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ABSTRACT. Maintenance policies must consider system reliability and the risk of accidents in systems
where equipment failures represent a risk. In this context, this work proposes an age replacement policy
with Bayesian imperfect repair and considers the “as low as reasonably practicable” (ALARP) principle.
The policy determines the age of replacement that minimizes the long-run cost per unit time when the failure
rate is ALARP. The model also supposes that failures are either minimally or perfectly repaired, depending
on the skill of the maintainer. Numerical applications are performed with and without the disproportion
factor in ALARP, both for infinite and one-replacement-cycle horizons. The results show that considering
imperfect repair leads to an increase in replacement costs and a decrease in the optimal replacement age
when considering the ALARP principle. The model applies to situations where there are conflicts of interest
between maintenance management and risk; that is, cases where the aim is to reduce the cost of replacing
equipment and minimize the risks. Maintenance policies must consider system reliability and the risk of
accidents in systems where equipment failures represent a risk. In this context, this work proposes an age
replacement policy with Bayesian imperfect repair and considers the “as low as reasonably practicable”
(ALARP) principle. The policy determines the age of replacement that minimizes the long-run cost per unit
time when the failure rate is ALARP. The model also supposes that failures are either minimally or perfectly
repaired, depending on the skill of the maintainer. Numerical applications are performed with and without
the disproportion factor in ALARP, both for infinite and one-replacement-cycle horizons. The results show
that considering imperfect repair leads to an increase in replacement costs and a decrease in the optimal
replacement age when considering the ALARP principle. The model applies to situations where there are
conflicts of interest between maintenance management and risk; that is, cases where the aim is to reduce
the cost of replacing equipment and minimize the risks.
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2 IMPERFECT REPAIR WITH ALARP

1 INTRODUCTION

Failures of engineered objects can negatively impact cost and availability as well as impact upon
safety and the environment (Abbas & Shafiee, 2020). Therefore, maintenance planning needs
to be associated with other activities of operators, such as quality control, production planning,
and risk management. Also, there is the possibility of inducing failures and accidents during
equipment maintenance, leading to explosions, fires, and toxic releases (Vatn & Aven, 2010). In
this way, maintenance and risk should be managed simultaneously.

In the search for this integration, some works have introduced security restrictions to maintenance
optimization and argued the need to analyze beyond the cost-benefit relationship (Aven & Castro,
2008, 2009; Flage et al., 2012). Other studies implemented the acceptance criteria of the As
Low As Reasonably Practicable (ALARP) principle in maintenance optimization to reduce both
maintenance costs and the risk of accident (Flage, 2013, 2018).

Nonetheless, most works in the literature assume that maintenance occurs without errors and that
items are perfectly restored. Depending on the system studied, replacement policies with perfect
repair still present themselves as economical and effective models. However, consideration of
imperfect repair brings models closer to reality (Toledo et al., 2015), as it allows the quality of
the maintenance action to be affected by factors such as the skills of the maintenance team and
the methods, technology, and tools used (Khatab & Aghezzaf, 2016; Sheu et al., 2019). Thus,
maintenance actions’ quality may harm an engineered object’s elements, such as product quality,
costs, production time, availability, reliability, and safety (Pham & Wang, 1996; Rivera-GÓmez
et al., 2021).

Concerning age-replacement policies based on imperfect repair, it is possible to describe some
studies in the literature. Brown and Proschan (1983) suggest an imperfect repair model in which
the item is perfectly repaired with probability p or minimally repaired with probability q =

1− p. In the model of Fontenot and Proschan (1984), the item is perfectly repaired (replaced)
at age T , and in intermittent failures (corrective maintenance) imperfect maintenance is taken
into consideration. The model presented by Lim, Lu and Park (1998) treats the probability of the
item being perfectly repaired as a random variable (Bayesian imperfect repair). Lim, Qu and Zuo
(2016) considered that the quality of the maintenance action is a random variable governed by a
probability distribution, where the probabilities of repairing the system perfectly are different for
each employee since they have different repair skills.

The lack of knowledge, incomplete information, and the misunderstanding of data can be real
problems for maintenance actions and require adequate attention. In these contexts, the use of
Bayesian probabilities becomes opportune as it allows the consideration of knowledge obtained
before the occurrence of events and the updating of this knowledge over time, since it allows
the insertion of expert knowledge, as well as obtaining reliable results, even though little data is
available (Tuan, Yann & Mitra, 2015).

Given the complexity of production systems, the uncertainties related to the quality of mainte-
nance action, the age at which equipment will fail, and the consequences of failures, maintenance
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managers face the challenge of defining maintenance strategies that jointly consider the costs and
risks involved in decisions.

In situations involving risk, ALARP can be used to limit risk following imposed regulation and
targeted security practices, considering costs (Jones-Lee & Aven, 2011). The principle states
that risks must be reduced, except where there is a gross disproportion between the necessary
resources and the benefits of safety measures (Aven & Abrahamsen, 2007). In this way, main-
tenance activities contribute to mitigating failures and controlling accident risks, which can be
prioritized and treated with the support of ALARP.

In this paper, we developed a model based on the age replacement policy with Bayesian im-
perfect repair, including the ALARP analysis. Given that imperfect repairs can happen and that
equipment maintenance is integrated with risk management, we analyze how the uncertainty in
the quality of maintenance action impacts on a risk perspective. The proposed model considers
that the quality of the maintenance action varies due to the different skills of the maintainers
and allows the definition of the optimal replacement age that minimizes maintenance costs while
preventing accident risks from exceeding the ALARP region.

The next section presents the proposed model. Numerical studies are performed in Section 3.
Section 4 discusses the managerial implications. And Section 5 presents the conclusions.

2 PROPOSED MODEL

This section presents the age replacement model based on Bayesian imperfect repair with
ALARP implementation and risk acceptance criteria.

2.1 Model assumptions

The model assumes:

• Time to failure of equipment is a random variable with a known probability density
function f (t) with an increasing failure rate;

• The component only supports two states, failed or operational, and system failure is
identified immediately;

• The times to perform a replacement and repair are negligible;

• There are k repair teams, each with different repair skills, and the quality of maintenance
is a random variable described by a probability distribution;

• The model considers a homogeneous risk;

• The system is renewed at age T or the first perfectly repaired failure, whichever occurs
first.
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4 IMPERFECT REPAIR WITH ALARP

2.2 Age replacement policy

The organization is assumed to have k repair teams, with different repair skills. When team
i perform the repair, it is a minimal repair with probability 1− pi and perfect repair (system
renewal) with probability pi, where i = 1, . . .,k. Figure 1 illustrates the proposed model with its
decisions. As input, there are fixed maintenance costs and parameters related to risk management.
The costs incurred for replacement, perfect repair, and imperfect repair are calculated according
to the degree of repair, the possible occurrence of the accident, and the approach used for the
Value of Preventing a Fatality (VPF).
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Figure 1 – Proposed model.

The cost of preventive replacement, Cr = C′
r, refers to the cost of replacing the system at the

programmed age, T.

The expected safety cost, Cs, is considered when the failure results in an accident A. By assuming
that the VPF is fixed, Cs is composed by multiplying the probability of occurrence of the
accident due to failure (pA), the expected number of deaths (PLLA) and the Value of Preventing
a Fatality (v).

When considering that the VPF is increasing in the ALARP region, the gross disproportion factor,
d (R(T )), is inserted into the value of Cs. This factor is expressed as follows.

d(R(T )) =


1, y≤r0

g(R(T )), r0 < y < r1

∞, y≥r1

(1)
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Since R(T ) refers to the risk index and its value can be an approximation of the upper limit
of the PLL when assuming that a person is exposed to the risk related to the maintenance of the
system in question, expressed by Equation (2).

R(T ) =
[
F(T )

(
1+
⌊ u

T

⌋)
−F

(
T −

(
u−
⌊ u

T

⌋
T
))]

pAPLLA (2)

The perfect repair cost, Cp, is the value of replacing the system perfectly when the system fails
before T . If there is no accident due to failure (with probability 1− pA), Cp will be equal to
the usual perfect repair cost (C′

p). In the situation where the accident A occurs (with probability
pA), Cp will be composed of C′

p and the expected cost of security (Cs).

Equations (3) and (4) present the composition of Cp for the fixed and increasing VPF,
respectively.

Cp =C′
p + pAPLLAv (3)

Cp =C′
p + pAPLLAd(R(T ))v (4)

The cost of imperfect repair, Cm, is the cost of repairing the system in a less than perfect way.
Similarly to the perfect repair cost, if the failure causes an accident, Cm, will be composed of the
non-perfect fixed repair cost (C′

m) and Cs. The imperfect repair cost is expressed by Equations
(5) and (6) for fixed and increasing VPF, respectively.

Cm =C′
m + pAPLLAv (5)

Cm =C′
m + pAPLLAd(R(T ))v (6)

The number of failures at (0, t) is the sum of the number of perfect repairs at (0, t) and the number
of non-perfect repairs at (0, t). That is, N (t) = L(t)+M(t). So, Y1 = {t≥0|L(t) = 1} is the
waiting time when the first perfect repair occurs and Z1 = {t≥0|M (t) = 1} is the waiting time
where the first non-perfect repair occurs. In this way, M (Y1) refers to the number of non-perfect
repairs in (0,Y1] and, according to Sheu et al. (1999), Y1 is independent of {M (t) , t≥0}.

According to Lim, Lu and Park (1998), H(t)=P(Y1≥t)=∑
k
i=1 F pi(t)πi and G(t)=P(Z1≥t)=

∑
k
i=1 F(1−pi)(t)πi. Furthermore, {L(t) , t≥0} and {M (t) , t≥0} are Non-Homogeneous Poisson

Process (NHPP) with the respective intensity functions (Lim, Qu & Zuo, 2016):

rH(t) = r(t)
A(t,1)
A(t,0)

(7)

rG(t) = r(t)
Z(t,1)
Z(t,0)

(8)

Since A(t,n) = ∑
k
i=1 pn

i F pi(t)πi and Z (t,n) = ∑
k
i=1(1− pi)

nF(1−pi)(t)πi. Also, rH (t) and rG (t)
are the failure rate functions of H and G, respectively. Next, the infinite-horizon and one-
replacement-cycle cases will be presented based on Lim, Qu and Zuo (2016) and extended to
the situation in which the ALARP risk acceptance criteria are considered.

In sequence, the expected cost per unit of time is formulated for the infinite-horizon planning and
the one-replacement-cycle case.
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2.2.1 Expected cost per unit of time – Infinite-horizon case

By proposing that Y1,Y2,... are independent and identically distributed random variables (i.i.d.)
of H(y), the duration time between two consecutive system renewals is indicated by Y ∗

i =

min(Yi,T ) for i = 1,2, . . . as described in Equation (9).

Y ∗
i = YiI(0,T )(Yi)+T I(T,∞)(Yi) (9)

The first part of Equation (9) corresponds to the waiting time for the ith perfect repair and the
probability of the system failing before T . The second part is composed of the age T and the
probability of the system surviving until T . Thus, the expected value of Y ∗

i is (Lim, Qu & Zuo,
2016):

E(Y ∗
1 ) =

∫ T

0
tdH(t)+T H(T ) =

∫ T

0
H(t)dt (10)

In turn, the total cost incurred during the renewal interval Y ∗
i for i = 1,2, . . .,Y ∗

i is obtained by
Equation (11).

C∗
i = [Cp +CmM(Yi)]I(0,T )(Yi)+ [Cr +CmM(T )]I(T,∞)(Yi) (11)

The first part of Equation (11) is composed of the probability of the system failing before T and
being repaired perfectly, the cost of the perfect repair (Cp) and the costs of the non-perfect repairs
that occurred until performed the first perfect repair, that is, the amount spent on a non-perfect
repair (Cm) multiplied by the number of non-perfect repairs performed in the interval.

The second part contains the probability of the system surviving until (Cr), in addition, the costs
of non-perfect repairs that occurred until age T are considered. In this way, the expected cost to
operate the system when the VPF is fixed is equal to Equation (12).

E(C∗
1) = (C′

m + pAPLLAv)
∫ T

0
H(t)rG(t)dt+(C′

p + pAPLLAv)H(T )+C′
rH(T ) (12)

Similarly, when the VPF is increasing, the expected cost of operating the system is defined by
Equation (13).

E(C∗
1) =

[
C′

m + pAPLLAd(R(T ))v
]∫ T

0
H(t)rG(t)dt+

[
C′

p + pAPLLAd(R(T ))v
]

H(T )+Cr
′H(T ) (13)

Note that, {(Y ∗
1 ,C

∗
1)} comprise a renewal process, in which renewal occurs when there is a re-

placement or perfect repair. Let K(t) be the expected cost to operate the system during the time
interval [0, t], according to Renewal Reward Theorem (Ross, 2010):

B(T ) = lim
t→∞

K(t)
t

=
E(C∗

1)

E(Y ∗
1 )

(14)

Given the above, when considering the fixed VPF, the total cost incurred during the renewal
interval is obtained by dividing the cost incurred in the renewal interval by the duration of the
interval, as shown in Equation (15).

B(T ) =
(C′

m + pAPLLAv)
∫ T

0 H(t)rG(t)dt+(C′
p + pAPLLAv)H(T )+C′

rH(T )∫ T
0 H(t)dt

(15)
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JOYCE ARAÚJO, RODRIGO LOPES and PHILIP SCARF 7

When the total cost incurred during the renewal interval considers the VPF is increasing,
Equation (16) is obtained.

B(T ) =
[C′

m + pAPLLAd(R(T ))v]
∫ T

0 H(t)rG(t)dt+
[
C′

p + pAPLLAd(R(T ))v
]

H(T )+C′
rH(T )∫ T

0 H(t)dt
(16)

Thus, the objective is to find the replacement age that minimizes the expected long-term cost,
B(T ), and that complies with the risk acceptance criteria, i.e., R(T ) is less than r1.

2.2.2 Expected cost per unit of time – One-replacement-cycle case

When working with only one-replacement-cycle, will analyze the expected cost per unit of time
of that cycle. A cycle can be delimited by the occurrence of failures before or after age T , so the
total cost per unit of time between two successive replacements when the planned replacement
is performed at age T, W (T ), is equal to:

W (T ) =
(

Cp +CmM(Y1)

Y1

)
I(0,T )(Yi)+

(
Cr +CmM(T )

T

)
I(T,∞)(Yi) (17)

Using the independence of Y1 and {M (t) , t≥0}, the expected value of W (T ) is (Lim, Qu &
Zuo, 2016):

E[W (T )] = E
[

I(0,T )(Y1)

(
Cp +CmM(Y1)

Y1

)]
+E

[
I(T,∞)(Yi)

(
Cr +CmM(T )

T

)]
(18)

E[W (T )] =Cp

∫ T

0

1
t

dH(t)+
CrH(T )

T
+

Cm
∫ T

0 rG(t)dt
T

−Cm

∫ T

0

[
H(t)

t
rG(t)−

1
t

∫ t

0
rG(z)dz

]
dt (19)

Equation (20) shows the expected value of W (T ) when the VPF is fixed.

E[W (T )] = (C′
p + pAPLLAd(R(T ))v)

∫ T

0

1
t

dH(t)+
CrH(T )

T
+

(C′
m + pAPLLAd(R(T ))v)

∫ T
0 rG(t)dt

T

− (C′
m + pAPLLAd(R(T ))v)

∫ T

0

[
H(t)

t
rG(t)−

1
t

∫ t

0
rG(z)dz

]
dt (20)

For the case of increasing VPF, the expected value of W (T ) is expressed by Equation (21).

E[W (T )] = (C′
p + pAPLLAv)

∫ T

0

1
t

dH(t)+
CrH(T )

T
+

(C′
m + pAPLLAv)

∫ T
0 rG(t)dt

T

− (C′
m + pAPLLAv)

∫ T

0

[
H(t)

t
rG(t)−

1
t

∫ t

0
rG(z)dz

]
dt (21)

The objective is to find the replacement age that minimizes the expected long-run cost,
E[W (T )], and that complies with the risk acceptance criteria, i.e., R(T ) is less than r1.
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3 NUMERICAL STUDIES

This section uses numerical examples to illustrate the proposed model. The numerical application
comprises the cases with one and two points prior. In addition, the equations for the modeling
of four points prior are presented. For the modeling of the cases, the Python (Python Software
Foundation, 2020) programming language was used.

Let F be a Weibull distribution with scale parameter θ = 1, shape parameter β > 0 and let
t≥0. According to the proposal by Lim, Qu e Zuo (2016), we have the following equations.

r (t) = β tβ−1 (22)

H (T ) =
k

∑
i=1

e−pitβ ·πi (23)

h(t) =
k

∑
i=1

β pitβ−1e−pitβ ·πi (24)

rH (t) = β tβ−1 ∑
k
i=1 pie−pitβ ·πi

∑
k
i=1 e−pitβ ·πi

(25)

rG (t) = β tβ−1 ∑
k
i=1(1− pi)e−(1−pi)tβ ·πi

∑
k
i=1 e−(1−pi)tβ ·πi

(26)

3.1 One-point prior

For illustrative purposes, both for the infinite-horizon case and the one-replacement-cycle case,
the values are shown in Table 1.

Table 1 – Input values for model illustration.

C′
r C′

p C′
m v pA PLLA β θ p1 r0 r1 u

1 2 0.25 100 0.1 0.01 2 1 0.9 10−5 10−3 1

The acceptance criteria were defined according to the values suggested by the Society for Risk
Analysis (SRA). Weibull’s parameters represent a system with a wear pattern (β ) equal to 2 and
a characteristic life (θ ) equal to 1. The proportions outlined for the values of maintenance costs
and risk parameters aim to portray the reality of productive systems where is the probability of
accident occurrence due to failure.

3.1.1 Infinite-horizon case

In the context of one-point prior, it is assumed that P = p1 with probability 1, for the infinite-
horizon, Equations (15) and (16) were applied to obtain the expected long-term cost per unit of
time. For the case of fixed VPF, the values of Cp and Cm were defined by Equations (3) and
(5), whereas Equations (4) and (6) were used to express the case of increasing VPF.

Pesquisa Operacional, Vol. 42(nspe1), 2022: e263588
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By applying the values from Table 2 and modifying the values of the wear pattern (β ), the curves
shown in Figure 2 were obtained. The curves represent the expected long-term cost for the fixed
VPF (blue line) and the VPF increasing (red line), as well as the asymptotic PLL (orange line)
and the upper limit of the PLL (green line). Note that the cost curves appear similar to each other,
whereas the risk curves showed greater sensitivity to changing parameters.

Figure 2b shows the curves for β = 2. When considering the fixed VPF, the optimal replacement
age is T ∗

f = 1.05, with the lowest long-term. Whereas, when using crescent VPF, the ideal
replacement age is T ∗

c = 0.95 and the lowest long-term cost is 2.400.

It can be seen that the case based on the crescent VPF has a lower ideal replacement age, whereas
the long-term replacement cost is higher. This situation occurs because the disproportion fac-
tor increases over time, causing the risk index and cost to increase. Therefore, replacing the
equipment at a younger age becomes more conservative.

(b) ß = 2

(d) ß = 3

(a) ß = 1.5

(c) ß = 2.5

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Figure 2 – Long-term expected cost and risk index for (a) β=1.5, (b) β=2, (c) β=2.5 and (d) β=3.

For the values used, it is noted that throughout the analyzed interval, the upper limit of the PLL
is included in the acceptance levels (10−5 and 10−3), whereas when considering the asymptotic
PLL, the acceptance criteria restrict the set of optimal replacement times to the interval [0,1.6].
Thus, both in T ∗

c = 0.95 and in T ∗
f = 1.05 the risk values are within the acceptable level and

are allowed.
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Figure 3a shows the optimal long-term cost for different p values when analyzing the fixed VPF
when β = 2, β = 2.5, and β = 3. It appears that, in all three cases, the optimal long-term cost
increases when p increases, that is, when the repair tends to be perfect. The greater likelihood of
a perfect repair entails more expensive because the cost of such a repair is more expensive than
the cost of replacement. In this way, the optimal replacement age decreases as p increases, since
it is more economical to replace before failure.

(b) Optimal cost for increasing VPF

(d) Percentage error for increasing VPF

(a) Optimal cost for fixed VPF

(c) Percentage error for fixed VPF

Figure 3 – Long-run optimal cost for different p values (3a and 3b) and percentage error
of optimal cost in infinite-horizon (3c and 3d).

Furthermore, it is noted that the long-run cost optimal decreases when the wear pattern (β ), of the
system increases. Since the non-perfect repair cost is less than the perfect repair cost, it becomes
more economical to perform the non-perfect repair as β grows, this causes the long-run optimal
cost to decrease.

Figure 3b brings information similar to that presented in Figure 3a, this time for the situation
where the VPF is increasing. It is possible to observe that the long-run optimal cost also increases
when p increases and decreases when β increases.

Figures 3c and 3d show the relative differences between the optimal long-term costs as p varies,
that is, the differences between the values found for the optimal cost considering the imperfect
repair (with different probabilities) and the values of the optimal cost when having a perfect re-

Pesquisa Operacional, Vol. 42(nspe1), 2022: e263588
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pair. Note that the closer the probability of perfect repair approaches 1, the smaller the percentage
error in cost.

For example, assuming p = 0.80 and β = 2, the relative error is 7.628 and 6.901 when
the VPF is fixed and increasing, respectively. On the other hand, when p = 0.90 and β = 2,
the relative error is 3.738 and 3.178 when the VPF is fixed and increasing, respectively. The
percentage error is also smaller considering the increasing VPF for the other values of p and β .

Figure 4 presents the curves of the asymptotic PLL and upper bound of the PLL for different
values of p and β = 2, indicating that both the asymptotic PLL and the upper limit of the PLL
increase when p increases. Note that values above 10−3 do not fall within the ALARP region.

In the case of the upper limit of the PLL, the results are in the ALARP region for all p values
used. The asymptotic PLL surpassed the ALARP region at ages Tc = 1.85,Tc = 1.6,Tc = 1.45
and Tc = 1.3 for p equal to 0.85,0.9,0.95 and 1, respectively. Thus, as p increased, the
asymptotic PLL increased and the optimal age of replacement decreased.

(b) Upper bound  for PLL(a) Asymptotic PLL

Figure 4 – (a) Asymptotic PLL and (b) upper bound of the PLL for different values of p.

A numerical experiment was carried out to investigate the effects of varying the parameters of
the model. As can be seen in Table 2, each parameter was changed by −50,−25,+25 and +50,
while the others were kept fixed.

For the three values of p studied, when the C′
m increases, the optimal replacement age (T ∗) does

not change and the B(T ∗) increases.

When the replacement cost (C′
r) increases, T ∗ and B(T ∗) increase.

When the perfect repair cost (C′
p increases, T ∗ decreases and B(T ∗) increases. The better

the repair grade, the higher the cost, and as it is cheaper to replace before failure, the optimal
replacement age is reduced.

When the expected number of deaths (PLLA) increases, T ∗
c stays or increases, whereas B(T ∗)

increases. The same behavior is observed for the probability of accident due to failure (pA) and
the Value of Preventing a Fatality (v) when changed separately. This behavior is due to increased
risk, so the cost increases and it becomes safer to replace the system at a younger age.
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When the scale parameter (θ ) increases, T ∗ and B(T ∗) decrease for both the fixed and the
variable VPF cases.

Finally, when the shape parameter (β ) increases, T ∗ and B(T ∗) decrease. When β decreases,
T ∗ e B(T ∗) increase. As the wear pattern increases, the system tends to be repaired more often
and the repair performed tends to be non-perfect because its cost is lower than the perfect repair,
so there is a decrease in the expected long-term cost.

Furthermore, it was found that in some moments when p increased, the asymptotic PLL in-
creased. It is expected that with increasing p reliability will increase and risk will decrease.
However, it is understood that when working with probabilistic models such variations may
occur, since the system will not always be perfectly or minimally repaired.

3.1.2 One-replacement-cycle case

By applying the values from Table 1, the curves shown in Figure 5 were obtained. For β = 2,
when considering the fixed VPF, the optimal replacement age is T ∗

f = 0.7 and the optimal cost
is 3.244. When using crescent VPF, the optimal replacement age is T ∗

c = 0.6 and the optimal
cost is 3.482.

During the entire analyzed interval, the upper limit of the PLL is included in the acceptance
levels (10−5 and 10−3), whereas when considering the asymptotic PLL, the acceptance criteria
constrain the set of optimal replacement times to the interval [0,1.6]. Thus, both in T ∗

f = 0.7
and in T ∗

c = 0.6 the risk values are within the acceptable level and are allowed.

The increase in the risk index results from the increase in β . Similar to the infinite-horizon case,
the optimal cost was higher and the optimal age decreased when the VPF was considered to
increase. This is due to the increase in the risk index over time.

When working with the one-replacement-cycle case, both in the case of fixed VPF and increasing
VPF the optimal cost increases and the replacement age decreases when compared to the infinite
time horizon. With the increase in risk, it becomes more appropriate to replace the equipment at
a younger age to preserve lives, so there is an increase in cost.

Figures 6a and 6b show the optimal cost for different values of p when β = 2, β = 2.5 and
β = 3. By modifying the values of p, it is noted that for both the fixed VPF and the increasing
VPF the optimal cost increases as p increases because when the repair tends to be perfect it is
more economical to replace the system before failure due to the high cost of the system.

When the wear pattern (β ) increases, the optimal cost decreases. This is due to the greater prob-
ability of failure and the tendency to perform more non-perfect repairs because they are cheaper.
This behavior is similar to the infinite planning horizon.

In Figures 6c and 6d, the percentage error of optimal cost decreases as the repair tends to be
perfect. When considering p = 0.80 and β = 2, the relative error is 3.084 and 3.311 when
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(b) ß = 2

(d) ß = 3

(a) ß = 1.5

(c) ß = 2.5

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Figure 5 – One-replacement-cycle cost for (a) β=1.5, (b) β=2, (c) β=2.5 and (d) β=3.

(b) Optimal cost for increasing VPF

(d) Percentage error for increasing VPF

(a) Optimal cost for fixed VPF

(c) Percentage error for fixed VPF

Figure 6 – Optimal one-replacement-cycle cost for different values of p (6a and 6b) and
percentage error of the optimal cost for one-replacement-cycle (6c and 6d).
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the VPF is fixed and increasing, respectively. Thus, the relative error is smaller when compared
to the infinite planning horizon.

In turn, when p = 0.90 and β = 2, the relative error is 3.244 and 3.482 when the VPF is
fixed and increasing, respectively. For the other values of p and β the percentage error is also
smaller considering the increasing VPF.

The asymptotic PLL and the upper limit of the PLL present the same behavior as in Figure 4 since
the same F (T ) cumulative distribution function is used . Sensitivity analysis was also performed
for the one-replacement-cycle case. Despite the values themselves being different, it was noticed
that the results behaved similarly to those presented in Table 2, and in the one-replacement-cycle
case, the values of T ∗

c were lower, whereas the values of B(T ∗
c ) were higher.

3.1.3 Synthesis of results for one-point prior

Table 3 presents the summary of the main results obtained for one-point prior. It is possible to
notice once again that the optimal age values are higher when the time horizon is infinite and
the costs are lower. In the case of both the infinite-horizon and the one-replacement-cycle, the
insertion of the ALARP acceptance criteria decreased the value of the optimal age and increased
the costs.

Table 3 – Synthesis of results for one-point prior.

p = 0.8 p = 0.9 p = 1
T ∗ B(T ∗) T ∗ B(T ∗) T ∗ B(T ∗)

Infinite-Horizon
Without ALARP 1.20 2.001 1.15 2.093 1.10 2.182

Fixed VPF 1.10 2.097 1.05 2.185 1.05 2.270
Increasing VPF 1.05 2.308 0.95 2.400 0.95 2.479

One-replacement-cycle
Without ALARP 0.80 2.966 0.75 3.126 0.70 3.278

Fixed VPF 0.75 3.084 0.70 3.244 0.65 3.398
Increasing VPF 0.70 3.244 0.60 3.482 0.55 3.643

Figure 7 shows the cost curves when the ALARP risk principles are not introduced in the model,
that is, the model is limited to the case proposed by Lim, Qu and Zuo (2016). The curves are
similar to the cases in which ALARP was introduced. However, when the risk is not adopted, for
the infinite-horizon case, we have B(T ∗) = 2.093 and T ∗ = 1.15. In turn, for the finite-horizon,
B(T ∗) = 3.126 and T ∗ = 0.75.

Such behavior demonstrates considering risk in the model brings a more conservative result
about the replacement age and the costs become higher. In this way, replacements will take place
at shorter and more frequent intervals, resulting in the need for greater attention to maintenance
personnel.

Pesquisa Operacional, Vol. 42(nspe1), 2022: e263588
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(b)(a)

Expected cost (Infinite-horizon) Expected cost (Finite-horizon)

Figure 7 – (a) Expected cost and (b) one-replacement-cycle without ALARP.

The different perspectives presented are useful for maintenance managers to adjust maintenance
schedules, the choice of the case to be adopted will depend on the planning horizon of interest
and the degree of risk acceptance.

3.2 Two points prior

Use of more than one-point prior can be applied to the situation that the organization has k = 2
repair teams, its members have different repair skills and are randomly requested to repair a
failed system. Thus, the probability of a perfect repair varies randomly due to the skills of the
collaborators.

P is considered a random variable with the following distribution when admitting two points
prior.

P =

{
p1with probability π1

p2with probability π2
(27)

So that π1 +π2 = 1,0≤p1 < p2≤1. Thus, we have the following equations for the context of
two points prior.

H(t) = π1e−p1( t
θ )

β

+π2e−p2( t
θ )

β

(28)

h(t) =
β

θ
tβ−1

(
p1π1e−p1( t

θ )
β

+ p2π2e−p2( t
θ )

β
)

(29)

rH(t) =
β

θ
tβ−1

 p1π1e−p1( t
θ )

β

+ p2π2e−p2( t
θ )

β

π1e−p1( t
θ )

β

+π2e−p2( t
θ )

β

 (30)

rG(t) =
β

θ
tβ−1

 (1− p1)π1e−(1−p1)( t
θ )

β

+(1− p2)π2e−(1−p2)( t
θ )

β

π1e−(1−p1)( t
θ )

β

+π2e−(1−p2)( t
θ )

β

 (31)
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R(T ) =

{[
1−
(

π1e−p1( T
θ )

β

+π2e−p2( T
θ )

β
)](

1+
⌊ u

T

⌋)
−1

−

π1e
−p1

(
T−(u−⌊ u

T ⌋T)
θ

)β

+π2e
−p2

(
T−(u−⌊ u

T ⌋T)
θ

)β}pAPLLA (32)

To illustrate the application of the model, the initial values from Table 1 will continue to be used.
However, p1 will be equal to 0.8.

3.2.1 Case of the infinite-horizon

Figure 8 shows the expected long-term cost for the fixed VPF and the increasing VPF for the
case where p1 = 0.8, p2 = 0.9, π1 = 0.5, and π2 = 0.5. When the VPF is fixed, the ideal
replacement age is T ∗

f = 1,1, with the lowest long-term cost being 2.139. Whereas, when using
crescent VPF, the ideal replacement age is T ∗

c = 1.05 and the lowest long-term cost is 2.355.

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Figure 8 – Long-run expected cost for two points prior for β=2.

Thus, when working with two points prior and reducing one of the p values, it can be seen that
the cost has decreased and the replacement age has increased for the fixed VPF and the variable
VPF, a situation similar to that portrayed for a point a prior.

The upper bound for PLL is included in the acceptance levels (10−5 and 10−3) throughout the
range shown, for ages above 1.5 the asymptotic PLL does not fall into the ALARP region.

Figure 9 shows the behavior of the 4 curves for some values of p2 and β when π1 = 0.4 and
π2 = 0.6. The curves are slightly altered as p varies and undergo a large change as β increases.
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(b) ß = 3, p2= 0.9

(d) ß = 3, p2= 0.95

(a) ß = 2.5, p2= 0.9

(c) ß = 2.5, p2= 0.95

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

(f) ß = 3, p2= 1(e) ß = 2.5, p2= 1

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Figure 9 – Long-run expected cost for two points prior and different values of p2 and β .

When addressing risk, Figure 10 shows how the upper bound of the PLL behaves when β and
p vary. For the values considered in the illustration, in all cases, the upper PLL was found to
be within the ALARP region. Similar to a prior point, as it is considered a probabilistic model,
even with an increase in p, imperfect repairs can still occur because they follow a probability
distribution.
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(b) ß = 2, �1= 0.4, �2= 0.6

(d) ß  = 2.5, �1= 0.4, �2= 0.6

(a) ß = 2, �1= 0.5, �2= 0.5

(c) ß  = 2.5, �1= 0.5, �2= 0.5

(f) ß = 3, �1= 0.4, �2= 0.6(e) ß = 3, �1= 0.5, �2= 0.5

Figure 10 – Upper PLL for two points prior varying β and π .

3.2.2 One-replacement-cycle case

Figure 11 shows the one-replacement-cycle cost for fixed VPF and the crescent VPF for the case
where p1 = 0.8, p2 = 0.95, π1 = 0.5, and π2 = 0.5.

When the VPF is fixed, the ideal replacement age is T ∗
f = 0.70, with the lowest cost of one-

replacement-cycle equal to 2.034. Whereas, when using crescent VPF, the ideal replacement age
is T ∗

c = 0.60 and the lowest cost of one-replacement-cycle is equal to 3.4379.
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Upper bound for PLL
Asymptotic PLL
Increasing VPF
Fixed VPF

Figure 11 – One-replacement-cycle cost for two points prior for β=2.

When using π1 = 0.4 and π2 = 0.6, when the VPF is fixed, the ideal replacement age is
T ∗

f = 0.70 and E[W (T ∗)] = 2.227. In turn, when the VPF is increasing, the ideal replacement
age is T ∗

c = 0.60 and the lowest cost of one-replacement-cycle is equal to E[W (T ∗)] = 3.463.

For the analyzed values, the optimal age of replacement did not change, and the optimal cost
suffered an insignificant variation with the change in π .

3.2.3 Synthesis of results for two points prior

Table 4 has the optimal replacement ages and their related costs. Regarding the optimal age of
replacement, it increases when β increases, there is a slight decrease when p changes and there
is almost no variation when π is changed. Thus, it is understood that the shape parameter and
the repair quality influence the replacement age more than the prior distributions.

However, it is interesting that the prior distributions are considered in the model so that uncer-
tainties are included, and decision-makers have greater support for their choices. In addition, a
considerable part of the maintenance actions are still performed by humans and they are prone
to errors due to the deficiency in documentation, communication, tools, and methodologies, as
well as difficulties that may arise during the maintenance activity (Morag et al., 2018). Thus,
due to the high interaction between maintainers and equipment, it is necessary to consider the
possibility of human error.

In addition to considering the impact of competencies on team performance, organizations needs
to think about the capabilities that teams need, plans for team building, and ways to develop those
capabilities of maintainers. It is worth mentioning that in scenarios that involve high risk, main-
tenance activities are usually carried out with the help of high technology, and with the advent of
industry 4.0, the use of digital technologies in maintenance activities has grown (Alvanchi et al.,
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2021). Thus, this scenario will demand new capabilities and skills that need to be explored, for ex-
ample, leadership, time management, information analysis, problem-solving, interpersonal skills,
collaboration, and knowing how to use virtual and augmented reality technologies (Romero et
al., 2016a, b).

Table 4 – Synthesis of results for two points prior (infinite-horizon).

β π VPF p2 = 0.9 p2 = 0.95 p2 = 1

T ∗ B(T ∗) T ∗ B(T ∗) T ∗ B(T ∗)

β = 2
π1 = 0.5 e π2 = 0.5

Fixed 1.10 2.139 1.10 2.159 1.10 2.178

Increasing 1.05 2.356 0.95 2.376 0.95 2.393

π1 = 0.4 e π2 = 0.6
Fixed 1.10 2.148 1.10 2.173 1.05 2.196

Increasing 1.05 2.366 0.95 2.388 0.95 2.409

β = 2.5
π1 = 0.5 e π2 = 0.5

Fixed 0.90 2.049 0.90 2.064 0.90 2.080

Increasing 0.75 2.210 0.75 2.225 0.75 2.239

π1 = 0.4 e π2 = 0.6
Fixed 0.9 2.056 0.90 2.075 0.85 2.093

Increasing 0.75 2.217 0.75 2.234 0.75 2.251

β = 3
π1 = 0.5 e π2 = 0.5

Fixed 0.80 1.950 0.80 1.962 0.80 1.974

Increasing 0.70 2.065 0.70 2.077 0.70 2.088

π1 = 0.4 e π2 = 0.6
Fixed 0.80 1.955 0.80 1.970 0.80 1.984

Increasing 0.70 2.070 0.70 2.084 0.70 2.097

Figure 12 summarizes the behavior of the optimal age and the optimal replacement cost for one
and two points prior. In summary, when considering one or more points prior, for both infinite
and finite planning horizons, when the risk is introduced, and increased over time, the optimal
replacement age decreases and the optimal cost increases. Furthermore, as the probability of
perfect repair increases, the optimal age decreases, and the cost increases, this behavior is more
noticeable in the case of one-point prior.

3.3 Four points prior

For the case of four points prior, P is considered a random variable with the following distribution.

P =


p1 with probability π1

p2 with probability π2

p3 with probability π3

p4 with probability π4

(33)
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Figure 12 – Synthesis of optimal age performance and optimal cost.

So that π1 + π2 + π3 + π4 = 1, then, we have the following equations for the context of four
points prior.

H(t) = π1e−p1(
t
θ
)β

+π2e−p2(
t
θ
)β

+π3e−p3(
t
θ
)β

+π4e−p4(
t
θ
)β

(34)

h(t) =
β

θ
tβ−1

(
p1π1e−p1(

t
θ
)β

+ p2π2e−p2(
t
θ
)β

+ p3π3e−p3(
t
θ
)β

+ p4π4e−p4(
t
θ
)β
)

(35)

rH (t) =
β

θ
tβ−1

 p1π1e−p1(
t
θ
)β

+ p2π2e−p2(
t
θ
)β

+ p3π3e−p3(
t
θ
)β

+ p4π4e−p4(
t
θ
)β

π1e−p1(
t
θ
)β

+π2e−p2(
t
θ
)β

+π3e−p3(
t
θ
)β

+π4e−p4(
t
θ
)β

 (36)

rG(t) =
β

θ
tβ−1

 (1− p1)π1e−(1−p1)(
t
θ
)β

+(1− p2)π2e−(1−p2)(
t
θ
)β

+(1− p3)π3e−(1−p3)(
t
θ
)β

+(1− p4)π4e−(1−p4)(
t
θ
)β

π1e−(1−p1)(
t
θ
)β

+π2e−(1−p2)(
t
θ
)β

+π3e−(1−p3)(
t
θ
)β

+π4e−(1−p4)(
t
θ
)β


(37)

R(T )=



[
1−

(
π1e−p1

(
T
θ

)β

+π2e−p2
(

T
θ

)β

+π3e−p3
(

T
θ

)β

+π4e−p4
(

T
θ

)β
)](

1+
⌊ u

T

⌋)
−1−

π1e
−p1

(
T−(u−⌊ u

T ⌋T)
θ

)β

+π2e
−p2

(
T−(u−⌊ u

T ⌋T)
θ

)β

+π3e
−p3

(
T−(u−⌊ u

T ⌋T)
θ

)β

+π4e
−p4

(
T−(u−⌊ u

T ⌋T)
θ

)β



pAPLLA

(38)
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4 MANAGEMENT INSIGHTS

The increased emphasis on sustainable production requires greater commitment from companies
to preserve the environment and develop society. By reducing accident risks and negative impacts
on nature, organizations gain advantages, namely compliance with environmental legislation,
greater competitiveness, better credibility from the surrounding community and customers, and
improving their internal processes (Peterson et al., 2021).

On the other hand, failures in production systems can cause great economic, social and environ-
mental losses, in such a way that organizations need to create strategies that contribute to the
minimization of accidents and risks must be identified, analyzed and treated.

The maintenance of equipment influences the reliability and, consequently, the safety of
the systems. Therefore, effective maintenance actions can cooperate to minimize the risk of
accidents.

In managerial terms, the application of the proposed model allows the teams involved with main-
tenance management to work in association with maintenance costs, equipment reliability, and
the risks involved in making decisions about replacement ages. Furthermore, this work draws
attention to the fact that the competencies of the members of the maintenance teams can impact
the performance of the tasks performed. This study also can alert organizations to the need to
reflect on the capabilities required in maintenance teams, strategies for team composition, and
plans to leverage these intended capabilities.

The application of the model allows the optimal replacement ages to be obtained, that is, those
that minimize costs and allow the risk to keep within the ALARP risk region or the widely
acceptable region. The choice of the number of points prior, the planning horizon and the use of
the disproportion factor will depend on the number of teams involved, the requirements related to
risk exposure and the preferences of maintenance managers, according to the context in question.

The fact of admitting that the repair can be imperfect brings the model closer to reality when
compared to models that consider that the system is always perfectly restored since mainte-
nance activities can present errors resulting from deficiencies related to the people involved, the
methodologies applied and the technology used.

Both maintenance actions and risk analysis add uncertainties, for example, regarding the qual-
ity of the maintenance action, the time when equipment will fail, the consequences of failures,
and the absence or inaccuracy of data. Therefore, the use of prior distributions in the proposed
model admits that the knowledge of experts is considered so that some of these uncertainties are
encompassed.

However, it is important to note that using Bayesian probability does not exclude the need for
review and judgment by decision-makers after numerical analyses. For cases where decisions
have a high impact on security, it is interesting, for example, to create a “Safety Board” formed
by multidisciplinary experts for a broader discussion (Vatn & Aven, 2010).
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Given the importance of the decision process being informed about risk and the need for reli-
able and accurate information, it is believed that the more useful information the teams enjoy,
the better the team’s knowledge and the greater the prospect of good decisions. Thus, it is ex-
pected that this model will contribute to including relevant information in maintenance manage-
ment decision-making processes and support managers in conflicting situations between risk and
maintenance.

5 CONCLUSION

Faced with the need for integration between maintenance management and risk management
in organizations, this work aimed to propose an age replacement policy with Bayesian imperfect
repair that considers the risk and to analyze how the uncertainty of the quality of the maintenance
action impacts ALARP and the total cost of maintenance.

The policy was modeled for the infinite-horizon planning and one-replacement-cycle, so it can be
used both in stable situations over time and for cases in which the cycles change. In addition, it
encompassed both situations in which the risk index is fixed and cases in which it increases over
time, which makes the model adaptable both for circumstances in which decision-makers need
to be more conservative about safety and in occasions with greater permissiveness concerning
risk restrictions.

Numerical application results showed that cases that relied on increasing VPF had a lower opti-
mal replacement age and higher long-term replacement cost. This was because the disproportion
factor became larger over time, causing the risk and cost index to increase, so replacing the
equipment at a younger age became more conservative.

When two points prior were considered, it was noticed that the shape parameter and the quality
of the repair had a considerable influence on the age of replacement, whereas the prior distribu-
tions had a smaller impact. Furthermore, the sensitivity analysis showed that the model behaved
as expected when subjected to different variations, showing good performance. Thus, the pro-
posed model is suitable to be used in real cases to support risk management and maintenance
management decisions.

The use of adequate maintenance models contributes to assertive decision-making so that acci-
dents can be prevented, culminating in benefits for society, the environment, and the economy.
Therefore, it is hoped that applying the proposed model will help companies in their maintenance
strategies when there is a conflict between risk management and maintenance.
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6 NOTATION

X Lifetime of a system.

F (t) , f (t) ,r(t) CDF, PDF, and failure rate of X , respectively.

T Age for planned replacement.

pA Probability of an accident (A) given that the system has failed.

PLLA Potential Loss of Life given an accident (A), i.e., expected number of fatalities.

v Value of Preventing a Fatality (VPF).

Cs Safety cost.

C′
p,C

′
m,C

′
r, Cost for perfect repair considering only the failure cost, cost for no perfect

repair considering only the failure cost and replacement cost, respectively.

Cp,Cm,Cr Costs for perfect repair considering only the failure and safety cost, no perfect
repair considering only the failure and safety cost and replacement cost,
respectively.

P Randon variable representing the probability of a perfect repair

N (t) ,L(t) ,M(t) Number of failures, number of perfect repairs, and number of no perfect repair
in (0, t), respectively.

Y1 e Z1 Waiting times at which the first perfect repair and the first no perfect repair
occurs, respectively.

H(t) e G(t) CDFs of Y1 and Z1, respectively.

rH (t) e rG (t) Failure rates de Y1 and Z1, respectively.

Y ∗
1 Time duration between two successive renewals of system.

C∗
1 Total cost incurred over the renewal interval Y ∗

1 .

R(T ) Above limit of PLL, approximation of risk index.

d(R(T )) Disproportion factor.

B(T ) Expected long-run cost per unit time.

W(T) Total cost per unit time between two successive replacement.
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