.4%,42.3%) (1363.4,1572.8)
W Standard Deviation (3.1%.,9.2%) (0.0,4.8) (7.3%,16.2%) (11.5,53.7) (0.0%,0.0%) (188.8,298.1) (20.4%,34.1%) (1067.8,1791.0) (23.7%,52.1%) (859.7,1668.5) (41.0%,56.9%) (1473.8,1975.2)
W 5 F2 (1.5%.,58.6%) (0.0,0.0) (1.4%,58.7%) (0.1,0.7) (9.6%.,70.4%) (0.0,0.3) (1.4%,57.1%) (0.0,61.0) (0.9%.,41.7%) (0.0,342.2) (0.0%.,34.8%) (0.3,1.6)
.ATIn 7 F2 (4.1%.,55.0%) (0.0,0.0) (4.1%.,55.0%) (0.0,0.1) (5.9%.,67.4%) (0.0,0.1) (4.5%.,56.5%) (56.9,537.9) (4.0%.,38.9%) (66.2,823.5) (2.8%.29.7%) (0.6,28.3)
W 9 F2 (0.9%.,52.9%) (0.0,0.0) (0.9%.,52.9%) (0.0,0.7) (17.7%.75.6%) (0.0,0.4) (6.9%.,67.8%) (265.7,1910.3) (4.5%.,56.5%) (838.5,2503.2) (0.0%.,21.2%) (16.9,72.7)
M 1 F2 (3.0%.,54.0%) (0.0,0.0) (3.0%.,54.0%) (0.0,0.7) (30.2%.83.2%) (0.0.0.2) (12.7%.68.2%) (1199.8,2519.6) (10.6%.63.0%) (1763.3,3089.6) (0.0%.,25.5%) (72.0,274.5)
] 13 F2 (4.8%.,54.5%) (0.0,0.0) (4.8%.,54.5%) (0.0,0.4) (30.2%.83.2%) (0.1,0.6) (22.7%.72.0%) (2189.8,3032.0) (23.4%.69.0%) (2928.7,3511.8) (1.5%,17.7%) (298.3,1179.3)
15 F2 (4.3%.,52.8%) (0.0,0.0) (4.3%.,52.8%) (0.1,1.9) (25.4%.81.2%) (0.0,1.6) (17.8%.75.8%) (2997.7,3530.6) (23.2%.76.9%) (3038.7,3494.4) (0.9%.15.6%) (467.5,1597.5)
20 F2 (14.7%.57.9%) (0.0.0.7) (14.7%.58.3%) (0.0.8.3) (48.2%.91.8%) 04,12) (43.6%.89.7%) (3300.2,3661.7) (43.6%.89.7%) (3600.0,3600.0) (14.5%.47.8%) (2307.7,3284.8)
30 F2 (3.5%.,49.7%) (0.0.0.7) (3.5%.,49.7%) (0.3.0.5) (44.3%.95.7%) (1.6,3.3) (44.3%.95.7%) (3600.0,3600.0) (44.3%.95.7%) (3600.0,3600.0) (44.3%.95.7%) (3600.0,3600.0)
50 F2 (0.6%.,47.1%) (0.0,0.6) (0.6%.,47.1%) (3.8,17.6) (64.3%.95.7%) (16.4,33.1) (64.3%.95.7%) (3600.0,3600.0) (64.3%.95.7%) (3600.0,3600.0) (64.3%.95.7%) (3600.0,3600.0)
75 F2 (5.8%.,51.1%) (0.7.28.5) (5.8%.,51.1%) (23.1,48.5) (100.0%,100.0%)  (121.2,240.4) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0) | (100.0%,100.0%)  (3600.0,3600.0)
100 F2 (4.0%.,52.4%) (0.0.5.8) (4.0%.,52.4%) (79.0,325.4) (79.6%,100.0%) (405.7,587.2) (79.6%,100.0%) (3600.0,3600.0) (79.6%,100.0%) (3600.0,3600.0) (79.6%,100.0%) (3600.0,3600.0)
F2 Average (4.39%,53.3%) (0.1,3.3) (4.39%,53.3%) (9.5,36.8) (41.4%,85.9%) (49.6,78.9) (36.2%,79.9%) (2218.4,2695.7) (36.2%,75.2%) (2416.4,2887.7) (27.7%,53.1%) (1596.7,1894.4)
Standard Deviation (1.1%,5.0%) (0.2,8.5) (1.2%,5.0%) (23.8,96.9) (10.6%,30.1%) (122.3,183.9) (15.2%,34.0%) (1118.2,1692.6) (19.1%,35.7%) (1027.9,1608.0) (29.9%,43.3%) (1439.0,1894.8)
LP Relaxation Average | (22.1%,59.9%) (0.04.3) (19.4%,55.2%) (7.5,37.0) (70.7%,92.9%) (63.5,99.4) (48.5%,78.1%) (1903.2,2531.2) (39.9%,72.4%) (2206.0,2830.6) (32.5%,41.7%) (1480.1,1733.6)
Standard Deviation (7.1%,19.6%) (0.0,6.8) (4.5%,19.6%) (18.2,76.5) (10.1%,36.5%) (155.8,242.6) (15.1%,36.7%) (1077.1,1732.8) (20.5%,44.1%) (915.3,1619.9) (33.3%,51.1%) (1426.3,1896.0)
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6 CONCLUDING REMARKS

In this article, we proposed and compared six different MIP formulations for two single machine
scheduling problems with sequence-dependent setup times and release dates. Not only exten-
sive computational experiments were performed but also their dominance relations regarding the
strength of their linear relaxations bounds were analyzed. Aforementioned allowed illustrating
the wealth of the formulations. We provided a comparative literature review of several works
about SMSP formulations. Besides, we presented a new Arc-Time-Indexed formulation for the
single machine scheduling scenario treated, proving its dominance. The analyzed MIP formula-
tions could be easily adapted to other objective functions and machine environments (i.e., par-
allel machines, flow-shop, and job-shop). The performances of MIP formulations depend on the
problem, the number of jobs, the characteristic of the instances (class) and the length of the
planning horizon.

The formulations “Completion Time and Precedence” and “Time-Indexed” seems the most
widely used formulations in the Scheduling literature. “Completion Time and Precedence” and
“Assignment and Positional Date” formulations are the oldest and “Arc-Time-Indexed” proposed
formulation is the newest one.

Time-Indexed based formulations (TI, TII, and ATT) present better bounds in general. However,
these formulations cannot be directly applied to many instances due to their large number of
variables, preventing the use of commercial solvers within a reasonable computational time.
Therefore, they recommend using when the length of the time horizon is small or when integrated
into a methodology that could deal with their size, as column-generation, Lagrangean relaxation
algorithms, and heuristic combinations.

Even though providing weaker lower bounds, CTP and AFCTP formulations managed to solve a
significant number of instances. Methods that could take advantage of their capacity in generating
feasible solutions in a reduced computational time will best fit with these paradigms. Future
directions of research include their integration with heuristic approaches, for instance, in a relax-
and-fix framework.
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Table A.1 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(#jobs)  Function cTP AFCTP APD TI TII ATI
GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP T(s) SD(T(s)) [ GAP SD T(s) SD(T(s))
5 F1 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.0 0.0% 0.0% 0.1 0.0 0.0% 0.0% 50 14 0.0% 0.0% 39 22 0.0% 0.0% 04 0.1
7 F1 00%  0.0% 0.1 0.0 00%  0.0% 12 03 0.0% 0.0% 0.6 0.1 0.0% 00% 433 16.4 0.0% 0.0% 49.7 21.1 0.0% 0.0% 12 03
9 F1 00%  0.0% 0.8 09 00%  0.0% 65.8 54.9 0.0% 0.0% 18.4 10.0 0.0% 00% 3825 6753 0.0% 00% 2528 2442 0.0% 0.0% 36 1.3
11 F1 00%  0.0% 15.7 15.8 74%  19% 25844 14262 0.0% 00%  713.0 521.6 0.0% 00% 5549 273.1 0.4% 09% 1673.0 14459 0.0% 0.0% 233 9.9
13 F1 20% 45% 11603 14015 | 33.8% 7.0% 3600.0 0.0 364%  6.7%  3600.0 0.0 2.4% 54% 25050 9575 3.8% 24%  3600.0 0.0 0.0% 00% 2940 178.5
15 F1 202% 10.6% 3600.0 0.0 432%  54%  3600.0 0.0 522%  14%  3600.0 0.0 128%  16.1%  3600.0 0.0 7.0% 2.3%  3600.0 0.0 0.0% 00% 3826 2049
20 F1 474% 1.5%  3600.0 0.0 542%  33%  3600.0 0.0 782%  11.5%  3600.0 0.0 474%  11.4% 3600.0 0.0 132%  44%  3600.0 0.0 0.0% 00% 11153 2757
30 F1 62.8%  1.6% 3600.0 0.0 68.0% 1.6%  3600.0 0.0 86.8%  10.7% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F1 71.6% 1.8%  3600.0 0.0 75.8%  0.8%  3600.0 0.0 96.6%  7.6%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F1 79.6% 1.1%  3600.0 0.0 80.6% 1.1%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F1 82.6% 2.1%  3600.0 0.0 832% 1.1%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F1 Average 33.3% 21% 2070.6 1289 |40.6% 2.6% 25320  134.7 50.0% 4.0% 23574 48.3 421% 3.0% 22810 1749 38.6% 09% 24709 1558 364% 0.0% 1474.6 61.0
W Standard Deviation | 35.6% 3.1% 1787.3 4221 |342% 29% 1639.6  428.7 442% 48% 17348 1570 47.9% 57% 16511 3334 489% 1.5% 16257 4340 50.5% 0.0% 17146 1044
% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.0 0.0 0.0% 0.0% 0.0 0.0 0.0% 0.0% 30 19 0.0% 0.0% 34 21 0.0% 0.0% 0.7 03
& 7 F2 00%  0.0% 0.0 0.0 00%  0.0% 02 03 0.0% 0.0% 0.0 0.0 0.0% 0.0% 19.6 72 0.0% 0.0% 235 124 0.0% 0.0% 17.1 25.0
W 9 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.1 02 0.0% 0.0% 02 0.1 0.0% 0.0% 95.2 303 0.0% 00%  109.6 91.7 0.0% 0.0% 253 13.6
11 F2 00%  0.0% 0.0 0.0 00%  00% 1298 287.3 0.0% 0.0% 1.1 1.6 0.0% 0.0% 98.5 70.8 0.0% 00% 1267 373 0.0% 00% 1579 67.4
13 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.5 0.5 0.0% 0.0% 0.7 0.6 0.0% 00%  361.7 2542 0.0% 00% 2065 111.2 0.0% 00% 3932 130.3
15 F2 00%  0.0% 0.1 0.0 00%  0.0% 4.6 55 0.0% 0.0% 149 25.0 0.0% 00% 9273 12734 | 40.0% 548% 2084.0 14544 | 40.0% 54.8% 26922 1193.6
20 F2 00%  0.0% 03 02 24.6% 37.0% 14448 19674 | 21.6% 36.0% 14924 19260 | 80.0% 44.7% 29444 14659 | 100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
30 F2 00%  0.0% 29 18 00%  0.0%  341.1 4454 0.0% 00%  984.2 838.5 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F2 00%  0.0%  605.7 915.5 572% 523% 30419 11166 | 998%  04%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F2 44%  9.8% 10358 14569 |918% 44%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F2 00%  00% 4263 587.6 | 97.8% 33%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 04% 09% 188.3 2693 |247% 88% 11057  347.6 292% 33% 12085 2538 43.6% 41% 1713.6  282.1 49.1% 50% 18685 1554 49.1% 50% 19351  130.0
Standard Deviation | 1.3% 3.0%  350.9 500.8 | 39.0% 18.1% 15474  637.9 45.9% 10.8% 1612.8  608.7 50.5% 13.5% 1709.3  544.6 50.1% 165% 17553 4327 50.1% 16.5% 17617  355.1
MIP Average 16.8% 15% 1129.5 1991 |32.6% 57% 1818.8 2411 39.6% 3.7% 1783.0  I511 42.8%  3.5% 1997.3 2285 43.8%  2.9% 2169.7  155.6 42.7%  2.5% 1704.9 95.5
Standard Deviation | 29.8% 3.0% 1583.6  457.7 | 36.7% 13.0% 1718.5 5414 45.2%  82% 17371  446.3 48.0% 10.1% 1665.5  444.0 48.6% 11.6% 1679.5  422.9 49.5% 11.7% 1712.7  257.9
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Table A.2 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(# jobs)  Function cTP AFCTP APD TI TII ATI
GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) [ GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP T(s) SD(T(s)) | GAP SD T(s)  SD(T(s))

5 F1 00%  0.0% 0.1 0.1 00%  0.0% 0.1 0.0 0.0% 0.0% 0.1 0.0 0.0% 0.0%  1365.1 989.4 0.0% 29.7 9.0 0.0% 0.0% 18.1 9.1

7 F1 00%  0.0% 0.1 0.0 00%  0.0% 19 1.0 0.0% 0.0% 0.7 02 22.8%  33%  3600.0 0.0 0.0% 00% 14365 12818 0.0% 0.0% 75.7 97.4

9 F1 00%  0.0% 14 15 00%  0.0% 373 26.2 0.0% 0.0% 19.4 59 33.0%  27%  3600.0 0.0 0.0% 00% 14270 5534 0.0% 00% 1874 94.6
11 F1 00%  0.0% 25.1 16.1 6.8%  44% 32338 8189 0.0% 00% 6125 3935 68.0%  30.0% 3600.0 0.0 0.4% 0.5% 24312 10729 0.0% 0.0% 3302 1854
13 F1 32%  12% 9177 15143 | 288% 72%  3600.0 0.0 172% 113% 34793  269.9 852%  22.0% 3600.0 0.0 25.6%  42.4% 3600.0 0.0 0.0% 00% 5455 2772
15 F1 128%  8.0%  3600.0 0.0 43.0%  3.5%  3600.0 0.0 49.0%  6.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 262%  41.5% 3600.0 0.0 0.0% 0.0%  1544.1 8433

20 F1 472%  54%  3600.0 0.0 56.0%  3.6%  3600.0 0.0 82.0%  82%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

30 F1 61.8%  5.0%  3600.0 0.0 66.6%  3.4%  3600.0 0.0 994%  13%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F1 682% 1.8%  3600.0 0.0 73.8%  0.8%  3600.0 0.0 96.2%  8.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F1 76.8%  1.8%  3600.0 0.0 81.6% 0.9%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F1 824%  09%  3600.0 0.0 84.6% 0.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F1 Average 320% 27% 20495 1393 |40.1% 22% 25885 76.9 494% 32% 23315 60.9 73.5% 53% 3396.8 89.9 502% 17% 27749 2652 455% 0.0% 18819  137.0
W Standard Deviation | 35.0% 3.1% 1800.0  456.1 |[344% 24% 1657.6  246.2 46.6% 44% 1736.1 136.7 374% 105% 6738 298.3 48.6% 169% 12660 4824 522% 00% 16934 2519
% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 02 0.5 0.0% 0.0% 0.1 0.0 0.0% 0.0% 31.1 334 0.0% 0.0% 189 72 0.0% 0.0% 74 42
& 7 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.1 0.0% 0.0% 02 02 0.0% 00%  287.6 169.2 0.0% 0.0%  129.2 82.5 0.0% 0.0% 91.8 69.2
W 9 F2 00%  0.0% 0.0 0.0 00%  0.0% 03 04 0.0% 0.0% 03 02 0.0% 00% 12083  893.1 0.0% 00%  766.8 9242 0.0% 0.0%  998.5 596.7
11 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.1 0.0% 0.0% 04 03 0.0% 0.0% 1522.8  1409.1 40.0%  54.8% 20852  1501.3 0.0% 00% 17120  651.7
13 F2 00%  0.0% 0.1 0.1 00%  0.0% 2.8 22 0.0% 0.0% 35 38 60.0% 54.8% 2626.6 13338 | 80.0% 44.7% 33542  549.7 60.0%  54.8% 3239.1 7115

15 F2 00%  0.0% 0.1 0.0 00%  0.0% 1.8 1.7 0.0% 0.0% 1.7 1.8 80.0% 44.7% 3100.1 1117.7 [100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

20 F2 00%  0.0% 04 02 162% 362% 7374 1600.5 6.0% 134%  739.0 1599.5 | 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

30 F2 00%  0.0% 37 1.6 108% 22.5%  960.1 14916 | 302% 44.8% 18145 16905 | 100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F2 00%  0.0% 7650 14113 | 20.8% 41.1% 29542 12558 | 80.2% 443% 30082 13234 |100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F2 224% 437% 34923 137.6 | 98.8% 1.3%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F2 11.6% 134% 28674 1591.1 | 982% 1.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 31% 52%  648.1 2856 |223% 93% 10779 3957 288% 93% 1160.7  420.0 582% 9.0% 24342  450.6 65.5% 9.0% 2541.3  278.6 60.0% 5.0% 25135  184.8
Standard Deviation | 7.3% 13.4% 1280.0  603.7 |384% 16.0% 1527.5  681.2 42.8% 179% 15488  723.0 47.7% 202% 14139  600.7 45.7% 202% 15141  506.3 49.0% 165% 15064  302.6
MIP Average 17.6% 4.0% 1348.8 2125 | 312% 5.8% 1833.2 391%  6.3% 17491 2404 65.9% 7.2% 29155  270.3 57.8%  8.4% 26581  271.9 52.7%  2.5% 2197.7  160.9
Standard Deviation | 28.8%  9.6% 16844  527.5 | 36.8% 11.7% 1737.0 44.9% 13.1% 17147  540.0 42.6% 15.8% 1187.8  498.2 46.7% 18.2% 1367.2  482.6 50.0% 11.7% 1597.0  272.8
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Table A.3 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(#jobs)  Function cTP AFCTP APD TI TII ATI
GAP  SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) [ GAP SD T(s) SD(T(s)) | GAP D T(s) SD(T(s)) | GAP SD T(s)  SD(T(s))
5 F1 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.0 0.0% 0.0% 02 02 0.0% 00%  207.6 134.7 0.0% 0.0% 17.8 10.7 0.0% 0.0% 1.8 0.7
7 F1 00%  0.0% 0.0 0.0 00%  0.0% 12 0.5 0.0% 0.0% 1.0 0.6 0.0% 00%  442.7 412.6 0.0% 00% 5913 700.3 0.0% 0.0% 6.0 12
9 F1 00%  0.0% 03 02 00%  0.0% 31.7 15.1 0.0% 00%  49.0 352 13.0% 122% 24460 15815 4.4% 45% 24807 15342 0.0% 0.0% 385 303
11 F1 00% 00% 17.6 142 18%  3.5% 25347  1007.1 0.0% 0.0% 13108  208.2 174% 132% 35603 88.8 114%  3.5%  3600.0 0.0 0.0% 00%  127.6 72.8
13 F1 00% 0.0% 144.0 1158 | 23.0% 89%  3600.0 0.0 344%  84%  3600.0 0.0 31.8% 11.8% 3600.0 0.0 192% 132% 3600.0 0.0 0.0% 00%  133.8 419
15 F1 64% 88% 26142 9907 | 41.6% 42%  3600.0 0.0 56.2%  3.0%  3600.0 0.0 58.8%  3.6%  3600.0 0.0 444% 172%  3600.0 0.0 0.0% 00%  663.3 484.0
20 F1 37.6% 6.3% 3600.0 0.0 492%  4.5%  3600.0 0.0 794%  12.2% 3600.0 0.0 702%  3.8%  3600.0 0.0 534% 13.1% 3600.0 0.0 214%  44.0% 29407  1065.7
30 F1 544% 3.0% 3600.0 0.0 59.2%  2.5%  3600.0 0.0 76.6% 11.7% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F1 64.6% 4.5% 3600.0 0.0 67.8%  33% 3600.0 0.0 91.2% 12.1% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F1 71.2% 22% 3600.0 0.0 70.6%  0.9%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F1 74.0% 1.9% 3600.0 0.0 73.0%  1.6%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F1 Average 280% 24% 18887 1019 |351% 2.7% 25243 93.0 489% 4.3% 2414.6 222 53.7% 41% 28960 2016 484% 47% 2899.1  204.1 383% 4.0% 16647 1542
W Standard Deviation | 32.4% 3.0% 18004  296.8 | 309% 2.7% 16447  303.2 431% 55% 16824 62.6 42.5% 56% 1317.6 4744 442%  6.6% 13317 4885 49.3% 133% 17459 3341
% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.0 0.0 0.0% 0.0% 0.0 0.0 0.0% 0.0% 4.8 2.1 0.0% 0.0% 6.4 37 0.0% 0.0% 37 20
& 7 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.0 0.0 0.0% 0.0% 0.0 0.0 0.0% 0.0% 284 43 0.0% 0.0% 28.6 82 0.0% 00%  48.1 37.6
W 9 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.0 0.0% 0.0% 0.1 0.0 0.0% 0.0% 73.2 144 0.0% 00% 1185 87.0 0.0% 00%  218.0 124.6
11 F2 00%  0.0% 0.0 0.0 00%  0.0% 02 02 0.0% 0.0% 03 0.1 0.0% 00% 1513 96.8 0.0% 0.0%  203.0 137.5 0.0% 0.0%  630.0 2494
13 F2 00%  0.0% 0.1 0.0 00%  0.0% 1082 200.9 0.0% 0.0% 57 75 20.0% 44.7% 11109 14106 | 27.6% 43.7% 22094 17444 | 40.0% 54.8% 29143  739.1
15 F2 00%  0.0% 0.1 0.0 00%  0.0%  489.6 1093.9 0.0% 0.0% 123 253 20.0% 44.7% 17825 16980 | 40.0% 54.8% 1903.5 15912 | 60.0% 54.8% 31804  891.8
20 F2 00%  0.0% 0.1 0.0 00%  0.0% 172 294 0.0% 0.0% 36.1 456 80.0% 44.7% 30684 1188.6 |[100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
30 F2 00%  0.0% 1.0 0.5 12%  27% 8134 1561.5 1.2% 27% 18323 1173.1 | 100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F2 00% 00% 104 11.0 122% 273% 13160 1281.0 | 79.0% 442% 30904 1139.5 |100.0% 0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F2 00% 0.0% 3429 3328 | 55.8% 29.4% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F2 00% 00% 2277 301.3 94.8%  6.1%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 00% 0.0% 529 58.7 149% 59%  904.1 378.8 255% 43% 11070 2174 47.3% 12.2% 18745 4013 51.6% 9.0% 20427 3247 545% 100% 22722 1859
Standard Deviation | 0.0% 0.0% 117.8 1280 | 31.3% 11.2% 13991 6114 43.7% 13.3% 15921  464.5 47.6% 209% 16445 6726 48.0% 20.1% 16572  666.4 474% 222% 16450 3226
MIP Average 14.0% 12% 970.8 80.3 25.0% 4.3% 17142 2359 37.2%  43% 1760.8  119.8 50.5%  8.1% 23853 3015 50.0%  6.8% 2470.9 2644 46.4%  7.0% 1968.5  170.1
Standard Deviation | 26.6% 2.4% 1559.7 2241 | 321% 81% 17052  493.2 44.0%  9.9% 17329 3385 44.2% 15.5% 15452 5771 451% 14.7% 15311  573.5 47.9% 18.1% 1684.3  320.9
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Table A.4 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(# jobs)  Function cTP AFCTP APD TI TII ATI
GAP  SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP T(s) SD(T(s)) | GAP SD T(s) SD(T(s))

5 F1 00%  0.0% 0.5 0.6 00%  0.0% 0.0 0.0 0.0% 0.0% 02 04 0.0% 0.0% 52 25 0.0% 0.0% 22 0.6 0.0% 0.0% 1.1 02

7 F1 00%  0.0% 0.1 0.0 00%  0.0% 0.6 03 0.0% 0.0% 09 1.0 0.0% 0.0% 440 32.1 0.0% 0.0% 34.0 15.8 0.0% 0.0% 34 1.8

9 F1 00%  0.0% 0.1 02 00%  0.0% 36 32 0.0% 0.0% 9.8 35 0.0% 0.0% 83.8 35.0 0.0% 00% 1334 116.2 0.0% 0.0% 89 37

11 F1 00%  0.0% 15 1.3 00%  00%  79.9 53.2 0.0% 00% 1713 722 0.6% 00% 9325 133.0 0.0% 00% 4715 4263 0.0% 0.0% 25.7 112

13 F1 00% 0.0% 4.1 4.6 00%  0.0% 13165  1290.0 2.8% 4.8% 26221 12384 0.0% 13%  749.2 1407.1 0.2% 04% 1507.2  1329.8 0.0% 0.0% 82.0 74.9

15 F1 00% 0.0% 75.1 63.3 6.6% 38% 35123 196.1 180%  1.9%  3600.0 0.0 6.0% 58% 26187 11934 1.2% 1.1% 2809.1  1085.6 0.0% 0.0% 99.7 39.5
20 F1 52% 49% 29321 14935 | 154% 3.6% 3600.0 0.0 58.6% 263% 3600.0 0.0 17.8%  8.6% 36000 11188 4.4% 3.8%  3600.0 0.0 0.0% 00% 1166.7 8729

30 F1 14.0% 3.7% 3600.0 0.0 21.0% 3.5% 3600.0 0.0 76.0%  32.0% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F1 162% 2.6% 3600.0 0.0 24.0% 34% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F1 304% 49% 3600.0 0.0 33.6% 3.6% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F1 314% 1.7% 3600.0 0.0 33.8% 0.8% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

F1 Average 88% 1.6% 15831 1421 |122% 1.7% 2083.0 1403 414% 59% 22186  119.6 38.6% 14% 20394 3565 36.9% 05% 20870 2704 364% 0.0% 14352 91.3
W Standard Deviation | 124% 2.1% 1813.2 4486 |13.9% 1.8% 17649 3859 45.5% 11.7% 17470 3717 49.0% 29% 16537 5725 501% 12% 16520  483.6 50.5% 0.0% 1748.1  260.3

% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.0 0.0 0.0% 0.0% 0.1 0.1 0.0% 0.0% 19 1.1 0.0% 0.0% 23 1.6 0.0% 0.0% 1.0 03

& 7 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.0 0.0 0.0% 0.0% 0.1 0.1 0.0% 0.0% 185 9.7 0.0% 0.0% 19.1 10.5 0.0% 0.0% 8.6 4.4
W 9 F2 00%  0.0% 0.0 0.0 00%  0.0% 49 5.8 0.0% 0.0% 04 04 0.0% 0.0% 38.2 18.7 0.0% 0.0% 235 103 0.0% 0.0% 75.6 584
11 F2 00%  0.0% 0.0 0.0 00%  0.0% 19.6 41.0 0.0% 0.0% 8.6 14.8 0.0% 00%  199.2 2714 0.0% 00%  204.1 2713 0.0% 00%  146.8 88.8

13 F2 00%  0.0% 0.0 0.0 06% 13% 7823 1580.5 0.0% 0.0% 12.1 14.1 0.0% 00% 1467 8.5 0.0% 00% 3855 280.0 0.0% 0.0%  476.1 391.5
15 F2 00%  0.0% 0.1 0.0 22%  44% 14411 19708 0.0% 0.0% 8.2 100.5 0.0% 00%  607.0 5144 0.0% 00% 10467  1010.5 | 40.0% 54.8% 2154.1  1329.1

20 F2 00%  0.0% 0.2 0.1 100%  73%  3600.0 0.0 2.8% 6.3% 1580.1 16977 | 63.0% 50.9% 3043.8 1243.6 | 40.0% 54.8% 3065.1 735.0 100.0%  0.0%  3600.0 0.0

30 F2 00%  0.0% 1.0 0.8 14.0% 14.6% 32004  893.6 75.2%  33.7% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F2 00% 0.0% 219 30.5 152% 163% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F2 00% 0.0% 861.9 13935 | 522% 15.0% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F2 00% 0.0% 1007.6 15297 | 81.6% 8.8%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 00% 0.0% 172.1 268.6 |16.0% 62% 18044  408.3 344% 3.6% 14618  166.2 421% 4.6% 16777 1943 40.0% 5.0% 1740.6  210.8 49.1% 50% 1896.6  170.2
Standard Deviation | 0.0% 0.0% 378.5 590.7 | 26.7% 6.6% 17017  731.3 47.6% 102% 17561  508.8 49.5% 154% 17485 3842 49.0% 165% 1708.7  349.9 50.1% 16.5% 17357 4016
MIP Average 44% 0.8% 877.6 2054 | 141% 3.9% 1943.7  274.3 37.9% 4.8% 1840.2  142.9 40.3%  3.0% 1858.6 2754 384%  2.7% 1913.8  240.6 42.7%  2.5% 16659  130.8
Standard Deviation | 9.7% 1.6% 1468.1 5159 |208% 53% 1697.8  586.9 45.6% 10.7% 1752.7  435.5 48.1% 10.9% 1671.0  483.0 48.4% 11.7% 1649.6  413.0 49.5% 11.7% 17163  332.7
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Table A.5 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(#jobs)  Function cTP AFCTP APD TI TII ATI
GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s)  SD(T(s))

5 F1 00%  0.0% 1.6 34 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.0 0.0% 0.0% 8.5 6.7 0.0% 0.0% 29.5 30.5 0.0% 0.0% 0.5 04

7 F1 00%  0.0% 2.6 33 00%  0.0% 1.1 0.6 00%  0.0% 12 03 0.0% 00%  173.0 146.2 0.0% 0.0%  149.1 104.1 0.0% 0.0% 1.7 04

9 F1 00%  0.0% 6.6 4.5 00% 00%  77.6 68.8 00%  00% 312 13.7 0.0% 00%  336.7 151.0 0.0% 00%  601.9 8244 0.0% 0.0% 19.2 29.5

11 F1 00%  00% 302 19.9 28% 38% 21883 16959 00%  0.0%  620.6 543.6 0.0% 00% 13209  633.7 0.0% 0.0%  920.1 503.7 0.0% 0.0% 18.8 73

13 F1 00% 00% 5156 4442 | 27.6% 9.3%  3600.0 0.0 31.0% 152% 3600.0 0.0 0.4% 09% 16858 12119 1.6% 1.5% 28400  1227.1 0.0% 0.0% 51.5 17.8

15 F1 146% 139% 32042 5420 |382% 7.4% 3600.0 0.0 51.0%  6.9%  3600.0 0.0 33.0% 425% 34745 2806 82%  42% 3600.0 0.0 0.0% 00% 2184 40.1

20 F1 44.0% 4.8%  3600.0 0.0 520% 5.9%  3600.0 0.0 75.8%  12.5% 3600.0 0.0 75.6%  23.0% 3600.0 0.0 192% 152% 3600.0 0.0 20.0%  44.7%  1006.1 3735

30 F1 60.8%  1.6%  3600.0 0.0 65.8% 1.9%  3600.0 0.0 93.0% 11.2% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F1 72.6% 1.8%  3600.0 0.0 764%  1.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F1 78.0% 1.4%  3600.0 0.0 804% 1.7%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F1 824% 0.5%  3600.0 0.0 834% 0.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

F1 Average 320% 22% 19783 92.5 388% 29% 24970  160.5 50.1% 42% 2350.3 50.7 46.3% 6.0% 22727 2209 39.0% 1.9% 23764 2445 382% 41% 14287 42.6
W Standard Deviation | 35.6% 4.1% 17968 1994 |34.6% 33% 1641.0  509.6 451% 61% 17419 1635 482% 139% 15744  381.6 48.7% 4.6% 15791 4235 494% 135% 17450  110.6

% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 0.1 0.0 00%  0.0% 0.1 0.0 0.0% 0.0% 26.2 12,5 0.0% 0.0% 92.6 65.5 0.0% 0.0% 43 43
£ 7 F2 00%  0.0% 0.1 0.1 00%  0.0% 12 0.7 00%  0.0% 19 1.0 0.0% 00% 5109 7479 0.0% 00% 9384 1404.0 70%  157% 11089 15712
W 9 F2 00%  0.0% 1.0 12 00%  0.0% 15.7 8.1 00%  00% 220 9.1 0.0% 00% 14149  838.6 13.6% 19.6% 25968  1419.6 74%  165% 1380.7 14105
11 F2 00%  0.0% 8.0 6.8 00%  0.0% 466.2 397.6 00%  0.0% 1284 109.0 474%  384% 35585 92.8 47.0%  21.8% 3600.0 0.0 372% 288% 32847 7050
13 F2 00%  0.0% 4565 979.6 | 22.8% 194% 2949.5 14547 24%  54% 21944 11136 | 44.0% 34.8% 3600.0 0.0 59.8%  39.2%  3600.0 0.0 224%  21.6% 32042 8509

15 F2 156% 214% 17578 1713.6 | 50.6% 14.3% 3600.0 0.0 57.8%  232% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 354% 193% 3600.0 0.0

20 F2 64.4% 174% 3600.0 0.0 82.8% 9.4%  3600.0 0.0 982%  2.7%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

30 F2 934%  73%  3600.0 0.0 97.2%  34%  3600.0 0.0 99.2%  1.8%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

50 F2 94.8%  2.8%  3600.0 0.0 97.4%  1.7%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

75 F2 96.8%  1.8%  3600.0 0.0 98.2% 1.1%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0

100 F2 98.0% 0.7%  3600.0 0.0 98.6% 0.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 421% 47% 18385 2456 |498% 45% 22757  169.2 50.7% 3.0% 2177.0 1121 629% 6.6% 27919  153.8 65.5% 1.3% 29480  262.6 554% 93% 27803 4129
Standard Deviation | 46.5% 7.7% 17583  568.6 |458% 6.8% 17237 4426 49.6% 69% 17453 3337 45.5% 14.8% 14109  318.0 43.3% 134% 1253.6  568.5 44.1% 111% 13009  616.8
MIP Average 371% 3.4% 19084  169.0 | 443% 3.7% 23863  164.8 50.4%  3.6% 2263.6 814 54.6%  63% 25323 1874 52.2%  4.6% 2662.2  253.6 46.8%  6.7% 21045  227.8
Standard Deviation | 40.7%  6.1% 1736.3  423.1 | 40.0% 5.2% 1646.2  465.8 46.3%  6.4% 1703.9  258.4 46.5% 14.0% 1482.9  344.5 47.0% 10.2% 1421.8  489.3 46.5% 12.4% 1653.6  472.1
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1 54 ANALYSIS OF MIP FORMULATIONS FOR SMSP WITH SEQUENCE DEPENDENT SETUP TIMES

Table A.6 — (Continuation).

Instance Objective

Mixed Integer Program Formulations

(# jobs)  Function cTP AFCTP APD TI TII ATI
GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) | GAP SD T(s) SD(T(s)) [ GAP SD T(s)  SD(T(s))
5 F1 00%  0.0% 0.0 0.0 00%  0.0% 1.3 2.7 00%  0.0% 0.1 0.0 0.0% 0.0% 1686.7  1543.0 0.0% 00%  404.2 635.7 0.0% 0.0% 36 1.1
7 F1 00%  0.0% 0.0 0.0 00%  0.0% 04 02 00%  0.0% 14 1.1 8.4% 78% 30347  860.6 2.0% 1.6% 30679  1189.9 0.0% 0.0% 28.1 17.8
9 F1 00%  0.0% 0.1 0.1 00%  0.0% 6.4 9.2 00%  0.0% 18.8 9.7 222% 142% 3600.0 0.0 156%  18.8%  3600.0 0.0 0.0% 0.0%  109.0 50.6
11 F1 00%  0.0% 04 0.5 00%  00% 523 273 00%  00% 3215 290.5 158%  1.6%  3600.0 0.0 54.8%  62%  3600.0 0.0 0.0% 00%  336.6 178.2
13 F1 00%  0.0% 10.2 15.1 12%  27% 14277  1694.6 26%  58% 21923  1279.6 | 442%  9.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 0.8% 1.8% 12325  1359.8
15 F1 00%  00%  196.0 399.5 6.0%  39% 3600.0 0.0 156%  6.8% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 0.4% 09% 1756.6 11893
20 F1 60%  5.1% 30009 1339.7 | 16.6% 55% 3600.0 0.0 69.0%  21.8% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
30 F1 14.6%  83%  3600.0 0.0 192%  9.1%  3600.0 0.0 96.6%  43%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F1 148%  47%  3600.0 0.0 198%  4.7%  3600.0 0.0 88.8%  25.0% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F1 232%  3.6% 3600.0 0.0 266% 2.6% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F1 294%  53%  3600.0 0.0 334% 6.5%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F1 Average 80% 25% 1600.7 1595 |11.2% 32% 20989  157.6 43.0% 58% 21940 1437 62.8% 3.0% 33747 2185 702% 24% 32611  166.0 45.6% 02% 19515 2542
W Standard Deviation | 10.8% 3.0% 18083  409.2 |124% 3.1% 1770.3  509.8 46.8% 91% 17239  386.6 41% 51%  585.0 509.5 43.6% 57%  960.9 389.5 521% 0.6% 1662.5  508.6
% 5 F2 00%  0.0% 0.0 0.0 00%  0.0% 12 0.7 00%  0.0% 0.2 0.1 234%  32.6% 23107 1767.0 | 200% 44.7% 17549 16979 0.0% 0.0% 59 2.8
& 7 F2 00%  0.0% 0.0 0.0 00%  0.0% 37 2.8 00%  0.0% 1.3 0.5 472% 133% 3600.0 0.0 21.0% 17.5% 29354  1486.1 4.0% 8.9%  788.1 15735
W 9 F2 00%  0.0% 0.1 0.1 00%  0.0% 10.7 143 00%  0.0% 14.6 23 69.2%  42.6% 3600.0 0.0 69.0%  42.5% 3600.0 0.0 18.6% 19.5% 22578 18409
11 F2 00%  0.0% 09 1.3 00%  0.0% 4389 530.6 00%  00% 3297 188.5 88.0%  26.8% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 8.0%  12.0% 25222 12635
13 F2 00%  0.0% 36 4.6 38% 85%  989.7 1553.9 00%  00% 9744 655.4 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 36.0% 37.0% 3600.0 0.0
15 F2 00%  0.0% 153 17.7 144% 104% 30246  1286.7 192% 13.6% 32586  763.5 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 83.0% 38.0% 3600.0 0.0
20 F2 114% 199% 2587.9 14649 | 39.8% 163% 3600.0 0.0 69.8% 19.5% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
30 F2 27.0% 13.5% 3600.0 0.0 412% 14.3% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
50 F2 268%  6.9% 3600.0 0.0 448%  1.5%  3600.0 0.0 93.8% 13.9% 3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
75 F2 350% 82% 3600.0 0.0 674% 74%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
100 F2 48.6%  52%  3600.0 0.0 75.6% 3.9%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0 100.0%  0.0%  3600.0 0.0
F2 Average 135% 49% 15462 1353 |26.1% 62% 20426  308.1 43.9% 43% 20526 1464 84.3% 105% 34828  160.6 827% 9.5% 3371.8 2894 591% 105% 2797.6 4255
Standard Deviation | 17.8% 6.8% 17956 4410 |288% 6.0% 1709.5 5752 47.8% 15% 17358  285.0 26.6% 16.0%  388.7 532.8 321% 11.7% 572.2 645.7 45.0% 149% 12925  739.6
MIP Average 10.8% 3.7% 15734 1474 | 18.6% 4.7% 2070.8  232.9 43.4%  5.0% 21233 1451 73.6%  6.7% 3428.7  189.6 76.5%  6.0% 33165  227.7 523%  54% 23746  339.9
Standard Deviation | 14.6% 5.3% 1758.7 4153 | 22.9% 4.9% 1698.5  535.9 46.2% 82% 1689.8 3314 37.2% 12.2%  487.8 509.6 37.9% 13.3% 773.8 524.2 48.0% 11.5% 15163  625.6
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