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ABSTRACT. The COS method was introduced in Fang & Oosterlee (2008) and then was applied to pricing
a variety of stock options for continuous random variables. This paper adapts the Fourier-cosine series
(COS) method to recover discrete probability mass functions. We approximate mixture and compound
probability distributions with cosine series. Enormous precision and computational speed are the qualities
of the function estimates here obtained. We also develop the pricing framework to trade derivatives subject
to discrete random variables. We apply the method to calculate, for the first time, the price of an interest rate
derivative of recent vintage introduced in the Brazilian financial market. Parameter calibration confirms the
quality of the model.

Keywords: probability functions, Fourier series, COS method.

1 INTRODUCTION

There are situations in which the probability density or mass function is not available in closed
form. Classical distributions (e.g. normal and lognormal densities or Poisson distribution) which
lead to closed form expressions for a variety of problems, sometimes are not capable to reproduce
the behavior seen in real-problem data. Fang & Oosterlee (2008) introduced a method intended
to recover the probability density functions in a quasi-analytical way. Given the characteristic
function of a continuously distributed random variable, the authors showed that it is possible
- using the Euler’s identity, to approximate pointwise the probability density function via the
Fourier-cosine series.

In several numerical experiments, these authors showed that the convergence rate of the COS
method is exponential and its computational complexity linear. Oosterlee & Grzelak (2019) is a
good text in which the COS method is explained in detail. Many works have recently extended

*Corresponding author
1Federal Center for Technological Education of Rio de Janeiro, Itaguaı́, Rio de Janeiro, Brazil – E-mail:
allan.jonathan@cefet-rj.br http://orcid.org/0000-0001-9763-6395
2National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil – E-mail: jack@lncc.br
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2 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

the original COS model and applied it to solve a variety of option pricing problems under classi-
cal models. Zhang & Oosterlee (2013) showed how to use the COS method to pricing arithmetic
and geometric Asian options under exponential Lévy processes. Zhang & Feng (2018) found the
price of American put options under the double Heston (1993) model using the COS method.
Zhang et al. (2012) analyzed the efficiency properties of pricing commodity options with early-
exercise. Ballotta et al. (2018) employed the COS method in multivariate structural models to
pricing credit default using Lévy processes. Tour et al. (2018) applied the Fourier cosine expan-
sion method to calculate the price of several options under regime-switching models. Have &
Oosterlee (2018) used the COS method for option valuation under the Stochastic Alpha Beta
Rho (SABR) dynamics. The pricing of forward starting options with stochastic volatility and
jumps was considered in Zhang & Geng (2017). Crisóstomo (2018) compared the CPU effort
of the COS method against six other Fourier-based schemes and concluded that it is notably the
fastest. Newer methods have appeared in the literature aiming the pricing of European options.
Notable examples are Ortiz-Gracia & Oosterlee (2013), Ortiz-Gracia & Oosterlee (2016) and
Kumar et al. (2019), the first two based on wavelet techniques.

In spite of the vast existing literature concerning the above subject matter, to the best of our
knowledge, except for da Silva et al. (2019), there is no adaptation of the COS method to interest
rate derivatives pricing problems. In fact, there is a lack in the literature of a general fast and
accurate pricing method for interest rate options in distinct environments. We introduce the sce-
nario where jumps only occur at deterministic prescribed times with a restrict number of jump
sizes. This addresses a very practical issue concerning the Monetary Policy Committee meetings
and the prescribed dates when the committees change their basic interest rates.

We extend the method to recover probability mass functions for discrete random variables and
show that the Fourier-cosine series with a finite number of terms is exact for some cases. In
Section 2.1 we present some examples for mixture and compound probability distributions to
show how the method can be useful when the probability density or mass function is not easy
to manipulate, its cumulative function has no analytical solution and/or the function itself does
not exist in an explicit form. In Section 3 we applied our results in the context of the interest rate
financial markets. We develop the framewok to use the COS method to calculate the price of the
Monetary Policy Committee (COPOM) Option using, for the first time in the financial literature,
the (discrete) Skellam distribution, more precisely, a modified version of the Skellam probability
distribution. Finally, we show that the model matches the market data.

2 FOURIER COSINE-SERIES FOR DISCRETE RANDOM VARIABLES

This is an extension of Fang & Oosterlee (2008) for discrete random variables. Consider a func-
tion f taking values in R and defined on a discrete partition of [0,π], namely, Ω= {0,1δ , ...,nδ =

π}, with n a positive integer. Then f can be expressed by the finite Fourier-cosine series

f (k) =
a0

2
+

n

∑
j=1

a j cos( jk), k ∈ Ω (1)

Pesquisa Operacional, Vol. 43, 2023: e267882



ALLAN JONATHAN DA SILVA, JACK BACZYNSKI AND JOSÉ V. M. VICENTE 3

where
a j =

2
π

∑
k∈Ω

f (k)cos( jk), j = 0,1,2, ...,n. (2)

For functions supported in a partition of any arbitrary interval [a,b], namely, Ω̂= {a,a+ δ̂ , ...,a+
nδ̂ = b}, δ̂ = δ

b−a
π

, a change of variable k = π
x−a
b−a is considered. Then, the Fourier-cosine series

expansion of f in Ω̂ is

f (x) =
a0

2
+

n

∑
j=1

a j cos
(

jπ
x−a
b−a

)
, x ∈ Ω̂ (3)

where

a j =
2

b−a ∑
x∈Ω̂

f (x)cos
(

jπ
x−a
b−a

)
, j = 0,1,2, ...,n. (4)

By the Euler’s identity, the coefficients of the Fourier-cosine expansion of f are

a j =
2

b−a ∑
x∈Ω̂

f (x)ℜ
[
e(i jπ x−a

b−a )
]

=
2

b−a
ℜ

[
e(−i jπ a

b−a ) ∑
x∈Ω̂

f (x)e(i jπ x
b−a )

]
.

Let X be a discrete random variable taking values in the extension of Ω̂, i.e., Ω̂e = {...,a −
δ̂ ,a,a+ δ̂ , ...,a+nδ̂ = b,b+ δ̂ , ...}. If f : Ω̂e → R is the probability mass function of X , then

a j ≈
2

b−a
ℜ

[
e(−i jπ a

b−a ) f̂
(

jπ
b−a

)]
≜ A j, (5)

where f̂ is the characteristic function of X , that is

f̂ (u) = ∑
x∈Ω̂e

e(ixu) f (x), (6)

which is approximated in a more restricted domain Ω̂ by

∑
x∈Ω̂

e(ixu) f (x). (7)

Therefore, the approximation of f is given by the following Fourier-cosine series

f (x)≈ A0

2
+

n̂

∑
j=1

A j cos
(

jπ
x−a
b−a

)
, x ∈ Ω̂, (8)

for n̂ equal to the greatest integer less than b−a. If f (y) = 0, ∀ y ∈
{

Ω̂e \ Ω̂
}

, then a j = A j and
(8) is exact.
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4 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

The choices of the limits a and b for the approximation (8) be good were proposed in Fang &
Oosterlee (2008) as follows:

a = c1 −L
√

c2 +
√

c4, b = c1 +L
√

c2 +
√

c4 (9)

with L = 10. The coefficients ck used in (9) are the k-th cumulant function of X and they are
given by

ck =
1
ik

dk

duk h(u)|u=0. (10)

The cumulant generating function h(u) that appears in (10) is given by

h(u) = lnE
[
e(iuX)

]
. (11)

Remind that the domain of f , typically, is not [a,b]. This interval is chosen according to (9)
in order to capture as much probability as possible from f . In Junike & Pankrashkin (2022)
the authors showed how to obtain the truncation interval using Markov’s inequality ensuring
convergence of the COS method within a predefined error tolerance. This could be an alternative
to define a and b. Notice however that, depending on the domain of the function, we can reach
the exact result in some few steps of the convergence series, preserving the approach according
to Fang & Oosterlee (2008) as we do in (9).

The discrete case introduced above was not addressed in Fang & Oosterlee (2008). The (huge)
paper Abate & Whitt (1992) gives a glimpse in this subject matter. However, a discussion of
discrete cumulative distribution function appears in Ruijter et al. (2015). The authors use the
continuous version of the COS method to calculate the cumulative probability, where the Gibbs
phenomenon surges. They develop spectral filter to ensure convergence. In our discrete version
of the COS method, we have

P(K ≤ k) =
k

∑
t=kmin

P(K = t). (12)

Example 1. (Binomial distribution) The probability of getting k successes in n independent
Bernoulli trials is given by the binomial distribution with parameters (n, p), namely

P(X = k) =
(

n
k

)
pk(1− p)n−k, (13)

where (
n
k

)
=

n!
k!(n− k)!

.

Its characteristic function is given by

f̂ (u;n, p) =
(

peiu +(1− p)
)n

. (14)
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In order to calculate binomial probabilities with the COS method, i.e. use (8) as an approximation
for (13), we need to choose the domain [a,b]. According to (11), we have the cumulant generating
function of the binomial distribution given by

h(u) = n ln
(

peiu +(1− p)
)
, (15)

and the cumulants

c1 = np, c2 =
np(1− p)

(p+(1− p))2 , c4 =
np(1− p)

(
p2 −4p(1− p)+(1− p)2

)
(p+(1− p))4 .

In Figure 1 we show the approximation of the binomial probability function with parameters
p = 0.05 and n = 80 via the Fourier Series.

Figure 1 – Binomial probability mass function and cumulative distribution.

2.1 Fourier-cosine series for mixture and compound probability distributions

The approximation given by (8) is particularly useful when the probability mass function is not
easy to manipulate, its cumulative function has no analytical solution and/or the function itself
does not exist in an explicit form. In such cases, we may resort to the Fourier cosine series given
that we know the corresponding characteristic function.

In order to illustratethis, we calculate the mass functions of two probability distributions with
non existing analytical formulas, but with existing analytical characteristic functions, namely,
the Neyman type A distribution and the Skellam distribution, both represented by infinite sums.

Pesquisa Operacional, Vol. 43, 2023: e267882



6 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

A factorial function, which is difficult to obtain for large numbers, is also present as will be seen
below. Moreover, for the latter, a gamma function must be solved for each term.

Example 2. (Neyman type A distribution) Consider a Poisson distribution for which the Poisson
parameter Θ = φθ , where φ is a constant and θ has a Poisson distribution with parameter λ .
The outcome distribution is known as Neyman type A probability distribution. This probability
distribution found applications in biological systems and in the natural disaster modeling ((Mar-
tin & Katti, 1962) and (Ozel & Turkan, 2022)). Detailed discussion about mixture distributions
can be found in Johnson et al. (2006).

The characteristic function of the Neyman type A probability distribution is given by

f̂ (u;λ ,φ) = e

[
λ

(
eφ(eiu−1)−1

)]
. (16)

According to (10), we have
h(u) =

[
λ

(
eφ(eiu−1)−1

)]
, (17)

and
c1 = λφ c2 = λφ(1+φ) c4 = λφ(1+7φ +6φ

2 +φ
3).

In Figure 2 we show the approximation of the Neyman type A probability function via
the Fourier Series. We highlight the multimodality of the distribution. The local peaks in
0,25,50,76,103,129,153 and 173 for the parameters λ = 25 and φ = 25 was discussed in
Shenton & Bowman (1967).

An advantage of the solution via Fourier series is that the distribution is well approximated with
a finite number of cosine terms in contrast to the Neyman’s type A analytical probability mass
function given by

P{X = x}= e−λ φ x

x!

∞

∑
j=0

(λe−φ ) j jx

j!
, x = 0,1, ..., (18)

which has an infinite sum for each x and a factorial function. The latter is a computational
challenge for large values of x.

Example 3. (Skellam distribution) The Skellam distribution is the discrete probability distri-
bution of the difference N1 −N2 of two statistically independent random variables N1 and
N2, each Poisson-distributed with respective expected values µ1 and µ2 and support on
{...,−2,−1,0,1,2, ...}.

In the study of cameras, the Skellam distribution is used to measure the intensity difference of
pixels in the spatial and temporal domain as the photons are Poisson distributed (Hwang et al.,
2007). Application of the Skellam distribution is found in the investigation of football outcomes
with modelling the number of goals scored by each team (Karlis & Ntzoufras, 2009).

The characteristic function of the Skellam distribution is

f̂ (u; µ1,µ2) = e−(µ1+µ2)+µ1eiu+µ2e−iu
(19)
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Figure 2 – Neyman type A probability mass function.

According to (10), we have

h(u) =−(µ1 +µ2)+µ1eiu +µ2e−iu, (20)

with
c1 = µ1 −µ2, c2 = µ1 +µ2 +(µ1 −µ2)

2

and

c4 = µ
4
1 +6µ

3
1 −µ

2
1 (4µ1µ2 −7)−µ1 (6µ1µ2 −1)+2µ1µ2 (3µ1µ2 −1)

−µ2 (6µ1µ2 −1)−µ
2
2 (4µ1µ2 −7)+6µ

3
2 +µ

4
2 .

The probability mass function for the Skellam distribution for a difference K = N1 −N2 is given
by

p(k; µ1,µ2) = P{K = k}= e−(µ1+µ2)

(
µ1

µ2

)k/2

Ik(2
√

µ1µ2). (21)

where Ik(·) is the modified Bessel function of first kind, which is an ordinary differential equation
with the following solution:

Ik(z) =
( z

2

)k ∞

∑
i=0

(
z2

4

)i

i!Γ(k+ i+1)
. (22)
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8 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

where

Γ(x) =
∞∫

0

sx−1e−sds. (23)

An advantage of the solution via Fourier series is that the distribution is well approximated with
a small finite number of cosine terms in contrast to the analytical probability mass function given
by (21), in which case a computational problem arises for large values of k in the modified Bessel
function (23). Using MATLAB R2022a, the COS method is 4 times faster than the implementation
of (21) for calculating the Skellam probability with the same number of terms. In Figure 3 we
show the approximation of the Skellam probability function via the Fourier Series with param-
eters µ1 = 25 and µ2 = 5. In Figure 4 we show the convergence of the COS method when the
number of summation terms increases and in Figure 5 it is exhibit the error of the approximations.
It is noteworthy that the COS method converges earlier than the analytical solution.

Figure 3 – Skellam probability mass function.

Note that, E[K] = µ1 −µ2. Then, it is computationally complex to calculate P{K = k} with (21)
for large values of E[K]. On the other hand, the level of parameters µ1 and µ2 has no impact in
solving the probability via Fourier series.

3 PRICING OPTIONS UNDERLINED BY DISCRETE RANDOM VARIABLES

Financial instruments are usually modeled through continuous random variables. Black & Sc-
holes (1973) won a nobel prize for showing that the price of a contingent claim is the expected
value of the discounted payoff given the present information and that it results in a riskless port-
folio. They used the geometric Brownian motion as the underlying asset model. Vasicek (1977)
used a Gaussian structure to calculate bond prices. Duffie & Singleton (2003) introduced the con-
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ALLAN JONATHAN DA SILVA, JACK BACZYNSKI AND JOSÉ V. M. VICENTE 9

Figure 4 – Skellam distribution probability varying the number of summation terms.

Figure 5 – Absolute error varying the number of summation terms.

cept of affine-jump diffusion models to the context of credit risk, which was extended to other
areas of finance.

Continuous stochastic processes dominate all areas of finance and discrete methods to solving
time continuous problems arise when no analytical solution exists to such continuous problems.
The research thrust concerning a discrete approach to time continuous problems can be per-
ceived, for instance, via Duffy (2006) and Wilmott (2006) which present various finite difference

Pesquisa Operacional, Vol. 43, 2023: e267882



10 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

methods used to find the price of financial derivatives. A particular finite difference method de-
veloped to calculate the price of interest rate derivatives can be found in da Silva et al. (2016).
Monte Carlo simulations are shown in Glasserman (2004) and binomial trees are presented in
Hull (2009).

Numerical methods such as finite differences, binomial trees and other approximations of con-
tinuous variables create discrete approximations that, in the limit of small step-sizes, converge to
the continuous solutions of these variables. On the other side, inherently discrete variables, like
jump processes and discrete distributions will have a discrete reference distribution.

Now, scant attention is given for problems that are inherently of discrete time nature. With this
in mind, our aim here is threefold:

• we show how to calculate the price of a contingent claim where the underlying asset is
inherently a discrete random variable;

• we introduce a new probability distribution to deal with the possible changes in the basic
interest rate due to the Monetary Policy Committee meetings;

• we calibrate the interest rate discrete jump model to market probabilities.

3.1 Pricing discrete options

Let x(t) be the observed discrete random variable at time t, with values in Ω̂e, representing
the underlying source of risk of an European call option maturing at T . In the financial jargon,
European options can only be exercised at maturity (Hull, 2009). Denote by f the probability
mass function of x(T ), defined in Ω̂e. Thus, the price of this option at time t is

C(t,T ) = E[g(x(T ))x(t)] = ∑
x∈Ω̂e

g(x) f (x|x(t))dx, (24)

where g(x(T )) is the discounted payoff function of the option. Truncating f in the interval [a,b]
we have

C(t,T )≈ ∑
x∈Ω̂

g(x) f (x|x(t)). (25)

Therefore, using f (x) as in (8) we have

C(t,T )≈ A0

2 ∑
x∈Ω̂

g(x)+
n̂

∑
j=1

A j ∑
x∈Ω̂

g(x)cos
(

jπ
x−a
b−a

)
. (26)

Hence, the series approximation of the option price is given by

C(t,T )≈ A0B0

2
+

n̄

∑
j=1

A jB j (27)

where the A j coefficients are given by (5) and

B j = ∑
x∈Ω̂

g(x)cos
(

jπ
x−a
b−a

)
. (28)
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3.2 Pricing COPOM options

The interest rate derivatives market differs across countries. The existing singularities in the
Brazilian market stirred the development of particular derivatives contracts. The most important
is the IDI option discussed in da Silva et al. (2016) and in Carreira & Brostowicz (2016). Among
them, we have a singular kind of interest rate option, namely the Monetary Policy Committee
(COPOM) Option, a derivative of recent vintage introduced in the market. COPOM option is a
cash-or-nothing product which pays a fixed amount if the discrete movement of the Selic Target
Rate X defined in a given Copom meeting at T is equal to the traded change K and pays nothing
otherwise. To the best of our knowledge, there is no stochastic formula to calculate the price of
the COPOM option in the existing literature. The Copom option price is then given by

C(t,T ) = e−r(t)(T−t)E [g(X(T ))] , (29)

where r(t) is the actual, whence observed, interest rate and

g(X(T )) = 1{X(T )=K}.

Then
C(t,T ) = e−r(t)(T−t)P [X(T ) = K] , (30)

where P [X(T ) = K] is the probability that the movement of the Selic Target Rate equals the
strike in the meeting occurring at T .

The monetary authority holds eight regularly scheduled meetings during the year. The scheduled
central bank announcements move the benchmark rate discretely. Figure 6 shows the path of the
basic target interest rate of the last two decades.

Figure 6 – Brazilian SELIC rate.
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12 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

In order to calculate the price of the Copom option, we need to calculate the probability of a
discrete random variable which has support on the set of multiples of 0.25% and discount it to
the present value.

In the theorem below, we introduce a modified version of the Skellam probability distribution
shown in Section 2.1 to characterize the jump sizes of the SELIC target interest rate. The do-
main of the original Skellam distribution is the integer numbers {...,−2,−1,0,1,2, ...}, as it is
constructed as a difference of two independent Poisson processes.

Theorem 1. Let X be a discrete random variable governing by the Skellam distribution
characterized by the following moment generating function:

MX (t) = e−(µ1+µ2)+µ1et+µ2e−t
(31)

Then the moment generating function of the modified Skellam distribution of Y = aX +b is given
by

MY (t) = e−(µ1+µ2)+bt+µ1eat+µ2e−at
. (32)

Proof. The moment generating function of Y is

MY (t) = E[eYt ] = E[eaXt+bt ] = ebtE[eaXt ] = ebtMX (at).

So, it follows that
MY (t) = e−(µ1+µ2)+bt+µ1eat+µ2e−at

(33)

is the moment generating function of the modified Skellam probability distribution.

□

The modified Skellam distribution refers to the distribution of Y = aX +b, where X has a Skellam
distribution. Clearly the domain of Y now is

{...,−2a+b,−a+b,b,a+b,2a+b, ...}.

So, Y is not of Skellam type any more, except for (a,b) = (1,0).

Corollary 1. Let a = 1
400 and b = 0. Then, the modified Skellam distribution has the domain

equal to the jumps of the SELIC target rates. The moment generating function is given by

MY (t) = e−(µ1+µ2)+µ1e
t

400 +µ2e−
t

400 (34)

Proof. It is easy to check that a = 1
400 and b = 0 in (33) implies (34). The domain is given by

{...,−0.50%,−0.25%,0,0.25%,0.50%, ...}.

□

Pesquisa Operacional, Vol. 43, 2023: e267882
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To the best of our knowledge, there is no other discrete random variable with the above proper-
ties. The example below shows that the modified Skellam distribution is properly applied in the
pricing procedure.

Example 4. Suppose that the moment generating function parameters of the modified Skellam
probability distribution (34) is µ1 = 4 and µ2 = 0.5. Let T − t = 0.1 be the maturity of the
COPOM option, r(t) = 0.02 be the actual interest rate and K = 0.75% be the strike. So, the
price of the COPOM option is given by (30)

C(t,T ) = f (0.0075) = e−(0.02)0.1

[
A0

2
+

n

∑
j=1

A j cos
(

jπ
0.0075−a

b−a

)]
= 0.1906, (35)

i.e. the discounted probability of a change of +0.75% in the target interest rate given by the
modified Skellam distribution at the next Copom meeting is 19.06%. Note that f (y) = 0, ∀ y ∈{

Ω̂e \ Ω̂
}

, then a j = A j and the price is exact. Then, the price of the Copom option is given by
the discounted probability given by (35) times the size of the contract.

The coefficients A j are given by (5), where the characteristic function is M(t) in (34), namely

f̂ (t; µ1,µ2) = e4e
it

400 +0,5e−
it

400 −4,5. (36)

According to (11), the cumulant generating function is

h(t) = 4e
it

400 +0,5e−
it

400 −4,5. (37)

So, the cumulants are

c1 =
3,5
400

, c2 =
4,5

4002 , c4 =
4,5

4004 . (38)

Actually, the Selic target interest rate X(T ) derives from the short rate r(t) which, in turn, is
governed by a stochastic differential equation (SDE). Now, in Genaro & Avellaneda (2018)
the authors advocate that, in an inflation economy, interest rate changes are decomposed into
fluctuations of the short-term interest rate between Central Bank meetings and deterministic
timed jumps following the meetings. Hence, to dully model the short interest rate r(t), a time
deterministic jump term should enter the SDE. Namely, we shaped this term as follows.

p

∑
j=1

1{t=τ j}Jτ j dN(t), (39)

where N(t) is a counting process, the summation carries out the activation of the jumps at pre-
scribed deterministic times τ j, j = 1,2, ..., and Jτ j are random variables that represent the jump
amplitudes of the short term interest rate target r(t).

In order to accomplish this realistically, Jτ j should take values in a prescribed discrete state space
and, ultimately, be flexible enough in order to track the movement of the Selic target Rate X(T ).
The modified Skellam mass probability function is indeed a rare finding aimed to model the SDE

Pesquisa Operacional, Vol. 43, 2023: e267882



14 RECOVERING PROBABILITY FUNCTIONS WITH FOURIER SERIES

jump term in the interest rate scenario, as it was confirmed in da Silva (2021). It is worth noticing
that in the works of Genaro & Avellaneda (2018) jump intensities occur in the same prescribed
state space as ours, however, our approach, via the Skellam distribution, encompasses any affine
model, while theirs are restricted to the (affine) Black model (Black (1976)).

3.3 Calibration

Calibration of interest rate models can be seen as an optimization problem, where the parameters
of the pricing function are determined to fit the observable prices.

The above modified Skellam probability moment generating function (34) have two parameters
µ1 and µ2. In order to preclude arbitrage opportunities, we have to choose the model parameters
so that the theoretical prices match the prices of traded contracts. Kienitz & Wetterau (2012)
provide a deep review of optimization techniques for parameter calibration.

We access the B3 market data to get the target interest rate jump probabilities for the subsequent
COPOM meeting. The results are the following:

Table 1 – COPOM option market data (08/30/2022).

Movement Probability
0.00% 0.729

+0.25% 0.225
+0.50% 0.040
+0.75% 0.006

Source: https://www.b3.com.br/pt br/market-data-e-indices/servicos-de-dados/
datawise/dashboard-publico/opcao-de-copom.htm

We use the function fgoalattain of the MATLAB R2022a to search the optimal parameters of
the modified Skellam probability distribution. The objective is to find the minimum distance be-
tween probabilities given by the modified Skellam probability distribution and the market prob-
abilities shown in the table 1 subject to µ1 > 0 and µ2 > 0. The resulting probabilities and the
corresponding discrepancies are shown in figures 7a and 7b, respectively.

Matlab takes 0.085711 seconds to find µ1 = 0.3109 and µ2 = 0.0031. As can be seen, the error is
of the order of 10−3. The computer used for all experiments has an Intel Core i5 CPU, 2.53GHz.

4 CONCLUSIONS AND WORKS TO COME

We extended the COS method to recover probability distributions of discrete random variables.
Or else, assuming that the analytical solution of the random variable’s characteristic function
exists, the method allows us to recover the corresponding probability mass function through a
finite series. We show how precisely the cosine series, with few terms even, approximates the
discrete, compounded and mixture probability distributions.
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Figure 7 – Calibration results.

Concerning the financial niche, we developed the framework in order to calculate - via a finite
sum - the price of a novel derivative product traded at the Brazilian market, the COPOM option.
Contributing to this, we introduced for the first time in the literature the Skellam distribution
and used a dully modified version of it to enter the stochastic differential equation. Such version
ultimately lead us to a good representation of the target interest rate jump probabilities for the
subsequent COPOM meeting.

We also show that the parameter calibration is effective and fast and that the theoretical
probability distribution matches the one observed in the market.

Relying on Subsection 3.2, we have that the stochastic differential equations for the short term
interest rate can be enhanced with jumps shaped with the modified Skellam distribution enabling
more reliable prices.

Other interest rate derivatives can be investigated using our framework since prices of IDI options
and Future DI options are also subjected to the movements of the target rate.
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