Pesquisa Operacional (2019) 39(1): 205-223
© 2019 Brazilian Operations Research Society
‘ SOBRAPO Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
T\ eeeaaaasammsm  \VWW.Scielo.br/pope
ch doi: 10.1590/0101-7438.2019.039.01.0205

HIGH-ORDER MULTIVARIATE MARKOV CHAIN APPLIED
IN DOW JONES AND IBOVESPA INDEXES

Rafaela Boeira Cechin and Leandro Luis Corso*

Received July 13, 2018 / Accepted March 18,2019

ABSTRACT. In this paper we analyzed the probabilities of transitions of state between Ibovespa and Dow
Jones indexes using High-order Multivariate Markov Chain. While the stock market may be profitable, the
existence of risks can lead to large losses. A mathematical model capable of considering different sources
can aid in decision making. This model can work with stochastic data, causing different databases to be
transformed into transitional matrices between states. For this, a set of a daily variation data were used
between January 2008 and March 2018. Through this application, it was possible to show an interaction
between the indexes and that the highest frequency of events was of the variation of —0.49 to 0.5% in Dow
Jones to —0.49 to 0.5% in Ibovespa, with 428 cases, and the probability of this situation occurring again, of
Dow Jones at time t to Ibovespa at time ¢ + 2, is 27.21%. Empirical results suggest that this application can
help investors make decisions based on transition probabilities.

Keywords: Markov Chain, High-order Multivariate Markov Chain, stock market index.

1 INTRODUCTION

To invest in the stock market it is important to calculate the risks. Related to this idea, it is impor-
tant to understand that smaller markets are affected by larger markets (Achcar et al. (2012)). The
authors comment that the Brazilian stock exchange is affected by the American stock exchange,
since the values of transitions of the second are considerably higher.

Shephard (2008) presents a collection of relevant models and studies. In this study is presented
the ARCH models (autoregressive conditional heteroscedasticity) applied to Univariate stochas-
tic volatility (SV) and multivariate ARCH models (MARCH). This type of problem is often
studied using Econometric Theory (Yu & Meier (2006)). Although these models exist, the rela-
tionship between the two stock exchanges was not presented simultaneously. In order to analyze
this relation, we are proposing an application of the High-order Multivariate Markov Chain. The
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concept of Markov Chain, which belongs to the area of Operational Research, is a statistical
analysis of a process, in which future state depends solely on its current state.

The authors Doubleday & Esunge (2011) used Markov Chain to determine the relationship be-
tween a diverse portfolio of stocks and the market as a whole, where, the authors comment on
the feasibility of applying the tool to support decision making. In the same line of application,
Fitriyanto & Lestari (2018) presented an article with the application of Markov Chain in PT HM
Sampoerna stock price. These mentioned articles used Markov Chains of 1st order.

Although the applications with Ist order is more widespread in the literature, some articles
of higher order began to gain space in different areas. For example, the articles of Ching et
al. (2004), Ching et al. (2008) and Yang et al. (2011). However, the investment area is also at-
tractive for these models, as the publication of Ky & Tuyen (2018). The authors emphasize the
importance of this technique for forecasting time series. They also comment that while there are
ARIMA methods, exponential smoothing and even artificial intelligence, these methods demand
a hardly fit nonlinear data. The authors present a novel High-order Markov model for time series
forecasting where the state space of the Markov chain was constructed from different levels of
changes of the time series.

The objective of this paper is to calculate the probability of variation of the main index of the
Brazilian and American stock exchanges, being respectively Ibovespa and Dow Jones, using the
High-order Multivariate Markov Chain. It also was studied the behavior of these two indexes
separately, to obtain the expected recurrence time, in order to be useful information for investors.

2 THEORETICAL REFERENCE
2.1 Financial market volatility

Interest in forecasting stock market volatility has been around for some time (Bollerslev et al.
(1992)). According to Mello (2009), volatility, in the financial area, shows the intensity and the
frequency of fluctuations in the prices of a financial asset, which may be stock, bond, investment
fund or stock market indices, in a given period of time. The more the price of a stock fluctuates
over a short period of time, the greater the risk of gaining or losing money by trading this stock,
and therefore volatility is one of the parameters most frequently used as a way of measuring the
risk of an asset, according to Ishizawa (2008).

The more volatile an asset is, the more significant its variation in relation to market fluctuations.
In other words, it is a riskier investment. Savings are at the extreme of low volatility and prof-
itability, while the derivatives market as options and futures are at the other extreme, with much
volatility and possibility of return. Stochastic data analyzes can help reduce investment risk (Yu
& Meyer (2006)), although it can involve a computer complexity (Souza et al. (2011)).

Ribeiro (2009) comments that the measurement of a risk is according to the history of the asset.
According to Mello (2009) and Almeida (2013), one of the ways to analyze the volatility of an
asset is by measuring its oscillation or the standard deviation of its value or profitability. It can
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be used in many ways, for example in the stock market, it is possible to analyze the levels of
overbought/oversold, and the definition of targets for gains and losses.

As the financial world is influenced by several external factors, such as politics itself, it is also
subject to lesser or greater volatility. Chiu et al. (2018) comment that long-term volatility is
related to macroeconomic fundamentals associated with future cash flows and rates, while short-
term volatility is related to transitory determinants, such as investor sentiment. This is related to
the hypothesis that volatility reflects both market expectations of future cash flows and rates, and
the short-term behavioral effects that are not directly linked to economic activity.

For Fornari & Mele (2013), one characteristic of the capital markets is the countercyclical be-
havior of asset price volatilities. For example, in the last 50 years, the annualized return volatility
of the S&P 500 was 14.18% on average. However, during recessions, this figure increased to
17.39%, 23% more than the overall average. During the expansions, however, this same volatil-
ity reached an average of 13.5%, being 4% below the general average.

The work of Schwert (1989) studies the changes in stock market volatility over time. In particu-
lar, it relates stock market volatility to time-varying volatility of various economic variables. For
the period 1857-1987, volatility was remarkably high from 1929 to 1939 for many economic se-
ries, including inflation, monetary growth, industrial production, and other measures of economic
activity. This is because stock market volatility increases during recessions.

Schwert (1989) also comments that the value of corporate equity depends on the health of the
economy. If discount rates are constant over time, the price movement of securities is propor-
tional to the variation of expected future cash flows. It is possible that a change in the level
of uncertainty of future macroeconomic conditions would cause a proportional change in the
volatility of stock returns.

Christiansen et al. (2012) and Zhu & Singh (2016) comment that financial volatility is a funda-
mental study for risk management, asset pricing and portfolio management. It can have important
repercussions on the economy as a whole, evidenced by the financial crises. Therefore, accord-
ing to the authors, it is extremely important to learn more about the economic drivers of financial
market volatility.

According to Ribeiro (2009), Favero & Confortini (2010) and Chiu et al. (2018), a good un-
derstanding of how the asset, its profitability and its volatility interact with the economy, will
enable policymakers and finance and investment professionals to obtain more accurate forecasts,
influenced by macroeconomic factors.

2.2 Markov Chain

According to Hillier & Lieberman (2005), Ho & Quinino (2012) and Roshan & Nastos (2018),
a stochastic process describes the behavior of variables {X; } = {xi, x2, ..., x,,} within a certain
period of time 7 and that such a process is a Markov chain if the probability of occurrence
of a future state depends only on the present state, that is, if it is independent of past events.
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Taha (2007), Andersen et al. (2017) and Hunter (2018) present the conditional probability P in
Equations 1 and 2.
pij = P{Xip1 = jlX; =1} (D

P,"lj = P{Xi1n = jlX; =1} (2)

Which, X, represents a variable at time ¢, and pl’.lj is the probability that a process passes from
state 7 to state j in n steps at time ¢. As it is conditional probability, Hillier & Lierberman (2005)
affirm that these values cannot be negative. Staudt et al. (2011), Ho & Quinino (2012), Andersen
et al. (2017) and Roshan & Nastos (2018) comment that one way of presenting these transitions
is with the use of the Transition Matrix, shown in Equation 3.

pir p1i2 pi3 ... Pij
p21 p22 p23 ... P2j

P=] . . . . . (€))
pit pi2  pi3 ... Pij

The authors demonstrate that the transition of states occurs from the row-to-column index, that
is, the probability p;; corresponds to the transition of state i to state j. Taha (2007) comments
that the sum of each row of the matrix must be equal to 1, besides that an array is classified as
ergodic when it is possible to go from any state to another any in n time steps.

Taha (2007), Hunter (2018) and Roshan & Nastos (2018) then present the stable state probability
7 j for an ergodic Markov chain in Equation 4 and its property in Equation 5.

M
nj:Znipij, para j=0,1,.... M 4)
i=0
M
Sm=1 5)
j=0

Taha (2007) explains that, after a large number of transitions, the probability of finding the pro-
cess in a given state, for example j, tends to the value 7, independent of the probability dis-
tribution of the initial state. Hillier & Lierberman (2005) comment that because there is M + 2
equations, M + 1 unknowns and a single solution, it is necessary to exclude one of the equations,
but it cannot be Equation 5, because 7; = 0 for any j will satisfy M + 1 equations.

Furthermore, it is possible to analyze the expected recurrence time, represented by p;; for when
Jj = i, which, according to Taha (2007), is the expected number of transitions until the process
returns to the initial state i, shown in Equation 6.

1
wii =—, para i=0,1,...,. M (6)
=

1
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2.2.1 High-order Multivariate Markov Chains

As mentioned before, the probabilities associated with various state changes are called transition
probabilities. The process is characterized by a transition matrix describing the probabilities of
transitions from one initial state to another. The High-order Multivariate Markov Chain is used
when there is more than one time series of data and the transition occurs for more than one-time
step, that is, it can be considered of order n.

In order to facilitate the understanding of this concept, this section has been divided into three
subsections.

2.2.1.1 High-order Markov Chains

According to Ching et al. (2008), a High-order Markov Chain (nth-order) is used to model time
series x; of m categories, which can be represented by a sequence of vectors {Xg, X1, X2, ...} in
canonical form. If this system is in state j € M at time (¢ + i), then the probability distribution
vector of the state is given by Equation 7.

T

x+i=(0,...,0, 1 ,0,...,0 (7
Jjthentry

Karny (2016) assumes that the state probability distribution at time t = r + 1 depends on the
sequence state probability distribution at times t = r,r — 1,...,r —n + 1. Then, Yang et
al. (2011) presents Equation 8.

n
X4 1 :ZAhPhxr_h+1, for r=n-—-1,n,... ()
h=1
Which Aj, represents the weight and is a non-negative real number, which summation is equal to
1; x, is the probability distribution of the state at time r; P}, is the & step transition matrix.

2.2.1.2 First-order Multivariate Markov Chains

Ching et al. (2008) explain that a First-order Multivariate Markov Chain models the behavior of
multiple data sequences for a one step in time. Ching et al. (2004) understand that there may
be s sequences and each with m possible states. Then, it is assumed that the probability of the
state of the jth sequence at time r = r + 1 depends on the state probabilities of all sequences
(including itself) at time ¢ = r. Yang et al. (2011) presents Equation 9 to represent the First-order
Multivariate Markov Chain model.

N
xD =3 " apPUPx0 for r=0,1,... )

k=1

Which X(()j ) is the initial probability distribution of the sequence jth; A j; is a non-negative real
number, its sum being equal to 1;and 1 < j, k <'s.
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The probability of state of the sequence jth, X(] ) 1 attime r + 1, depends on the weight average
of pUK Xﬁk) . Then, PU¥ is the transition matrix for a one step in time, from the state at time ¢
in the sequence kth to the state at time ¢ + 1 in the sequence jth, and Xﬁk) is a distribution of the
probability of states at time r in the sequence kth. Ching et al. (2004) presents in Equation 10
the matrix form.

1 1
X%j;l A PAD AP PO x%zi
X AP apPCD o g PO | | x)
Xr1=1 . | = : . . . : (10)
x| At PO Ao P6D o a PO )\

2.2.1.3 High-order Multivariate Markov Chains

The High-order Multivariate Markov Chain is an addition of the concepts presented earlier, that
is, models the behavior of multiple data sequences for more than one step in time, in the nth
order. Karny (2016) understands that the state probability distribution of the sequence jth at
time r + 1 depends on the state probability distribution of all sequences, including itself, at times
t=r,r—1,...,r —n+ 1. Then, the High-order Multivariate Markov Chain (nth order) model
is presented in Equation 11, according to Ching et al. (2008).

h k) _(k
x_)l—ZZA( )P(]) i)h+1’ for r=n-1,n,... (1)
k=1 h=1

which A j; is a non-negative real number, its sum being equal to I;and 1 < j, k <s.
()

_ r+1
Then, Pél 2 is the transition matrix of the time step Ath, which describes

The probability of state of the sequence jth, x

(k) 4 (k)
P X ht1
the transition from % steps, from the state at time » — /2 + 1 in the sequence kth to the state at time

at time r + 1, depends on the average of the

weights of

r + 1 in the sequence jth, and )»5-},? is the weighting of this period. Ching et al. (2004) presents
in Equations 12, 13, 14 and 15 the matrix form.

X(l) B(ll) B(IZ) . B(ls) X'(})
xﬁ) . B B2 B | X
Xry1 = =1 . : : : .| =09X, (12)
xfﬂ . B6D  BGD - g [\ x®
which: (D) pliD) 4 @) pli) (n=1) pi) 5 () plii)
12 12 n— 12 n 12
Aii Py Aii Py v Ay TR A P
1 0 0 0
BUH 0 1 0 0 (13)
: 0
0 I 0
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Ifi # j,so:
1) p(ij) (2) p(ij) (n—=1) p(ij) (n) p(ij)
)‘ij Pl )‘ij P2 )‘ij Pn—l )‘ij P,
0 0 0 0
BUD — 0 0 R 0 0 (14)
0
0 . 0 0
pih g2 gl
B(Zl) B(22) L B(ZS)
Q - . . . . (15)
BGDH gt BGs)

Where Q is the one-step transition probability matrix of the multivariate model, which deter-
mines the probability of making a transition depending on the current state.

3 METHODOLOGY AND RESULTS

In order to achieve the proposed goal of this study, the elaborated methodology was divided into
four stages, as shown in Figure 1.

Stage 1
* Data gathering

Stage 2
 Elaboration of the transition matrix

Stage 3
* Scenario analysis

Stage 4

* Application of High-order Multivariate
Markov chains

Figure 1 — Methodology of research.

3.1 Data gathering

For this study, the values of the percentage variation of the Ibovespa index and the Dow Jones
index were collected. The Ibovespa index is a theoretical portfolio of companies, which serves to
indicate the average performance of asset prices of greater tradability and representativeness of
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the Brazilian stock market, while the Dow Jones is one of the main indicators of the movements
of the American market. This data was taken from the InfoMoney electronic address, the time
period was commercial day-to-day trading of derivatives on the Sdo Paulo and New York stock
exchanges, and index values refer to January 2, 2008 to March 21, 2018. Figure 2 shows the
Ibovespa data and Figure 3 the Dow Jones index.

Ibovespa's variation

15%

10%
S 5%
=] 1 i i | b |
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Date
Figure 2 — Percentage variation of the Ibovespa index.
Dow Jones' variation
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Figure 3 — Percentage variation of the Dow Jones index.

3.2 Elaboration of the transition matrix

In order to calculate the transition matrices, it was necessary to define intervals for the percentage
changes of the two indexes, as shown in Table 1.
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Table 1 — Range of variation.

< —2.5%
from —249% to —1.5%
from —1.49% to —0.5%

from —0.49% to 0.5%

from 0.51% to 1.5%

from 1.51% to 2.5%
2.51% <

The development of the transition matrix, it was separated into two subsections, one for the

Ibovespa index and another for Dow Jones.

3.2.1 Transition matrix for Ibovespa

In this step the transition matrix of the Ibovespa index was created. For this, the first stage was
the creation of the frequency matrix, which represents the total number of times the transition

occurred, shown in Figure 4.

from / to - 25% 249% -1.49% -049% 0.51% 1.51% 2 51% <
to-1.5% t0-05% 1t005% tol1.5% to2.5%
<-25% 18 15 10 36 27 13 24
-2.49% to —1.5% 19 16 40 69 56 17 9
—1.49% to -0.5% 29 47 120 131 83 46 28
F= -0.49% to 0.5% 33 63 154 226 147 88 25
0.51%to 1.5% 19 49 91 157 95 48 26
1.51% to 2.5% 13 21 48 79 57 20 13
2.51% < 12 14 21 38 21 19 13

Figure 4 — Transition frequency matrix for Ibovespa.

Based on this matrix the cumulative percentage that occurred in the variations of each of the

intervals was observed, as shown in Figure 5.

By means of this chart it is noticed that the highest frequency of variation occurred in the range
of —=0.49 to 0.5%. Following the calculation procedure and considering this information, it was
possible to calculate the matrix with the transition probabilities. The value P;; is the probability
of price variation from state i to state j in one step of time, which is presented in Figure 6.

3.2.2 Transition matrix for Dow Jones

Based on data from the Dow Jones daily percentage change, it was possible to analyze the fre-

quency of variations, shown in Figure 7.
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Histogram for Ibovespa
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Figure 5 — Histogram of variations interval for Ibovespa.

N Frequency

==@==Cumulative

from / to - 25% —249%  -149% -049% 051% 1.51% 2 51% <
to-1.5% t0-0.5% t00.5% to01.5% t02.5%
<-2.5% 0.126 0.105 0.070 0.252 0.189 0.091 0.168
—249%to-1.5% | 0.084 0.071 0.177 0.305 0.248 0.075 0.040
-1.49% to -0.5% | 0.060 0.097 0.248 0.271 0.171 0.095 0.058
P= -049%t00.5% 0.045 0.086 0.209 0.307 0.200 0.120 0.034
0.51% to 1.5% 0.039 0.101 0.188 0.324 0.196 0.099 0.054
1.51% to 2.5% 0.052 0.084 0.191 0.315 0.227 0.080 0.052
2.51% < 0.087 0.101 0.152 0.275 0.152 0.138 0.094
Figure 6 — Transition matrix for Ibovespa.
—249%  -149% -049% 051% 1.51%
from /to =% 0 15% 10-05% ©005% t015% 102.5% S~
<-2.5% 9 6 7 12 9 3 13
—2.49% to —1.5% 5 4 19 39 35 6 5
—1.49% to —0.5% 7 26 73 152 93 17 9
F= -049%t00.5% 17 44 177 757 234 36 17
0.51% to 1.5% 8 21 78 266 89 19 7
1.51% to 2.5% 5 8 14 39 16 5 2
2.51% < 8 4 8 18 12 3 2

Figure 7 — Transition frequency matrix for Dow Jones.
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As has been created previously, the cumulative percentage that occurred in the variations of each

of the intervals was developed, as shown in Figure 8.

Histogram for Dow Jones
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Figure 8 — Histogram of variations interval for Dow Jones.

In this specific case by analyzing the graph, it is noted that the higher frequency of variation
also occurred in the range of —0.49 to 0.5%. The Markov transition probabilities is shown in

Figure 9.
o e 2% 1% 049% 051%  151%
rom7to ST 0-15% 10-05% 1005% to15% t02.5% O
= 25% 0153 0.102 0119 0203 0153 0051 _ 0220

—2.49% to —-1.5% | 0.044 0.035 0.168 0.345 0.310 0.053 0.044
-1.49% to —-0.5% | 0.019 0.069 0.194 0.403 0.247 0.045 0.024

P= -0.49% t0 0.5% 0.013 0.034 0.138 0.590 0.183 0.028 0.013
0.51%to 1.5% 0.016 0.043 0.160 0.545 0.182 0.039 0.014
1.51%to0 2.5% 0.056 0.090 0.157 0.438 0.180 0.056 0.022

2.51% < 0.145 0.073 0.145 0.327 0.218 0.055 0.036

Figure 9 — Transition matrix of transition for Dow Jones.

3.3 Scenario analysis

The analysis of the scenarios of the two indices was also separated into two subsections.
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3.3.1 Scenario analysis for Ibovespa

Scenario analysis requires the calculation of steady state, as presented in Equations 16 and 17.

(O T3 4TS TT6) =

0.126 0.105 0.070 0.252 0.189 0.091 0.168
0.084 0.071 0.177 0.305 0.248 0.075 0.040
0.060 0.097 0.248 0.271 0.171 0.095 0.058 (16)
(o1 mam3mamsme) | 0.045 0.086 0.209 0.307 0.200 0.120 0.034
0.039 0.101 0.188 0.324 0.196 0.099 0.054
0.052 0.084 0.191 0.315 0.227 0.080 0.052
0.087 0.101 0.152 0.275 0.152 0.138 0.094

(mo+m +m+m3+m4+ s +me) =1 (17)

Resulting in the following system of equations, shown by Equations 18 to 25.

o = 0.126m9 + 0.084m1 4 0.0607r2 4 0.04573 4 0.03974 4 0.052775 4 0.087 76 (18)
w1 = 0.105m9 + 0.071m1 4 0.09772 4 0.086773 4 0.086774 4 0.08475 4 0.10176 (19)
mp = 0.070mg + 0.17771 + 0.2487 + 0.20973 + 0.20974 + 0.19175 + 0.1527¢ (20)
3 = 0.252m + 0.30571 + 0.27172 + 0.30773 + 0.30774 + 0.31575 + 0.2757¢ 21
w4 = 0.189mg + 0.24871 4 0.17177 4+ 0.20073 4+ 0.20074 + 0.22775 + 0.1527¢ (22)
w5 = 0.091mg + 0.07571 4 0.09577 4 0.12073 4 0.12074 + 0.08075 + 0.1387¢ (23)
w6 = 0.168mp + 0.0407r1 4 0.05872 + 0.03473 4 0.03474 4 0.052775 4 0.094 76 (24)
l=mg+m +m+ 73 + 74 + 715 + 716 (25)

Because there are eight equations and seven unknowns, it is necessary to disregard one of the
equations. Solving this system of equations, we obtain the following results:

o = 0.058 w1 = 0.091
my = 0.197 w3 = 0.299
w4 = 0.197 s = 0.102
e = 0.056

These values represent the possibility of being in certain states, according to Table 2.

Table 2 shows that the Ibovespa is most likely to range from —0.49 to 0.50%, with a probability
of 29.9%. Moreover, it is possible to analyze the expected recurrence time for each stable state
probability, according to Table 3.

In Table 3 it is observed that, when the range of variation is —0.49 to 0.5%, for example, the
expected recurrence time for this variation is 3.4 days, this means that in 3.4 days a value ranging
from —0.49 to 0.5% occurs again.
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Table 2 — Probability of steady-states for Ibovespa.

Range of variation

Probability

from —0.49% to 0.5%

< -25%
from —2.49% to —1.5% 9.1%
from —1.49% to -0.5% 19.7%

from 0.51% to 1.5%
from 1.51% to 2.5%
2.51% <

5.8%

29.9%
19.7%
10.2%
5.6%

Table 3 — Expected recurrence time for Ibovespa.

Probability of
steady-state 7;

Expected

recurrence time [;;

70
3}
)
73
4
s
6

17.2 days
11 days
5.1 days
3.4 days
5.1 days
9.8 days
17.9 days

3.3.2 Scenario analysis for Dow Jones

Scenario analysis requires the calculation of steady state, as shown in Equations 26 and 27.

(o1 T34 TS TT6) =

0.153
0.044
0.019
(momymaymamymsme) | 0.013
0.016
0.056
0.145

(mo+m +m+m3+m4+ 75 +m6) =1
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0.102
0.035
0.069
0.034
0.043
0.090
0.073

0.119
0.168
0.194
0.138
0.160
0.157
0.145

0.203 0.153
0.345 0.310
0.403 0.247
0.590 0.183
0.545 0.182
0.438 0.180
0.327 0.218

0.051
0.053
0.045
0.028
0.039
0.056
0.055

0.220
0.044
0.024
0.013
0.014
0.022
0.036

(26)

27)
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Resulting in the following system of equations, shown by Equations 28 to 35.

o = 0.153m0 + 0.0441 4 0.01972 4 0.01373 4 0.016774 4 0.056775 4 0.14576 (28)
w1 = 0.102mp + 0.03571 4 0.06972 + 0.03473 4 0.043774 4 0.090775 4 0.073 76 (29)
m = 0.11979 + 0.16871 + 0.19475 + 0.13873 + 0.16074 + 0.15775 + 0.1457¢ 30)
3 = 0.203mg + 0.3457; 4 0.40372 4 0.59073 4 0.54574 + 0.43875 + 0.3277¢ 3D
w4 = 0.153mp + 0.3107r1 4+ 0.24772 + 0.18373 + 0.18274 + 0.18075 + 0.2187¢ (32)
75 = 0.051mp + 0.05371 4 0.04572 4 0.02873 4 0.03974 4 0.056775 4 0.05576 (33)
e = 0.220m0 + 0.044m1 4 0.02472 4 0.01373 4 0.01474 4 0.022775 4 0.036776 (34)
l=mg+m +m+ 73 + 714 + 715 + 716 (35)

Because there are eight equations and seven unknowns, it is necessary to disregard one of the
equations. Solving this system of equations, we obtain the following results:

mo = 0.024 w1 = 0.046
mp = 0.153 w3 = 0.522
w4 = 0.198 s = 0.036
e = 0.022

These values represent the possibility of being in certain states, according to Table 4.

Table 4 — Probability of steady-states for Dow Jones.

Interval Probability
<-2.5% 2.3%
from —2.49% to —1.5% 4.4%
from —1.49% to —0.5% 15%
from —0.49% to 0.5% 52.4%
from 0.51% to 1.5% 20.1%
from 1.51% to 2.5% 3.7%
2.51% < 2.1%

With Table 4, it is observed that the Dow Jones is most likely to range from —0.49 to 0.50%, with
a probability of 52.4%. Furthermore, it is possible to analyze the expected recurrence time for
each stable state probability, as shown in Table 5.

With Table 5, it is observed that, when analyzing a variation of —0.49 to 0.5%, for example, the
expected recurrence time for this variation is 1.9 days, that is, it is expected that in 1.9 days a
value ranging from —0.49 to 0.5% occurs again.

3.4 Application of High-order Multivariate Markov Chains

Considering 1 as the Dow Jones data set and 2 as the Ibovespa data set for both with the same
intervals stipulated previously, then F’ 1(12) represents the transition frequency matrix by analyzing
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Table 5 — Expected recurrence time for Dow Jones.

Probability of Expected
steady-state 7r; | recurrence time [;j;

0 47.8 days

T 21.8 days

b15) 6.6 days

3 1.9 days

T4 5.1 days

s 27.7 days

6 44.8 days

the Dow Jones for Ibovespa with one step of time, that is, Dow Jones at time ¢ and Ibovespa at
t+ 1. So, F2(12) portrays for two steps of time, that is, Dow Jones at time ¢ and Ibovespa at ¢ + 2.

These matrices are shown in Figures 10 and 11.

from Dow Jones 249% -149% -049% 051% 1.51%
<-25% 2.51% <
/ to Ibovespa to-1.5% t0-0.5% t00.5% to1.5% 1t02.5%
<-2.5% 14 3 9 8 10 4 11
—2.49% to —1.5% 10 14 18 30 22 13 6
-1.49% to —0.5% 27 37 66 108 72 39 28
F'= _049%1005% | 56 12 266 398 256 138 56
0.51% to 1.5% 26 44 104 147 100 43 24
1.51% to 2.5% 5 11 15 28 13 10 7
2.51% < 5 4 6 17 13 4 6
Figure 10 — Transition frequency matrix for F' 1(12) .
from Dow Jones 249% -149% -049% 051% 1.51%
<-25% 2.51% <
/ to Ibovespa to-1.5% t0-0.5% t00.5% t01.5% 1t02.5%
<-2.5% 9 5 7 13 7 6 12
—2.49% to —1.5% 15 16 15 22 17 14 14
—1.49% to —0.5% 25 36 68 102 78 40 28
F{"™= _049%1005% | 51 116 268 422 259 122 43
0.51% to 1.5% 25 42 97 143 101 52 28
1.51% to 2.5% 10 7 18 21 14 13 6
2.51% < 8 3 11 12 10 4
Figure 11 — Transition frequency matrix for F2(12) .

Using this information, it was possible to calculate the transition matrices, where P1(12) repre-
sents the probability of the transition from the Dow Jones data to the Ibovespa data with one
step in time, that is, Dow Jones at time ¢ and Ibovespa at t + 1. So, P2(12) portrays for two
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steps in time, that is, Dow Jones at time ¢ and Ibovespa at r + 2. These matrices are shown in
Figures 12 and 13.

from Dow Jones 249% -149% -049% 051% 1.51%
<-2.5% 2.51% <

/ to Ibovespa to-1.5% t0-0.5% t00.5% t01.5% t02.5%
< 25% 0237 0051 0153  0.136 0.169 0068  0.186
249%t0-1.5% | 0088  0.24  0.159 0265 0.195 0115  0.053
“149%1t0-0.5% | 0.072 0098  0.175 0286  0.191 0.103  0.074
PP = _049%1005% | 0044 0087 0207 0310 0200 0.108  0.044
051%t01.5% | 0053 0090 0213 0301 0205 0088  0.049
151%t02.5% | 0056 0124  0.169 0315 0146 0.112  0.079
251% < 0091 0073 0109 0309 0236 0073  0.109

Figure 12 — Transition matrix for P1(12) .
from Dow Jones 249% -149% -049% 051% 1.51%
< -2.5% 2.51% <

/ to Ibovespa to-1.5% t0-0.5% t00.5% t01.5% 1t02.5%
< 25% 0.153 0085  0.119 0220 0.119 0.102  0.203
249%t0-1.5% | 0.133  0.142  0.033 0195 0.150 0.124  0.124
“149%1t0-0.5% | 0066  0.095  0.180 0271 0207 0.106  0.074
PP = 049%100.5% | 0040 0091 0209 0329 0202 0095 0034
051%1t01.5% | 0051 008  0.199 0293 0207 0.107  0.057
151%t02.5% | 0.112 0079 0202 0236 0.157 0.146  0.067
251% < 0.45 0055 0200 0218 0.182 0073  0.127

Figure 13 — Transition matrix for P2(12) .

Then, the probability of steady state was calculated, as presented in Equations 4 and 5. The

results for the probabilities with one and two steps in time are presented in Table 6.

Table 6 — Probability of steady-states.

Range of variation 7 for P1(12) 7 for P2(12)
<-2.5% 7.36% 8.03%
from —2.49% to —1.5% 9.32% 9.07%
from —1.49% to —0.5% 18.34% 18.62%
from —0.49% to 0.5% 28.75% 27.21%
from 0.51% to 1.5% 19.37% 18.62%
from 1.51% to 2.5% 9.89% 10.61%
2.51% < 6.98% 7.84%
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4 DISCUSSION OF RESULTS

For this analysis, the data from January 2, 2008 to March 21, 2018, it was observed that the
highest probability of variation of the two indexes is within the range of —0.49 to 0.5% and for
Ibovespa, this variation is likely to occur again in 3.4 days, while for Dow Jones, it will be in
1.9 days. This information can be important, since repeating patterns can help in choosing the
time to buy or sell stocks.

By the application it was studied the behavior of probabilities by analyzing the Dow Jones data
scenario for time ¢, while Ibovespa was for  + 1 and ¢ 4 2. It was analyzed that the variation
of these probabilities was small. It was also observed that there is a 27.21% chance that the
Ibovespa variation, with two steps in time, is in the range of —0.49 to 0.5%, when given the Dow
Jones also vary within these limits in time ¢.

In relation to the steady state, its behavior was similar for the two indexes, that is, a low proba-
bility for the first and last data intervals, and a high probability for the intervals close to 0% of
variation. This behavior was repeated for the expected recurrence time, but the number of days
to occur again the highest probability is, for Ibovespa, practically twice when compared to Dow
Jones. This indicates that the Brazilian stock exchange is more volatile than the American stock
market, a fact that can be verified with the tables of the historical variations of these two indexes,
since the one of the Ibovespa has a greater intensity in the oscillations of the values.

Information such as this can be advantageous for investors who negotiate on the stock exchange,
since the knowledge of the behavior of the markets allows to assist in the decision making regard-
ing the purchase and sale of shares. For practical applications, it is suggested that the database be
fed in the desired time step, and that the analysis be done from one period to the next, maximizing
the possibility of gain through the transition probabilities.

5 CONCLUSIONS

The applications of High-order Multivariate Markov Chains are still little explored in the litera-
ture. However, it can be a tool of great potential. This paper studied an application to analyze the
variation of the main indexes of the Brazilian and American stock exchange, which was efficient
in obtaining results.

Thus, this work aimed to instruct Markov Chains and their possible practical applications, pro-
viding information to investors and, consequently, enabling a better targeting of their efforts and
investments, as well as better risk management. It is known that other techniques may be asso-
ciated with valuation for investors, the technique presented here may be considered as one more
option.

From this application, it was possible and feasible to forecast the range of variation of the
Ibovespa index, using its data and the Dow Jones data, because the Brazilian economy is re-
lated to the American stock market, as mentioned in the literature.
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This work had the purpose of presenting the application of the High-order Multivariate Markov

Chains for two stock indexes. As a continuation hint more comparisons with other tools can be

made from this implementation.
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