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ABSTRACT. Fractional calculus is the branch of mathematics that studies the several possibilities of gen-
eralizing the derivative and integral of a function to noninteger order. Recent studies found in literature
have confirmed the importance of fractional calculus for minimization problems. However, the study of
fractional calculus in interior point methods for solving optimization problems is still new. In this study,
inspired in applications of fractional calculus in many fields, was developed the so-called fractional order
log barrier interior point algorithm by replacing some integer derivatives for the corresponding fractional
ones on the first order optimality conditions of Karush-Kuhn-Tucker to solve polynomial regression mod-
els in the ℓp−norm for 1 < p < 2. Finally, numerical experiments are performed to illustrate the proposed
algorithm.

Keywords: nonlinear programming, polynomial regression, ℓp−norm, interior point method, fractional
derivative.

1 INTRODUCTION

It is fundamentally important to make predictions based upon scientific data. The problem of fitting curves
to data points has many practical applications Bard (1974); Sevaux & Mineur (2007); Chatterjee & Hadi
(2012).

Given a set of m data points in R2: {(ai,bi)}m
i=1, where ai is an argument value and bi a corresponding

dependent value, with ai ̸= a j for all i ̸= j. The curve fitting procedure tries to build a linear or nonlinear
function y = f (x), defined for all possible choices of x, that approximately fits the data set. The fitted curves
to the data by f are most often chosen to be polynomials Süli & Mayers (2003).

Let y = f (x) be a polynomial function of degree n−1 of the form f (x) = x0+x1x+ . . .+xn−1xn−1, the can-
didate function to fit data. The procedure to fit the polynomial function to data, in the ℓp−norm, determines
the vector x = (x0,x1,x2, . . . ,xn−1)

⊺ ∈Rn, where the superscript T represents transpose, that minimizes the
ℓp−norm of the residual error as follows

min Φ(x) = ∥b−Ax∥p , (1)
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2 FRACTIONAL ORDER LOG BARRIER INTERIOR POINT ALGORITHM FOR POLYNOMIAL REGRESSION

where ∥·∥p denotes ℓp−norm, b = (b1,b2, . . . ,bm)
⊺ ∈ Rm and A ∈ Rm×n is a Vandermonde matrix, with

rank (A) = m, which can be written as

A =


1 a1 a1

2 · · · a1
n−1

1 a2 a2
2 · · · a2

n−1

...
...

...
. . .

...
1 am am

2 · · · am
n−1

 . (2)

This is a nonlinear (or linear) regression model if n > 2 (or n = 2). If m ≤ n, there is an (n− 1)th degree
polynomial satisfying f (ai) = bi (i = 1,2, . . . ,m). If m > n, the problem cannot be exactly solved and one
needs to find the vector x in (1).

In many industrial applications, missing data or anomalous values can arise as errors of measurement in-
struments during the data generation. In this cases, polynomial regression models in the ℓp−norm, with
p ̸= 2, are more robust Forsythe (1972). It is important to choose an appropriate value for p and several
criteria for the choice of p have been studied Rice & White (1964).

The calculus of integrals and derivatives of arbitrary order, named as fractional calculus, was conceptualized
in connection with the infinitesimal calculus since 1695 Oldham & Spanier (1974). Some of the applica-
tion areas include: viscoelasticity, signal processing, probabi- lity, statistics, electrochemistry, diffusion in
porous media, fluid flow, backpropagation training of neural networks, fuzzy control method, and so on
Kilbas et al. (2006); Dalir & Bashour (2010); Mohammadzadeh & Kayacan (2020); Wang et al. (2017a);
Chen et al. (2017a); Grigoletto & Oliveira (2020). Also, its importance in minimization problems has been
confirmed by recent works found in literature. For example, Chen et al. Chen et al. (2017b) presented the
fractional order gradient methods (FOGMs) by writing the Riemann-Liouville and Caputo fractional deriva-
tives as Taylor series, and Wang et al. Wang et al. (2017b) proposed the fractional gradient descent method
employing the Caputo derivative for the backpropagation training of neural networks. However, the study
of fractional calculus in the field of interior point methods for solving optimization problems is still new.

The goal of this study is to investigate the fractional order log barrier interior point algorithm, involving
the Caputo fractional derivative. It is based on replacing some integer derivatives for the corresponding
fractional ones on the first order optimality conditions for solving polynomial regression models in the
ℓp−norm for 1 < p < 2. Functions of the form g(x) = (x+κ)p, with κ > 0 and 1 < p < 2, arise when
solving problem 1), according to the approach which will be discussed throughout this study. The Caputo
fractional derivative, in addition to generalize the integer order derivative, is a useful tool to obtain the
derivative for functions as g(x), as p is on the interval 1 < p < 2, then it will be a non integer number.

This paper is organized as follows. Preliminary concepts of fractional calculus are presented in Section 2. In
Section 3, the fractional order log barrier interior point algorithm for solving polynomial regression models
in the ℓp−norm is discussed. Numerical experiments are performed to illustrate the proposed algorithm in
Section 4, and the Section 5 contains the conclusions.

2 PRELIMINARY CONCEPTS OF FRACTIONAL CALCULUS

Some basic concepts and definitions involving special functions and the Caputo fractional derivatives will
be presented in this section.
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ELIANA CONTHARTEZE GRIGOLETTO 3

Definition 1. The gamma function Γ(z) is originally defined by Erdélyi et al. (1981); Andrews et al.
(1999):

Γ(z) =
∫

∞

0
tz−1e−tdt (z > 0) . (3)

For gamma function, the reduction formula

Γ(z+1) = zΓ(z) , (4)

holds. In particular, when z = n ∈ N, then Γ(n+1) = n!.

Definition 2. The beta function B(z,w) is defined by Erdélyi et al. (1981); Andrews et al. (1999):

B(z,w) =
∫

∞

0
ξ

z−1 (1+ξ )−z−w dξ (z > 0; w > 0) . (5)

It is connected with the gamma function by the following relation

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

(z > 0; w > 0) . (6)

The fractional calculus basically defines several integral and derivative operators of arbitrary order. The
Caputo fractional derivative is one of the fractional derivative operators Kilbas et al. (2006).

Definition 3. The Caputo left-sided fractional derivative with respect to x, of order 0 < α < 1, of functions
f on a subset Ω = [a,b] of real axis R= (−∞,∞), where f ∈ C1 [a,b], denoted by

(
C
xDα

a+ f
)
(x), is given by

(
C
xDα

a+ f
)
(x) :=

1
Γ(1−α)

∫ x

a
(x− τ)−α f ′ (τ) dτ (x ∈ Ω) . (7)

Note that the Caputo fractional derivative is a nonlocal fractional derivative, because it depends on the
choice of the order α , function f (x), x, and also relies on the total effects on the interval [a,x]. Usually, this
is called memory effect.

In particular,
(

C
xD1

a+ f
)
(x) := f ′(x).

Property 1. Let g(x) = (x+κ)p be defined for −κ ≤ x < ∞, with κ ≥ 0, and 1 < p < 2, and let 0 < α < 1.
Then [

C
xDα

−κ+ (x+κ)p](x) = Γ(p+1)
Γ(p−α +1)

(x+κ)p−α . (8)

Proof. Applying the Caputo left-sided fractional derivative (7) to the function g(x) with a =−κ ,[
C
xDα

−κ+ (x+κ)p](x) = 1
Γ(1−α)

∫ x

−κ

(x− τ)−α p(τ +κ)p−1 dτ. (9)

Using the change of variables ξ =
τ +κ

x− τ
, then:

τ =
ξ x−κ

1+ξ
, dτ =

(x+κ)

(1+ξ )2 dξ , τ →−κ ⇒ ξ → 0 and τ → x ⇒ ξ → ∞.
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The integral (9) under this change of variables and by means of (4)–(6) takes the form[
C
xDα

−κ+ (x+κ)p](x) =
p

Γ(1−α)

∫ x

−κ

(x− τ)−α (τ +κ)p−1 dτ

=
p

Γ(1−α)

∫
∞

0

(
x+κ

1+ξ

)−α (
ξ (x+κ)

1+ξ

)p−1 (x+κ)

(1+ξ )2 dξ

=
p(x+κ)p−α

Γ(1−α)

∫
∞

0
ξ

p−1 (1+ξ )α−p−1 dξ

=
p(x+κ)p−α

Γ(1−α)
B(p,1−α)

=
p(x+κ)p−α

Γ(1−α)

Γ(p)Γ(1−α)

Γ(p−α +1)

=
Γ(p+1)

Γ(p−α +1)
(x+κ)p−α .

□

3 FRACTIONAL ORDER LOG BARRIER INTERIOR POINT ALGORITHM

Raising Φ(x) = ∥b−Ax∥p to the power p, the problem (1) can be rewritten in the alternative form as follows

min ∥b−Ax∥p
p , (10)

where x ∈ Rn. The problem (10) is similar to the following nonlinear optimization problem

min ∥r∥p
p

s.t. Ax+ r = b,
x ∈ Rn,

(11)

where r = (r1,r2, . . . ,rm)
⊺ ∈ Rm is the residual vector of regression and ℓp−norm is defined of the form

∥r∥p =

(
m

∑
i=1

|ri|p
) 1

p

(1 ≤ p < ∞) and ∥r∥
∞
= max |ri|.

The parameter values p most commonly used to the problem (11) are p = 1, p = 2 and p → ∞. Linear
programming procedures Charnes et al. (1955); Oliveira et al. (2000); Oliveira & Lyra (2004) can be used
for p = 1 and p → ∞ cases. For p = 2, the direct solution is given by x = (A⊺A)−1 A⊺b. For other values of
p, unconstrained minimization procedures can be used Dennis Jr. & Schnabel (1983); Li (1993); Cantante
et al. (2012).

Considering the unrestricted residual term ri as the difference between two nonne- gative variables ui and
vi: ri = ui − vi, with ui and vi being defined by

ui =

{
ri, if ri ≥ 0,
0, if ri < 0,

and vi =

{
0, if ri ≥ 0,
−ri, if ri < 0,

(12)

for all i = 1,2, . . . ,m, then |ri|= ui + vi and the problem (11) can be converted into a convex programming
problem Charnes et al. (1955); Cantante et al. (2012):

min
m

∑
i=1

(ui + vi)
p

s.t. Ax+u− v = b,
x ∈ Rn, u ∈ Rm

+ , v ∈ Rm
+ ,

(13)

Pesquisa Operacional, Vol. 42, 2022: e253422



ELIANA CONTHARTEZE GRIGOLETTO 5

where Rm
+ denote the set of m-dimensional nonnegative vectors.

Interior point methods are widely used to solve convex optimization problems because of their good per-
formance in practice Biegler (2010); Gondzio (2012); Lilian et al. (2016). By adding a logarithmic barrier
function to the objective function in (13), the barrier problem is given by

min
m

∑
i=1

[(ui + vi)
p −µ ln ui −µ ln vi]

s.t. Ax+u− v = b,
x ∈ Rn,

(14)

where µ > 0 is the barrier parameter. An optimal solution of (13) can be found by solving a series of barrier
problems of the form (14) while µ is decreasing and going to zero. The Lagrangian function associated
with the problem (14) is

L(x,λ ,u,v) =
m

∑
i=1

[(ui + vi)
p −µ ln ui −µ ln vi]+λ

⊺ (Ax+u− v−b) , (15)

where λ = (λ1,λ2, . . . ,λm)
⊺ ∈ Rm is a Lagrange multiplier vector.

Let φ and ϕ be the functions given by

φ (x,λ ,u,v) =
m

∑
i=1

[(ui + vi)
p] , (16)

and

ϕ (x,λ ,u,v) =−µ

m

∑
i=1

(ln ui + ln vi)+λ
⊺ (Ax+u− v−b) , (17)

then the Lagrangian function can be written as

L(x,λ ,u,v) = φ (x,λ ,u,v)+ϕ (x,λ ,u,v) . (18)

The fractional order log barrier interior point algorithm, involving the Caputo fractional derivative, is based
on replacing some integer derivatives for the corresponding fractional ones on the first order optimality
conditions (∇L = ∇φ +∇ϕ = 0), of the following form

∇
α

φ +∇ϕ =


∇x φ +∇x ϕ

∇λ φ +∇λ ϕ

∇α
u φ +∇u ϕ

∇α
v φ +∇v ϕ

=


A⊺λ

Ax+u− v−b
gα −µU−11m +λ

gα −µV−11m −λ

=


0
0
0
0

 , (19)

where ∇x, ∇λ , ∇u and ∇v represent the gradient with respect to x, λ , u and v, respectively, ∇α
u and ∇α

v
represent the fractional order gradient with respect to u and v, respectively, given by Caputo fractional
derivative (7).

Furthermore, 1m = (1,1, . . . ,1)⊺ ∈Rm, U = diag(u), V = diag(v), where diag(w) denote the diagonal ma-
trix from a vector w, and gα ∈Rm. The ith component of the vector gα is (gα )i =

[
C
ui

Dα
−vi+ (ui + vi)

p](ui) =[
C
vi

Dα
−ui+ (ui + vi)

p](vi). By Property 1, for i = 1,2, . . . ,m, (gα )i is given by

(gα )i =
Γ(p+1)

Γ(p+1−α)
(ui + vi)

p−α (1 < p < 2; 0 < α < 1) . (20)
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6 FRACTIONAL ORDER LOG BARRIER INTERIOR POINT ALGORITHM FOR POLYNOMIAL REGRESSION

The nonlinear system of equations (19) can be rewritten in the alternative form as follows
A⊺λ

Ax+u− v−b
U (gα +λ )

V (gα −λ )

=


0
0

µm

µm

 , (21)

where µm = (µ,µ, . . . ,µ)⊺ ∈ Rm.

For given µ > 0, if α = 1 in the system (21), then it recovers the first order optimality conditions, since
lim
α→1

(∇α
φ +∇ϕ) = ∇φ +∇ϕ = ∇L, and has a unique solution

(
x∗µ ,λ

∗
µ ,u

∗
µ ,v

∗
µ

)
. When the classical gradi-

ent is replaced by the fractional one (0<α < 1), then if the system (21) has a solution
(

xα
µ
∗,λ α

µ
∗,uα

µ
∗,vα

µ
∗
)

,

it can be called fractional solution and lim
α→1

(
xα

µ

∗,λ α
µ

∗,uα
µ

∗,vα
µ

∗
)
=
(

x∗µ ,λ
∗
µ ,u

∗
µ ,v

∗
µ

)
.

For given µ > 0 and 0 < α ≤ 1, suppose that the system (21) has a solution. Given an initial point(
x0,λ 0,u0,v0) such that u0 ∈ Rm

++, v0 ∈ Rm
++, where Rm

++ denote the set of m-dimensional positive vec-
tors, and Ax0 + u0 − v0 = b, by applying Newton method to the system (21), then the search direction
(∆x, ∆λ , ∆u, ∆v) can be found by solving the following Newton system

0 A⊺ 0 0
A 0m Im −Im

0 U Du UHα

0 −V V Hα Dv




∆x
∆λ

∆u
∆v

=


r1

r2

r3

r4

 , (22)

where
r1 = −A⊺λ ,

r2 = −Ax−u+ v+b,
r3 = −U (gα +λ )+µm,

r4 = −V (gα −λ )+µm,

(23)

Im is the identity matrix of order m, Du = Gα +λ Im+UHα , Dv = Gα −λ Im+V Hα , where Gα = diag(gα ),
Hα = diag(hα ), where hα ∈ Rm and for i = 1,2, . . . ,m, the ith component of the vector hα is given by

(hα )i =
Γ(p+1)
Γ(p−α)

(ui + vi)
p−α−1 . (24)

The (hα )i component is obtained by evaluating the derivative

(hα )i =
∂

∂ui
[(gα )i] =

(p−α)Γ(p+1)
Γ(p+1−α)

(ui + vi)
p−α−1 =

∂

∂vi
[(gα )i] , (25)

and taking (4) into account, Γ(p+1−α) can be rewritten in the form (p−α)Γ(p−α). So, (hα )i in
equation (24) can be obtained.

For given µ > 0, the new iterate barrier parameter µ̂ is updated in the following form Wright (1996):

µ̂ =
µ

β
, (26)

where β > 1 is added to control your decay and to improve the convergence process.

To keep off the next û and v̂ in the border region is required to shorten the step size αuv by introducing a
parameter σ , with 0 < σ < 1, which is often a value close to 1, as follows Biegler (2010); Vanderbei (2020):

αuv = min
{

σ

(
min

(∆u)i<0

ui

|(∆u)i|

)
,σ

(
min

(∆v)i<0

vi

|(∆v)i|

)
,σ

}
. (27)
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Given a point (x,λ ,u,v), the new iterate
(

x̂, λ̂ , û, v̂
)

is given by

x̂ = x+αuv∆x, λ̂ = λ +αuv∆λ , û = u+αuv∆u, v̂ = v+αuv∆v.

3.1 Search direction

The search direction (∆x, ∆λ , ∆u, ∆v) is unique and can be obtained by solving the Newton system (22):

A⊺
∆λ = r1, (28)

A∆x+∆u−∆v = r2, (29)

U∆λ +Du∆u+UHα ∆v = r3, (30)

−V ∆λ +V Hα ∆u+Dv∆v = r4. (31)

Isolating ∆u in (30),
∆u = D−1

u (r3 −U∆λ −UHα ∆v) . (32)

Substituting (32) into (31) and isolating ∆v,

∆v = D1
−1
[
r4 +V ∆λ +V Hα D−1

u (U∆λ − r3)
]
, (33)

where
D1 = Dv −UV (Hα )

2 D−1
u . (34)

Substituting (32) into (29),

A∆x+D−1
u (r3 −U∆λ )−

(
UHα D−1

u + Im

)
∆v = r2. (35)

Now, substituting (33) into (35),

∆λ = D2
−1
[
r2 −A∆x−D−1

u r3 +D1
−1
(

UHα D−1
u + Im

)(
r4 −V Hα D−1

u r3

)]
, (36)

where
D2 =−UD−1

u −V D1
−1
(

UHα D−1
u + Im

)2
. (37)

Then, ∆x can be obtained by replacing ∆λ given by (36) into (28). In this case, ∆x can be written as follows

∆x =
(

A⊺D2
−1A

)−1
r̄, (38)

where
r̄ =−r1 +A⊺D2

−1
[
r2 −D−1

u r3 +D1
−1
(

UHα D−1
u + Im

)(
r4 −V Hα D−1

u r3

)]
. (39)
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3.2 Initialization

The initial point
(
x0,λ 0,u0,v0) is chosen so that u0 ∈ Rm

++, v0 ∈ Rm
++ and Ax0 + u0 − v0 = b, and is given

by Coleman & Li (1992); Oliveira & Cantante (2004):

x0 = (A⊺A)−1 A⊺b,
r0 = b−Ax0,

λ 0 =
δ r0∥∥r0
∥∥

∞

, with δ = 0.975,

u0
i =

{
r0

i + ε1, if r0
i ≥ 0,

ε1, if r0
i < 0,

(for i = 1,2, . . . ,m) ,

v0
i =

{
ε1, if r0

i ≥ 0,
ε1 − r0

i , if r0
i < 0,

(for i = 1,2, . . . ,m) ,

(40)

where ε1 is a positive value close to zero.

The x0 choice is the direct solution to the problem (11) for p = 2, and has proved to be a good choice in nu-
merical experiments performed for polynomial regression models in the ℓp−norm for values of p reasonably
closer to 2 Cantante et al. (2012); Oliveira & Cantante (2004); Cantane (2004); Grigoletto (2011).

3.3 Termination criteria

The fractional order log barrier interior point algorithm terminates if at least one of the two following
convergence criteria is satisfied:

N =
∥(∇α φ +∇ϕ)∥

(1+∥x∥+∥u∥+∥v∥+∥λ∥)(2m)
≤ ε2, (41)

where m is the number of rows of the matrix A, and∣∣N̂ −N
∣∣≤ ε3, (42)

where ε2 and ε3 are positive values close to zero, and N̂ is the new iterate, given by

N̂ =

∥∥(∇α φ̂ +∇ϕ̂
)∥∥(

1+∥x̂∥+∥û∥+∥v̂∥+
∥∥∥λ̂

∥∥∥)(2m)
,

where ∇α φ̂ +∇ϕ̂ is obtained by considering the new iterates x := x̂, λ := λ̂ , u := û, v := v̂ and µ := µ̂ in
equation (19).

3.4 Algorithm

The fractional order log barrier interior point algorithm works as follows. For given p, α , µ , β , σ , ε1, ε2, ε3,
δ , and initial point (x,λ ,u,v) from (40), the Newton system (22) is solved, and its solution (∆x, ∆λ , ∆u, ∆v)
is obtained. The step size αuv is determined by (27) and the new iterate

(
x̂, λ̂ , û, v̂

)
is obtained. The new

barrier parameter µ̂ is updated by (26). This procedure repeat until the termination criterion is satisfied.

In particular, when α = 1, the fractional order log barrier interior point algorithm recover the classical log
barrier interior point algorithm.

Pesquisa Operacional, Vol. 42, 2022: e253422



ELIANA CONTHARTEZE GRIGOLETTO 9

Algorithm 1 Fractional order log barrier interior point algorithm for polynomial regression
models in the ℓp−norm.

Input: Parameters: σ = 0.9995, ε1 = 10−10, ε2 = 10−10, ε3 = 10−8, δ = 0.975, and β = 10.
Choose the parameters: α , p and n;
Data: A and b;
Initialization: µ := µ0 = 0.001. From (40) determine x := x0, λ := λ 0, u := u0 and v := v0,
and from (41) determine N.
while conditions (41) and (42) are both false do

Solve the system (22) for ∆x, ∆λ , ∆u, ∆v by means of equations described in Subsection
3.1;

Determine the step size αuv from (27);
x := x+αuv∆x;
λ := λ +αuv∆λ ;
u := u+αuv∆u;
v := v+αuv∆v;
µ :=

µ

β
.

end while
Output: x.

4 NUMERICAL EXPERIMENTS

In order to illustrate the proposed fractional order log barrier interior point algorithm to solve polynomial
regression models in the ℓp−norm, numerical experiments were performed to compare it with the classical
log barrier interior point algorithm. The implementation of the fractional order log barrier interior point
algorithm was performed under Windows 10 and Matlab (R2016a) running on a desktop with 2.20 GHz
Intel Core i5-5200 central processing unit (CPU) and 4G random-access memory (RAM).

A data set containing daily interest rates observed over 40 years was used for the analysis of polynomial
regressions. The data set contains 10958 observations: {(ai,bi)}10958

i=1 , where ai represents the day of the
week for a given date and bi the interest rate (in percentage) for the specific day ai. The ai values were
normalized to the [0,1] interval of the real line R to avoid numerical stability problems of the algorithm
Oliveira & Cantante (2004); Cantane (2004). Figure 1 shows the data set.

For the numerical results below, a comparison of the fractional order log barrier interior point algorithm
for different values of the order α considers: “It.”, the number of iterations; “Res. Err.”, the residual error,
given by ∥r∥p = ∥b−Ax∥p; and “Time (s)”, the CPU time in seconds.

The number of iterations and the value for the residual error for different values of α and p, obtained from
the fractional order log barrier interior point algorithm for linear regression (n = 2) in the ℓp−norm, are
shown in Tables 1–3. If the algorithm does not converge (divergence of Newton’s method for solving the
nonlinear system of equations (21):

∥∥b−Axk+1
∥∥

p ≥
∥∥b−Axk

∥∥
p), or if the algorithm fails (ill conditioned

matrix), then the results will be shown in Tables 1–3 as “-” or “∗”, respectively. When α = 1, the results of
the classical log barrier interior point algorithm are recovered.
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Figure 1 – Daily changes in the interest rate.

Table 1 – Numerical results for linear regression in the ℓp−norm (p = 1.1, 1.2, 1.3)
for different values of α .

p = 1.1 p = 1.2 p = 1.3
α It. Res. Err. It. Res. Err. It. Res. Err.

0.1 − − − − − −
0.2 5 10250 − − − −
0.3 19 10118 5 5293 − −
0.4 11 10297 20 5251 5 3044
0.5 ∗ ∗ 14 5313 20 3024
0.6 3 10357 17 5324 11 3055
0.7 3 10358 3 5339 6 3064
0.8 5 10358 3 5339 3 3065
0.9 3 10359 5 5339 3 3065
1 2 10360 3 5340 5 3066

The algorithm failed for α = 0.5 and p = 1.1, as can be seen in Table 1, but for example, for α = 0.55 and
p = 1.1, the algorithm converges.

According to the Tables 1–3, the fractional order log barrier interior point algorithm for linear regression
models in the ℓp−norm (p = 1.1, 1.2, . . . , 1.7) yield smaller residual error when α = p− 0.8. It is a rela-
tionship between p and α , which can also be written as p−α = 0.8. In this cases, the algorithm takes more
iterations until convergence.

For linear regression in the ℓ1.2−norm, a smaller residual error, given by 5242, was obtained with 16 itera-
tions when α = 0.39 (p−α = 0.81). For α = 0.36, the residual error is 5256 and the number of iterations
is 22. For α = 0.37, the residual error is 5252 and the number of iterations is 28. For α = 0.38, the residual
error is 5247 and the number of iterations is 14.

For linear regression in the ℓ1.8−norm, a smaller residual error, given by 509.967, was obtained with 26
iterations when α = 0.96 (p−α = 0.84). For α = 0.94, the residual error is 510.011 and the number of
iterations is 28. For α = 0.95, the residual error is 509.987 and the number of iterations is 16. For α = 0.97,
the residual error is 510.015 and the number of iterations is 17.
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Table 2 – Numerical results for linear regression in the ℓp−norm (p = 1.4, 1.5, 1.6)
for different values of α .

p = 1.4 p = 1.5 p = 1.6
α It. Res. Err. It. Res. Err. It. Res. Err.

0.1, 0.2, 0.3, 0.4 − − − − − −
0.5 5 1905 − − − −
0.6 18 1899 5 1274 − −
0.7 11 1910 18 1272 5 900.8
0.8 123 1909 9 1278 19 900.3
0.9 3 1915 3 1280 11 902
1 3 1915 3 1280 3 903.5

Table 3 – Numerical results for linear regression in the ℓp−norm (p = 1.7, 1.8, 1.9)
for different values of α .

p = 1.7 p = 1.8 p = 1.9
α It. Res. Err. It. Res. Err. It. Res. Err.

0.1, 0.2, . . . , 0.7 − − − − − −
0.8 5 665.5 − − − −
0.9 18 665.3 6 510.2 − −
1 11 666.2 19 510.1 26 403.4

For linear regression in the ℓ1.9−norm, the algorithm does not converge for α ≤ 0.92. For α = 0.93, the
residual error is 403.48 and the number of iterations is 4. For α = 0.95, the residual error is 403.44 and the
number of iterations is 5. For α = 0.97, the residual error is 403.42 and the number of iterations is 6. For
α = 0.99, the residual error is 403.41 and the number of iterations is 6. When α = 0.99, the algorithm takes
fewer iterations than when α = 1 (See Table 3), and the residual error is very close to the residual error
obtained when α = 1.

The number of iterations, the residual error and the CPU time for (n−1)th degree polynomial regressions
(n = 2, 5, 10, 15), in the ℓ1.3−norm, for different values of α , obtained from the fractional order log barrier
interior point algorithm, are given in the following tables.

The smallest residual errors for n = 2 and n = 5 were obtained with a greater number of iterations when
α = 0.5 (see Table 4), while for n = 10 and n = 15 (see Table 5), the residual errors were smallest for
α = 0.4.

The performance of the fractional order log barrier interior point algorithm appears to be computationally
consistent. For example, the values of the residual error at each iteration k for linear regression in the
ℓ1.3−norm are shown in Figure 2.

In the Figure 2, one can observe that the use of any one of the fractional order derivatives (α =

0,4, 0.5, . . . , 0.9) produces smaller residual errors than with the use of the integer order derivative (α = 1).
The use of the fractional derivatives does not interfere in the iterations running times, that compare similarly.
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Table 4 – Numerical results for polynomial regressions (n = 2, 5) in the ℓ1.3−norm.

n = 2 n = 5
α It. Time (s) Res. Err. It. Time (s) Res. Err.

0.1, 0.2, 0.3 − − − − − −
0.4 5 0.0690 3044.3 16 0.1839 2433.6
0.5 20 0.1561 3024.8 20 0.2306 2423.5
0.6 11 0.1033 3055 17 0.2090 2431.8
0.7 6 0.0727 3064.1 5 0.0800 2441.4
0.8 3 0.0379 3065.7 5 0.0849 2443.3
0.9 3 0.0492 3065.8 3 0.0679 2443.7
1 5 0.0725 3065.9 3 0.0718 2443.8

Table 5 – Numerical results for polynomial regressions (n = 10, 15) in the ℓ1.3−norm.

n = 10 n = 15
α It. Time (s) Res. Err. It. Time (s) Res. Err.

0.1, 0.2, 0.3 − − − − − −
0.4 2 0.0622 2213.4169 1 0.0555 1953.1475
0.5 1 0.0317 2220.5557 1 0.0583 1953.4556
0.6 1 0.0337 2221.8459 1 0.055 1953.9432
0.7 1 0.0320 2222.0088 1 0.0698 1954.1043
0.8 1 0.0312 2222.2097 1 0.0526 1953.8845
0.9 1 0.0318 2222.2880 1 0.0584 1953.8840
1 1 0.0314 2222.2941 1 0.0697 1953.8973

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration number k

3020

3030

3040

3050

3060

3070

∥

∥b−Axk
∥

∥

1.3

α = 0.4

α = 0.5

α = 0.6

α = 0.7

α = 0.8

α = 0.9

α = 1

Figure 2 – Linear regression in the ℓ1.3−norm.

The approximate solution for (n− 1)th degree polynomial regression in the ℓp−norm, obtained at the kth
iteration of the fractional order log barrier interior point algorithm and given by xk =

(
xk

0,x
k
1,x

k
2, . . . ,x

k
n−1
)
,

provides the coefficients of the (n− 1)th degree polynomial that approximately fits the data set, given by
f (x) = x0 + x1x+ . . .+ xn−1xn−1. In particular, the approximate solutions xk, obtained at the kth iteration
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of the fractional order log barrier interior point algorithm, for (n − 1)th degree polynomial regressions
(n = 2, 5, 10, 15) in the ℓ1.3−norm, with smaller residual errors are:

x20 =

[
x20

0
x20

1

]
=

[
4.5E +00
5.9E +00

]
(n = 2;α = 0.5) ,

i.e., at the 20th iteration of the algorithm with α = 0.5, the linear regression (n = 2) provides the polynomial
coefficients from the above vector x20. So, the linear regression is given by f (x) = 4.5+5.9x.

x20 =


x20

0
x20

1
x20

2
x20

3
x20

4

=


5.3E +00

−3.4E +01
1.9E +02

−2.8E +02
1.2E +02

 (n = 5;α = 0.5) ,

x2 =



x2
0

x2
1

x2
2

x2
3

x2
4

x2
5

x2
6

x2
7

x2
8

x2
9



=



1.8E +00
1.7E +02

−3.7E +03
3.5E +04

−1.6E +05
4.6E +05

−7.6E +05
7.2E +00

−3.7E +05
7.9E +04



(n = 10;α = 0.4) ,

x1 =



x1
0

x1
1

x1
2

x1
3

x1
4

x1
5

x1
6

x1
7

x1
8

x1
9

x1
10

x1
11

x1
12

x1
13

x1
14



=



3.6E +00
2.6E +00

−1.9E +02
1.3E +04

−2.1E +05
1.4E +06

−5.6E +06
1.1E +07

−1.3E +07
5.9E +06

−2.6E +06
1.2E +07

−1.9E +07
1.2E +07

−2.8E +06



(n = 15;α = 0.4) .

The polynomials from the solutions described are shown in Figure 3.
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Figure 3 – Polynomial regressions in the ℓ1.3−norm.

5 CONCLUSIONS

The fractional order log barrier interior point algorithm for polynomial regression models in the ℓp−norm
(1 < p < 2), obtained by replacing some integer derivatives for the corresponding fractional ones on the first
order optimality conditions, was investigated in this paper. This algorithm appears to be computationally
consistent but depending on the fractional order α , the algorithm does not converge or fails. The numerical
experiments showed that the use of the fractional derivatives can be beneficial for solving optimization
problems. In future, further studies on this subject could be undertaken.
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