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ABSTRACT. This research takes into account production inventory models with price-dependent are de-
veloped: The first model uses integrated stock and price dependent demands, the second model uses stock
dependent demand, and the third model uses price dependent demand. The models are built on the basis of
a bipartition of the production cycle which in turn results in the holding cost. It was found that the holding
cost is lower in integrated stock and price dependent demand compared to that of stock dependent demand
and price dependent demand individually. Detailed mathematical models are presented for each model, as
well as applicable illustrations are given for making the suggested technique clearer. In this scenario, the
goal is to determine the order amounts and order intervals that will result in the lowest total cost. Each of
the three models has its own individual sensitivity analysis offered. Visual Basic 6.0 was used in order to
produce the required data.

Keywords: inventory, deterioration, stock dependent demand, price dependent demand, integrated and
sensitivity analysis.

1 INTRODUCTION

Conventional models of production inventory control, including the EOQ (economic order quan-
tity) model and EPQ (economic production quantity) models, are typically based on the idea of a
constant and time-dependent (exponential, quadratic, linear, etc.) demand rate. However, in real
practice, it was noticed that the rate of demand is typically determined by the price as well as the
availability of the goods. The stock-dependent demand has an upwards sloping demand rate, in
contrast to the price-dependent demand rate, which has a linear downward slope.

The realization that reduced selling prices often result in increased sales for a variety of items is
the foundation of inventory models that include price-dependent demand rates. In addition, the
demand for food products is often price-dependent. Many consumers will switch to a different
brand or even a different food item when the price of these goods increases. However, in real life
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2 PRODUCTION INVENTORY MODELS

situations, most products will deteriorate during storage. Realistically, a company’s resource is
significantly associated with when it is employed owing to the return on investment. The time
worth of money is taken into consideration when developing a degrading inventory model based
on this interpretation.

The main purpose of the inventory model is to determine the optimum selling price, ordering
frequency and preservation technology investment that maximizes the total profit. Ghare and
Schrader (1963) were the first to investigate inventory issues based on the degradation of products
and ongoing demand. In real-life inventory management challenges based on price-dependent
and stock-dependent demand, a substantial number of authors have done comprehensive work.
An inventory model for degrading products with a nonlinear price and a linear stock dependent
market demand was explored by Mohammad Abdul Halim et al. (2021). In this case, language
software may be used to address the associated optimization issue.

There are many other ways to express demand for a commodity. This article uses the idea of
“price dependent demand,” which is a combination of price-dependent and stock-dependent as
well as other patterns such as (a−bP)(x+yI(t)).With the purpose of constructing mathematical
models for estimating the best quantity of inventory to be replenished in order to meet future
demand, this work presents degrading-product demand models with price-dependent demand
and exponential time-dependent demand. Three models are shown here: the first model uses
integrated stock and price dependent demands, the second model uses stock dependent demand,
and the third model uses price dependent demand. Each of the three models has its mathematical
derivation, numerical demonstrations, and data given in Visual Basic 6.0, which is used in the
presentation.

In addition to this, the following sections are included in the document: Section 2 provides an
overview of important literature, while Section 3 provides the model’s assumptions and notations.
Section 4 introduces the inventory model and the best solution technique. Section 5 is devoted
to a comparative examination. Sect. 6 concludes with a discussion of the findings and potential
directions for further study.

2 LITERATURE REVIEW

The most recent and pertinent research is presented in this section. Since demand plays a signifi-
cant role in the formation of deteriorating inventory, researchers have recognized and studied the
variants of demand from the perspective of real-life situations. This is because demand plays a
significant role in the formation of deteriorating inventory. For example, it’s possible that demand
fluctuates over time, is tied to supply, or is influenced by both.

Ghare and Schrader (1963) were the first researchers to study the effects of persistent demand and
deterioration of things. Bernstein and Federgruen (2003) took into consideration a two-echelon
distribution system in which a single supplier would distribute a product to N different retailers
who would be in direct competition with one another. The demand rate at each store is dependent
on the prices set by the other retailers; conversely, the price that each retailer is able to charge for
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its product is contingent on the sales volumes that are sought by the other shops. The provider
maintains an adequate supply of goods by regularly placing orders (for purchases or manufac-
turing runs) with a third party that has an abundant supply. The items are then delivered to the
various shops from that location. Carrying costs are incurred for all stocks, whereas fixed and
variable costs are incurred for all supplier orders and transfers to the retailers from the suppliers.
A model created by Teng and Chang (2005) referred to as EPQ explains circumstances where
the demand rate is reliant on both existing stock levels and per-unit sales prices for degraded
commodities.

Because there is a cap on the quantity of shelf and display space available, as well as an excessive
amount of goods gives the customer a bad image, we restrict the number of items that may be
shown at one time. The next step is to establish the essential circumstances to arrive at an ideal
solution for the EPQ model that optimises earnings. Deng et al. (2008) enhanced this technique
by introducing the inventory replenishment strategy across a limitless forecasting viewpoint with
a negative exponential lead time crashing cost and taking time value into consideration. Panda
and Maiti, (2009) constructed multi-item EPQ models with holding costs, stock dependent unit
production, infinite production rate, and selling price dependent demand. These models also
included an unlimited production rate. The manufacturing process has been updated to include
flexibility and reliability considerations.

When the demand rate relies on the instantaneous inventory level, Toy and Chaudhuri (2009)
developed two production inventory models for degrading products. These models are used in
situations in which the inventory level is constantly changing. Not only does the amount of
stock determine the production rate, but so does the amount of demand. The Weibull distribution
degradation is employed in both of these models. Model I is designed and solved so that there are
no shortages, whereas Model II is developed and solved so that there are shortages and backlogs.

Deteriorating products’ optimum order quantity and selling price must be determined concur-
rently by Chun et al. (2010). On-display stock level, selling price per unit, and restricted shelf
space are all thought to influence demand rate, as well as how quickly a product sells.

An inventory model for decaying products and selling price dependent demand was presented
by Singh et al. (2011). Within this model, the inflationary environment and deterioration rate
are addressed using a two-parameter Weibull distribution. Datta (2013) conducted research on
an inventory management system for jointly determining product quality and selling price in a
scenario in which some of the goods produced were flawed. It is presumable that just a portion
of faulty products may be fixed or redone. The rate of demand is influenced not only by the
product’s quality but also by the price at which it is sold.

Alfares (2014) created solutions for gradual order replenishment using economic production
quantity (EPQ). Stock-dependent demand models assume that demand is a linear function of the
inventory level, which is the case in practice. It is assumed that the cost of storing each unit
throughout the course of each period is a function of the entire duration in which the unit has
been stored in models with variable holding costs.
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4 PRODUCTION INVENTORY MODELS

Bhunia and Shaikh (2014) established two inventory models for degrading products with chang-
ing demand. This demand was based on the selling price of the item as well as the frequency
with which it was advertised. In the first model, shortages are not permitted in any way, but in
the second model, shortages are not only permitted but also partly backlogged at a variable rate
that is depending on the amount of time that must pass until the arrival of the following lot. In
each of these models, the rate of degradation is represented by a Weibull distribution with three
parameters. An economic production quantity (EPQ) model with reworked faulty goods while a
multi-shipment policy is in place was examined by Taleizadeh et al. (2015).

Kaliraman et al. (2017) created an inventory model that takes into account two warehouse mod-
els for degrading products with exponential demand rates. There is no reduction in the pace of
degradation. This model takes into account both a leased and an owned warehouse. Mishra (2017)
developed an EOQ inventory model that considers the demand rate as a function of stock and sell-
ing price. Shortages are permitted. Inventory models developed by Tripathi et al. (2017) allow for
shortages while demand grows exponentially over time and degradation is also time-dependent.
Unit cost and demand rate of production are thought to be correlated.

According to Shah et al. (2018), a price-sensitive stock demand scenario is a realistic circum-
stance. We have to deal with faulty products as the manufacturing process progresses. So, the
production rate is an important factor in determining profit in the current model. Retail pricing
and cycle time have a direct impact on profit. According to Singh and Rastogi (2018), in an
inflationary climate, a production inventory model for degrading items may be used to predict
demand and supply shortfalls. The pace at which a product is produced is determined by the
amount of demand. The shortages experienced during the stock out period is presumed to be
somewhat backlogged.

A production-inventory model created by Dharamender Singh (2019) has stock dependent and
price dependent demand. Shortages are permitted and partly back-ordered at a rate that decreases
with the length of time it takes for a new supply of an item to arrive. This study has been refined
by Qi Feng (2019) to a class of intuitively attractive policies, through which the price decreases
in the post-order stock level. In the context of stochastic functions and stochastic demand, the
objective function is concave along such price routes, resulting in a simple base stock list pricing
strategy. It also determines the top and lower bounds of a possible set of decreasing pricing
pathways and demonstrates that any decreasing road outside of this set is always dominated by a
path within the set in terms of profit performance.

There are several factors that affect the demand for a certain product, such as the amount of on-
hand stock in a shop and its selling price, which were studied by Ruidas et al. (2020). Carbon
tax policy and Remanufacturing subsidy policy were explored by Kaiying Cao et al. (2020) for
two enterprises in a dual-channel supply chain selling both remanufactured and new items in a
supply chain.

There are two categories of clients that a manufacturer serves: those who have a long-term com-
mitment and are separated into many backorder classes, as well as those who do not have a long-
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term commitment and are grouped together as a single lost sales class. An inventory management
and integrated production structure is used to address this issue. Wang and Zhang (2021) con-
ducted research to determine how the selection of a distribution system’s partners affected the
value of the information that was shared between the system’s one capacitated make-to-stock
manufacturer along with its two retailers. A manufacturer may more precisely allocate inven-
tory based on more predictable orders from the high-priority retailer whenever the store is the
lone partner with a greater shortfall cost. Singh P et al. (2022) developed a production inventory
model for deteriorating items with price-stock dependent demand rate under complete backlog.
Mahata and Debnath (2022) addressed a single item two-level supply chain inventory model
considering deterioration during carrying of deteriorating item from a supplier’s warehouse to a
retailer’s warehouse as well as deterioration in the retailer’s warehouse. Poswal P et al. (2022)
studied demand function as price sensitive and stock dependent demand and a crisp model de-
veloped and then fuzzified the ordering cost, holding cost, deteriorative rate and shortage cost as
a fuzzy trapezoidal number. Nita H. Shah et al. (2022) formulated an inventory model for perish-
able products for price and stock-dependent demand rate along with greening efforts. Qusay H.
Al-Salami et al. (2022) developed an inventory control model-based Genetic Algorithm (GA) to
minimize the total annual inventory cost function developed explicitly for the proposed model.

3 ASSUMPTIONS AND NOTATIONS

These assumptions and notations describe a single-item deterministic inventory model in order
to degrade goods with stock and price dependent demand (PDD) rate.

3.1 Assumptions

(1) Because the replenishment rate is indefinite, so lead time is insignificant, and duration of
all replenishment cycles is the same, only a typical planning cycle with a length of T is taken
into consideration (which means that the planning horizon is [0, T]). (2) The planning horizon
for the inventory is limitless, yet the inventory system only comprises a single stocking point
and a single commodity. (3) In order to prevent revenue from being wasted, shortages are not
permitted. (4) sales price is inversely proportionate to demand. i.e., D = (a − bP)(x + yI(t))
which is the selling price function with stock-dependent demand (SDD) I(t) at time t; here ‘a’
and ‘b’ are positive constants in price dependent demand and x and y are positive constants in
stock-dependent demand. (5) A constant deteriorating rate θ is only applied to on-hand inventory.

3.2 Notations

The following list of presumptions serves as the foundation for the model. (1) T - cycle time
(decision variable), (2) Q - demanded quantity, that is order size, (3) CS - setup cost per set, (4)
CP- unit purchase cost , (5) Ch - unit holding cost per unit time, (6) θ – rate of deteriorative
items, (7) Dc - unit deteriorative cost, (8) PC – rate of production during the first (upward) phase
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of the cycle ( PC > D), (9)T1 – duration of first phase, (10) Q1 – Stock at the end of the first
phase, (11) D = (a−bP)(x+yI(t)) demand rate.

4 MATHEMATICAL MODELS

4.1 Production inventory model for deteriorative items with integrated stock and price
dependent demand

This model is developed for Price-dependent demand integrated with Stock dependent demand
for deteriorating inventory model, that is D = (a−bP)(x+yI(t)), where a denotes the constant
demand in PDD and x the constant demand in SDD >0 and where b and y are coefficients
of demand in PDD and SDD, respectively. The inventory level decreases due to demand and
deteriorating till it becomes zero in the interval (0, T). The total process is repeated. The inventory
level at different instants of time is shown in Figure 1.

Figure 1 – Production Inventory Cycle

During the production stage, the inventory of good items increases due to production but de-
creases due to demand and loss of perishable items. Then, the inventory differential equation
is

d
dt

I(t)+θ I(t) = Pc − (a−bP)(x+ yI(t)), 0≤t≤T1. (1)

The inventory differential equation during the consumption period with no production and
subsequent reduction in the inventory level due to rate of perishable items is given by

d
dt

I(t)+θ I(t) =−(a−bP)(x+ yI(t)),T1≤t≤T, (2)

with the boundary conditions

I(0) = Q, I(T1) = Q1, I(T ) = 0. (3)
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Solving the differential equation (1),

I(t) =
(Pc − x(a−bP))

θ + y(a−bP)

(
1− e−(θ+y(a−bP))t

)
. (4)

Solving the differential equation (2),

I(t) =
x(a−bP)

θ + y(a−bP)

(
e−(θ+y(a−bP))(T−t)−1

)
. (5)

To find the optimum quantity Q:

From equation (2) with the boundary conditions

I(0) = Q,

Q =
x(a−bP)

θ + y(a−bP)

(
e(θ+y(a−bP))T −1

)
. (6)

To find T1 and Q1:

From equations (4) and (5) with the boundary conditions,

(Pc − x(a−bP))
θ + y(a−bP)

(
1− e−(θ+y(a−bP))T1

)
=

x(a−bP)
θ + y(a−bP)

(
e−(θ+y(a−bP))(T−T1)−1

)
.

On simplification,

T1 =
x(a−bP)T

Pc
. (7)

From equations (3) and (4) with the boundary conditions,

Q1 = (Pc − x(a−bP))T1. (8)

Total Cost: Total cost comprises setup cost, holding cost, production cost, and deteriorative cost.

1. Production cost =
DCP = (a−bP)(x+ yI(t))Cp (9)

2. Setup cost =
C0

T
(10)

3. Holding cost

=
Ch

T

[∫ T1

0

(Pc − x(a−bP))
θ + y(a−bP)

(
1− e−(θ+y(a−bP)t

)
dt +

∫ T

T1

x(a−bP)
θ + y(a−bP)

(
e(θ+y(a−bP))(T−t)−1

)]

=
Ch

T


(Pc − x(a−bP))
(θ + y(a−bP))2

[
(θ + y(a−bP))T1 + e−(θ+y(a−bP))T1 −1

]
− x(a−bP)

(θ + y(a−bP))2

(
1+(θ + y(a−bP))T − e(θ+y(a−bP))(T−T1)

− (θ + y(a−bP))T1

)
 (11)
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4. Deteriorative cost

=
θCd

T


(Pc − x(a−bP))
(θ + y(a−bP))2

[
(θ + y(a−bP))T1 + e−(θ+y(a−bP))T1 −1

]
− x(a−bP)

(θ + y(a−bP))2

(
1+(θ + y(a−bP))T − e(θ+y(a−bP))(T−T1)

− (θ + y(a−bP))T1

)
 (12)

Total cost (TC) = Production cost + Setup cost + Holding cost + Deteriorative cost

TC(T ) =
C0

T
+

Ch +θCd

T


(Pc − x(a−bP))
(θ + y(a−bP))2

[
(θ + y(a−bP))T1 + e−(θ+y(a−bP))T1 −1

]
− x(a−bP)

(θ + y(a−bP))2

(
1+(θ + y(a−bP))T − e(θ+y(a−bP))(T−T1)

− (θ + y(a−bP))T1

)


(13)

Optimality:
∂

∂T1
[TC(T )] = 0

and
∂ 2

∂T1
2 [TC(T )]> 0

and
∂

∂T
[TC(T )] = 0

and
∂ 2

∂T 2 [TC(T )]> 0.

Partially differentiating equation (14) with respect to T1,
(Pc − x(a−bP))
(θ + y(a−bP))2

[
(θ + y(a−bP)− (θ + y(a−bP))e−(θ+y(a−bP))T1

]
− x(a−bP)

(θ + y(a−bP))2

[
−(θ + y(a−bP))+(θ + y(a−bP))e(θ+y(a−bP))(T−T1)1

]
= 0

On simplification, T1 =
x(a−bP)T

P .

Partially differentiating (14) with respect to T,

∂

∂T
TC(T ) =−C0 +

(Ch +θCd)

(θ + y(a−bp))2


− (Pc − x(a−bp))(e−(θ+y(a−bp))T1 +(θ + y(a−bp))T1 −1)

+ x(a−bp)

[
T{(θ + y(a−bp))e(θ+y(a−bp))(T−T1)− (θ + y(a−bp))}

− (e(θ+y(a−bp))(T−T1)− (θ + y(a−bp))(T −T1)−1

]= 0


−(Pc − x(a−bP))
(θ + y(a−bP))2

[
(θ + y(a−bP))T1 + e−(θ+y(a−bP))T1 −1

]
− x(a−bP)

(θ + y(a−bP))2

[
(θ + y(a−bP))T − (θ + y(a−bP))Te(θ+y(a−bP))(T−T1)

−1− (θ + y(a−bP))(T −T1)+ e(θ+y(a−bP))(T−T1)

]
=

C0

(Ch +θCd)
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This is an optimum solution of T in a higher-order equation. This equation can be evaluated
by using MATLAB. But for the reader’s convenience the equation is reduced to the fourth-order
equation and then the third order equation in T. On simplification,

−(Pc − x(a−bP))T 2
1

2
+ x(a−bP)T (T −T1)−

x(a−bP)(T −T1)
2

2

+
(Pc − x(a−bP))(θ + y(a−bP))T 3

1
6

+
x(a−bP)(θ + y(a−bP))T (T −T1)

2

2

− x(a−bP)(θ + y(a−bP)(T −T1)
3

6
− (Pc − x(a−bP))(θ + y(a−bP)2T 4

1
24

+
x(a−bP)(θ + y(a−bP))2(T −T1)

3T
6

+
x(a−bP)(θ + y(a−bP)2(T −T1)

4

24


=

C0

(Ch +θCd)

which is in fourth order equation. The reduced third order equation is

−(Pc − x(a−bP))T 2
1

2
+ x(a−bP)T (T −T1)−

x(a−bP)(T −T1)
2

2

+
(Pc − x(a−bP))(θ + y(a−bP))T 3

1
6

+
x(a−bP)(θ + y(a−bP))T (T −T1)

2

2

− x(a−bP)(θ + y(a−bP)(T −T1)
3

6

=
C0

(Ch +θCd)

Substituting the value of T1 from equation (7) and simplifying,[
∧ (Pc−x(a−bP))(θ+y(a−bP))x(a−bP)

6P2 [2P− x(a−bP)]T 3

∧+ (Pc−x(a−bP))x(a−bP)
2P2 T 2

]
=

C0

Ch +θCd

Further reduced,

(θ+y(a−bP))(2Pc−x(a−bP))T3+3PT2=
6Pc

2C0
(Ch+θCd)(P−x(a−bP))x(a−bP)

(14)

which is the optimum solution for T in the third order equation.

Numerical example 1

The following values are given:

Production rate Pc = 500 units, Demand rate D = 450 units, Setup cost per set C0= 130, Holding
cost per unit per unit time Ch = 13, Production cost per unit CP= 130, Deteriorative cost per unit
Cd = 130, Rate of Deteriorative item θ = 0.01, Selling price per unit P = 150,

Constant demand rate in SDD x = 30, Coefficient of constant demand in SDD y = 0.1 Constant
Demand rate in PDD a = 30, Coefficient of constant demand in PDD b = 0.1

Optimum solution

The solution is obtained as follows.

The third order equation 18686250T 3 +33750000T 2 −13636363.63 = 0.
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10 PRODUCTION INVENTORY MODELS

Optimum cycle time T= 0.5558, Optimum quantity Q = 250.12, Production time T1 = 0.5002,
Maximum inventory Q1= 25.01, Production cost =58500, Setup cost =233.88, Holding cost =
162.58, Deteriorative cost = 16.25, Total cost = 58912.72, Total sales = 67500.00, Total profit =
8587.27.

Sensitivity analysis and discussion

In order to assess the relative impact of the different input parameters on the solution quantity,
systematic sensitivity analysis was performed on the above example. The rate of the deterioration
was given values from 0.01 to 0.1 and the other 11 values of Example 1 were kept constant.

Sensitivity Analysis with respect to Rate of Deteriorative items (θ )

Table 1 shows a study of the rate of the deteriorative items with cycle time, optimum quantity,
production time, maximum inventory, setup cost, holding cost deteriorating cost, total cost and
total profit. There is a positive relationship between the increase in the rate of deterioration for
items θ with setup costs, deteriorating costs, and total costs, while there is a negative relationship
between the increase in the rate of deterioration for items θ with cycle time, optimum quantity,
production time, maximum inventory, holding cost and total profit.

Table 1 – Result of sensitivity analysis with respect to rate of deteriorative items.

θ T Q T1 Q1 Setup cost Holding cost DC Total cost Total Profit
0.01 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27
0.02 0.5342 240.40 0.4808 24.04 243.34 156.26 31.25 58930.85 8569.14
0.03 0.5150 231.75 0.4635 23.17 252.41 150.64 45.19 58948.25 8551.74
0.04 0.4977 224.00 0.4480 22.40 261.14 145.60 58.24 58964.99 8535.00
0.05 0.4822 217.00 0.4340 21.70 269.57 141.05 70.52 58981.15 8518.84
0.06 0.4680 210.64 0.4212 21.06 277.72 136.91 82.15 58996.71 8503.20
0.07 0.4551 204.81 0.4096 20.48 285.62 133.13 93.19 59011.94 8488.05
0.08 0.4432 199.45 0.3989 19.95 293.29 129.64 103.71 59026.66 8473.33
0.09 0.4322 194.51 0.3890 19.45 300.75 126.43 113.78 59040.97 8459.02
0.10 0.4220 189.91 0.3798 18.99 308.02 123.44 123.44 59054.92 8445.07

The graphical representation between rate of deteriorative items and total profit is given on Figure
2. It is observed that the total profit is in a downward curve.

Sensitivity Analysis with respect to constant demand in SDD (x):

Table 2 shows a study of the rate of the constant demand in SDD (x) with cycle time, optimum
quantity, production time, maximum inventory, setup cost, holding cost deteriorating cost, total
cost and total profit. There is a positive relationship between the increase in the rate of constant
demand in SDD with optimum cycle time, optimum quantity, production time, total cost and total
profit, while there is a negative relationship between the increase in the constant demand in SDD
with maximum inventory, setup cost, holding cost, deteriorative cost.
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Figure 2 – Relationship between rate of deteriorative items and total profit.

Table 2 – Result of sensitivity analysis with respect to constant demand rate coefficient
in stock dependent demand (x).

x T Q T1 Q1 Setup cost Holding cost DC Total cost Total Profit
21 0.3540 111.54 0.2230 41.26 367.13 268.25 26.82 41612.21 5637.78
22 0.3609 119.12 0.2382 40.50 360.11 263.27 26.32 43549.71 5950.28
23 0.3697 127.54 0.2550 39.54 351.62 257.01 25.70 45484.34 6265.65
24 0.3805 137.01 0.2740 38.36 341.56 249.36 24.93 47415.87 6584.12
25 0.3942 147.82 0.2956 36.95 329.77 240.21 24.02 49344.01 6905.98
26 0.4113 160.41 0.3208 35.29 316.06 229.38 22.93 51268.38 7231.61
27 0.4331 175.42 0.3508 33.32 300.13 216.64 21.66 53188.44 7561.55
28 0.4616 193.89 0.3877 31.02 281.60 201.64 20.16 55103.41 7896.58
29 0.5002 217.62 0.4352 28.29 259.84 183.89 18.38 57012.13 8237.86
30 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27

The graphical representation between constant demand rate (x) items and total profit is given
below. It is observed that the total profit is in

Figure 3 – Relationship between constant demand rate (x) and total profit.
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Sensitivity Analysis with respect to constant rate (a) in PDD

Table 3 shows a study with constant rate of demand in SDD (a) with cycle time, optimum quan-
tity, production time, maximum inventory, setup cost, holding cost deteriorating cost, total cost
and total profit. There is a positive relationship between the increase in the rate of constant de-
mand in SDD and optimum quantity, production time, maximum inventory, setup cost, holding
cost, deteriorative cost, total cost and total profit, while there is a negative relationship between
the increase in the constant demand in SDD and cycle time.

Table 3 – Result of sensitivity analysis with respect to constant demand rate coefficient
in price dependent demand (a).

a T Q T1 Q1 Setup cost Holding cost DC Total cost Total Profit
21 0.3745 67.42 0.1348 43.15 347.06 280.47 28.04 24055.59 2944.40
22 0.3625 76.13 0.1522 44.16 358.55 287.04 28.70 27974.30 3525.69
23 0.3565 85.56 0.1711 44.49 364.65 289.19 28.91 31882.76 4117.23
24 0.3556 96.02 0.1020 44.16 365.54 287.09 28.70 35781.35 4718.64
25 0.3599 107.97 0.2159 43.18 361.19 280.73 28.07 39670.00 5329.99
26 0.3700 122.11 0.2442 41.51 351.31 269.86 26.98 43548.17 5951.82
27 0.3876 139.56 0.2791 39.07 335.32 254.00 25.40 47414.77 6585.26
28 0.4164 162.41 0.3248 35.73 312.16 232.25 23.22 51267.64 7232.35
29 0.4646 195.14 0.3902 31.22 279.79 202.94 20.29 55103.03 7896.96
30 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27

The graphical representation between constant demand rate (a) in PDD and total profit is given
below. It is observed that the total profit is in an upward curve.

Figure 4 – Relationship between constant demand rate (a) and total profit.

Managerial insights

A sensitivity analysis is performed to study the effects of changes in the system parameters,
ordering cost per order (C0), holding cost per unit time (Ch), deteriorating cost per unit time
(Cd), and coefficients in SDD on optimal values, that is, optimal cycle time (T), optimal quantity
(Q), maximum inventory, production time, setup cost, holding cost, deteriorating cost, total cost
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Table 4 – Sensitivity Analysis with respect to inventory cost parameters.

Cost Parameters Optimum Solutions
T Q T1 Q1 Setup cost Holding cost DC Total cost Total Profit

C0 110 0.5156 232.06 0.4641 23.20 213.30 150.84 15.08 58879.22 8620.77
120 0.5362 241.31 0.4826 24.13 223.77 156.85 15.68 58896.31 8603.68
130 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27
140 0.5745 258.54 0.5171 25.85 243.66 168.05 16.80 58928.53 8571.46
150 0.5924 266.62 0.5332 26.66 253.16 173.30 17.33 58943.80 8556.19

Ch 11 0.5944 267.51 0.5350 26.75 218.67 147.13 17.38 58883.20 8616.80
12 0.5741 258.36 0.5167 25.83 226.42 155.01 16.79 58898.23 8601.72
13 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27
14 0.5392 242.66 0.4853 24.26 241.06 169.86 15.77 58926.71 8573.28
15 0.5241 235.86 0.4717 23.58 248.01 176.90 15.33 58940.25 8559.74

Cd 110 0.5593 251.70 0.5034 25.17 232.41 163.61 13.84 58909.86 8590.13
120 0.5575 250.91 0.5018 25.09 233.14 163.09 15.05 58911.29 8588.70
130 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27
140 0.5541 249.34 0.4986 24.93 234.61 162.07 17.45 58914.14 8585.85
150 0.5523 248.57 0.4971 24.85 235.33 161.57 18.64 58915.55 8584.44

y 0.06 0.5816 261.76 0.5235 26.17 223.48 170.14 17.01 58910.64 8589.35
0.07 0.5746 258.61 0.5172 25.86 226.20 168.09 16.80 58911.11 8588.88
0.08 0.5680 255.63 0.5112 25.58 228.84 166.16 16.61 58911.62 8588.37
0.09 0.5618 252.81 0.5056 25.28 231.40 164.32 16.43 58912.15 8587.84
0.10 0.5558 250.12 0.5002 25.01 233.88 162.58 16.25 58912.72 8587.27

and total profit. The sensitivity analysis is performed by changing (increasing or decreasing)
the parameter taking at a time, keeping the remaining parameters at their original values. The
following influences can be obtained from the sensitivity analysis based on Table 4.

1. There is a positive relationship between the increase in the setup costs per set (C0) and
the cycle time, the optimum quantity, maximum inventory, production time, setup costs,
holding costs, deteriorating costs, total costs and total profit.

2. There is a positive relationship between the increase in the holding cost per unit time
(Ch) and the setup cost, holding cost, and total cost, while there is a negative relationship
between the increase in the holding cost per unit time (Ch) and the cycle time, optimal
quantity, maximum inventory, production time, and deteriorating cost.

3. There is a positive relationship between the increase in the deteriorative cost per unit Cd)
and the setup cost, deteriorative cost and total cost, while there is a negative relationship
between the increase in the deteriorative cost per unit (Cd) and the cycle time, optimum
quantity, production time, maximum inventory, holding cost, and total profit.

4. Similarly, other parameters, as the coefficient constant rate in SDD (y) can also be observed
in Table 4.
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4.2 Production inventory model for deteriorative items with stock dependent demand

This model is developed for deteriorating inventory model in which demand is Stock-dependent
that is D = (x+ yI(t)), where x (constant demand in SDD) > 0 at time t and y is coefficient of
demand in SDD.

Thus, the inventory differential equation is

d
dt

I(t)+θI(t) =Pc−(x+yI(t)),0≤t≤T1 (15)

The inventory differential equation during the consumption period with no production and
subsequent reduction in the inventory level due to the rate of perishable items is given by

d
dt

I(t)+θ I(t) =−(x+ yI(t)),T1 ≤ t ≤ T (16)

with the boundary conditions

I(0) = 0,I(T1) =Q1,I(T) = 0. (17)

From the equation (17), the solution of the differential equation is

I(t) =
Pc − x
y+θ

(
1− e−(y+θ)t

)
. (18)

Note: when y= 0 and x is replaced by D then I(t) = P−D
θ

(
1− e−θ t

)
which is basic inventory

model.

From the equation (18), the solution of the differential equation is

I(t)
x

y+θ

(
e(y+θ)(T−t)−1

)
(19)

Note: when y= 0 and x is replaced by D then I(t)D
θ

(
e(θ(T−t)−1

)
which is basic inventory

model.

To find Q: From the equations (19) and (21), Q x
y+θ

(
e(y+θ)T −1

)
To find T1 and Q1: From the equations (20) and (21)

Pc − x
y+θ

(
1− e−(y+θ)T1

)
=

x
y+θ

(
e(y+θ)(T−t)−1

)
On simplification, T1 =

xT
Pc

(20)

From the equations (19) and (20),

Q1 = (Pc − x)
(

T1 −
(y+θ)T 2

1
2

)
(21)

Total cost TC(T)
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Total cost is the sum of the production cost, setup cost, holding cost and deteriorating cost. They
are grouped after evaluating each cost individually.

1. Production cost =
DCP = (x+ yI(t))Cp (22)

2. Setup cost =
C0

T
(23)

3. Holding cost

=
Ch

T

[∫ T1

0

Pc − x
y+θ

(
1− e−(y+θ)t

)
dt +

∫ T

T1

x
y+θ

(
e(y+θ)(T−t)−1

)
dt
]

=
Ch

T


Pc − x
(y+θ)2

(
(y+θ)T1 + e−(y+θ)T1 −1

)
− x

(y+θ)2

(
1+(y+θ)T − e(y+θ)(T−T1)− (y+θ)T1

)


=
Ch

T


Pc − x
(y+θ)2

(
e−(y+θ)T1−1 +(y+θ)T1 −1

)
+

x
(y+θ)2

(
e(y+θ)(T−T1)− (y+θ)(T −T1)−1

)
 (24)

4. Deteriorative cost =

θCd

T


Pc − x
(y+θ)2

(
e−(y+θ)T1−1 +(y+θ)T1 −1

)
+

x
(y+θ)2

(
e(y+θ)(T−T1)− (y+θ)(T −T1)−1

)
 (25)

Total cost = Production cost + Setup cost + Holding cost + Deteriorative cost

TC(T ) = DCP +
C0

T
+

(Ch +θCd)

T


Pc − x
(y+θ)2

(
e−(y+θ)T1−1 +(y+θ)T1 −1

)
+

x
(y+θ)2

(
e(y+θ)(T−T1)− (y+θ)(T −T1)−1

)
 (26)

Partially differentiating equation (28) with respect to T1

Pc−x
(y+θ)2

(
(y+θ)−(y+θ)e−(y+θ)T1

)
+

x
(y+θ)2

(
−(y+θ)e(y+θ)(T−T1)+(y+θ)

)
= 0

On simplification,

Partially differentiating equation (28) with respect to T, &− Pc−x
(y+θ)2

[
(y+θ)2T2

1
2 − (y+θ)3T3

1
6 +

(y+θ)4T4
1

24

](
e−(y+θ)T1+(y+θ)T1−1

)
&+ x

(y+θ)2

[
(y+θ)Te(y+θ)(T−T1)−(y+θ)T−e(y+θ)(T−T1)+(y+θ)(T−T1)+1

]
= C0

(Ch+θCd)
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This equation is reduced to the fourth-order equation and then the third order equation in T.
− (Pc − x)

[
T 2

1
2

−
(y+θ)T 3

1
6

+
(y+θ)4T 4

1
24

]

+
x

(y+θ)2

(y+θ)2T (T −T1)+
(y+θ)3T (T −T1)

2

2
+

(y+θ)4T (T −T1)
4

6

− (y+θ)2(T −T1)
2

2
− (y+θ)3(T −T1)

3

6
− (y+θ)4(T −T1)

4

24




= C0

Ch+θCd
.

Substituting the value of T1 and simplifying,

− (Pc − x)x2T 2

2Pc
2 +

x(Pc − x)T 2

Pc
− x(Pc − x)2T 2

2Pc
2

+
(Pc − x)(y+θ)x3T 3

6Pc
3 +

x(y+θ)(Pc − x)2T 3

2Pc
2 − x(y+θ)(Pc − x)3T 3

6Pc
3

− (Pc − x)(y+θ)2x4T 4

24Pc
4 +

x(y+θ)2(Pc − x)3T 4

6Pc
3 − x(y+θ)2(Pc − x)T 3

24Pc
4 −


= C0

Ch+θCd
,

which is the fourth order equation.

This fourth order equation is further reduced to third order equation as follows:

x(Pc − x)T 2

2Pc
+

x(Pc − x)(y+θ)(2P2
c −2Pc)T 3

6P3
c

=
C0

Ch +θCd

On simplification,

x(Pc − x)(y+θ)(2Pc − x)T 3 +3Pcx(Pc − x)T 2 =
6Pc

2C0

Ch +θCd
(27)

Note: when b = 0 and a is replaced by D then T =
√

2PcC0
D(Pc−D)(Ch+θCd)

.

Numerical example 2

The following values are given:

Production rate Pc = 500 units, Demand rate D = 450 units, Setup cost per set C0= 130, Holding
cost per unit per unit time Ch = 13, Production cost per unit CP= 130, Deteriorative cost per unit
Cd = 130, Rate of Deteriorative item θ = 0.01, Selling price per unit P = 150,

Constant demand rate in SDD x = 450, Coefficient of constant demand rate in SDD y = 0.1

Optimum solution

The solution is obtained as follows:

Optimum cycle time T= 0.6277, Optimum quantity Q = 282.48, Production time T1 = 0.5649,
Maximum inventory Q1= 28.24, Production cost = 58500, Setup cost = 207.09, Holding cost =
183.61, Deteriorative cost = 18.36, Total cost = 58909.06, Total sales = 67500, Total profit =
8590.93

Sensitivity analysis and discussion

In order to assess the relative impact of the different input parameters on the solution quantity, a
systematic sensitivity analysis was performed on the above example.
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Sensitivity Analysis with respect to Rate of Deteriorative items (θ )

Table 5 shows a study of the relationship of the rate of deteriorative items with cycle time,
optimum quantity, production time, maximum inventory, setup cost, holding cost deteriorating
cost, total cost and total profit. There is a positive relationship between the increase in the rate
of deterioration for items θ and setup costs, deteriorating costs, and total costs, while there is a
negative relationship between the increase in the rate of deterioration for items θ and cycle time,
optimum quantity, production time, maximum inventory, holding cost and total profit.

Table 5 – Result of sensitivity analysis with respect to deteriorative items.

θ T Q T1 Q1 Setup cost Holding cost DC Total cost Profit
0.01 0.6277 282.48 0.5649 28.24 207.09 183.61 18.36 58909.06 8590.93
0.02 0.6006 270.31 0.5406 27.03 216.41 175.70 35.14 58927.25 8572.74
0.03 0.5768 259.57 0.5191 25.95 225.37 168.72 50.61 58944.70 8555.29
0.04 0.5555 250.00 0.5000 25.00 233.99 162.50 65.00 58961.49 8538.50
0.05 0.5364 241.41 0.4828 24.14 242.32 156.91 78.45 58977.70 8522.29
0.06 0.5191 233.63 0.4672 23.35 250.38 151.81 91.11 58993.37 8506.62
0.07 0.5034 226.56 0.4531 22.65 258.20 147.26 103.08 59008.55 8491.44
0.08 0.4890 220.08 0.4401 22.00 265.80 143.05 114.44 59023.30 8476.69
0.09 0.4758 214.12 0.4282 21.41 273.20 139.17 125.26 59037.64 8462.35
0.10 0.4635 208.61 0.4172 20.86 280.42 135.60 135.60 59051.62 8448.37

4.3 Production inventory model for deteriorative items with price dependent demand

This model is developed for deteriorating inventory model in which demand is Price-dependent
demand that is D = (a−bP), where a denotes a constant demand in PDD > 0 and b is coefficient
of demand in PDD >0.

During the production stage, the inventory of good items increases due to production but de-
creases due to demand and rate of perishable items. Thus, the inventory differential equation
is

d
dt

I(t)+θI(t) =Pc−(a−bP),0≤t≤T1 (28)

The inventory differential equation during the consumption period with no production and
subsequent reduction in the inventory level due to the rate of perishable items is given by

d
dt

I(t)+θ I(t) =−(a−bP), T1≤t≤T (29)

With the boundary conditions,

I(0) = 0,I(T1) =Q1,I(T) = 0 (30)

From the equation (17), the solution of the differential equation is

I(t) =
Pc − (a−bP)

θ

(
1− e−θ t

)
(31)
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Note: when b= 0 and a replaced by D then I(t) = Pc−D
θ

(
1− e−θ t

)
which is the basic inventory

model.

From the equation (18), the solution of the differential equation is

I(t)
a−bP

θ

(
eθ(T−t)−1

)
(32)

Note: when b= 0 and a replaced by D then I(t) = Pc−D
θ

(
1− e−θ t

)
which is the basic inventory

model.

To find Q: From the equation (19) and (21),

I(t)
a−bP

θ

(
eθ(T−t)−1

)
(33)

To find T1 and Q1: From the equation (20) and (21)

Pc − (a−bP)
θ

(
1− e−θT1

)
=

a−bP
θ

(
eθ(T−t)−1

)
(34)

On simplification, T1 =
(a−bP)T

Pc

From the equations (19) and (20),

Q1 = (Pc − (a−bP))T1 (35)

Total cost TC (T)

Total cost is the sum of the production cost, setup cost, holding cost, and deteriorating cost. They
are grouped after evaluating each cost individually.

1. Production cost =
DCp = (a−bP)Cp (36)

2. Setup cost =
C0

T
(37)

3. Holding cost =

Ch

T

[∫ T1

0

PC − (a−bP)
θ

(
1− e−θr

)
dt+

∫ T

T1

(a−bP)
θ

(
eθ(T−t)−1

)
dt
]

=
Ch

T

[
PC − (a−bP)

θ 2

(
θT1 + e−θT1 −1

)
− a−bP

θ 2

(
1+θT − eθ(T−T1)−θT1

)]
=

Ch

θ 2T

[
(PC − (a−bP))

(
θT1 + e−θT1 −1

)
− (a−bP)

(
1+θT − eθ(T−T1)−θT1

)]
(38)

4. Deteriorative cost

=
θCd

θ 2T

[
(PC − (a−bP))

(
θT1 + e−θT1 −1

)
− (a−bP)

(
1+θ(T −T1)− eθ(T−T1)

)]
(39)
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Total cost = Production cost + Setup cost + Holding cost + Deteriorative cost

TC(T ) = DCp +
C0

T
+

Ch +Cd

θ 2T

[
∧(PC − (a−bP))

(
θT1 + e−θT1 −1

)
∧− (a−bP)

(
1+θ(T −T1)− eθ(T−T1)

)] (40)

Partially differenting equation (43) with respect to T1

(PC − (a−bP))(−θe−θT1 +θ)− (a−bP)(−θ +θeθ(T−T1)) = 0

On simplification.

Partially differentiating equation (43) with respect to T,[
∧− (PC − (a−bP))

(
e−θT1 +θT1 −1

)
∧−T

{
(a−bP)(θ −θeθ(T−T1))

}
+(a−bP)

(
1+θ(T −T1)− eθ(T−T1)

)]= θ 2C0

Ch +θCd

On simplification[
∧− (PC − (a−bP))

(
e−θT1 +θT1 −1

)
∧+θ(a−bP)T (eθ(T−T1)−1)+(a−bP)

(
1+θ(T −T1)− eθ(T−T1)

)]= θ 2C0

Ch +θCd

This equation is now reduced to the fourth-order equation and then the third order equation in T.
− (PC − (a−bP))T 2

1
2

+
θ(PC − (a−bP))T 3

1
6

− θ 2(PC − (a−bP))T 4
1

24

+(a−bP)

T (T −T1)+
θT (T −T1)

2

2
+

θ 2T (T −T1)
3

6

− (T −T1)
2

2
− θ(T −T1)

3

6
− θ 2(T −T1)

4

24



=
C0

Ch +θCd

Substituting the value of T1, and simplifying

(PC − (a−bP))θ(a−bP)(2PC − (a−bP))T 3

6P2
C

+
(PC − (a−bP))(a−bP)T 2

2PC
=

C0

Ch +θCd
.

On simplification,

θ(2PC − (a−bP))T 3 +3PCT 2 =
6P2

CC0

(Ch +θCd)(PC − (a−bP))(a−bP)
,

which is the optimum solution of T in the third order equation.

Therefore,

T =

√
2PCC0

(a−bP)(Ch +θCd)(PC − (a−bP))
. (41)

Note: when b = 0 and a replaced by D, then T =
√

2PCC0
D(PC−D)(Ch+θCd)

.
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1. When x=1, y = 0, then (16) becomes
θ(2Pc − (a−bP))T 3 +3PcT 2 = 6Pc

2C0
(Ch+θCd)((Pc−(a−bP))(a−bP) which is the price dependent demand

as per equation (45).

2. When a = 1 and b = 0 then (16) becomes
(y + θ)(2Pc − x)T 3 + 3PcT 2 = 6P2

c C0
(Ch+θCd)x(Pc−x) Which is stock dependent demand as per the

equation (30).

Illustrative example 3

The following values are given:

Production rate P = 500 units, Demand rate D = 450 units, Setup cost per set C0= 130, Holding
cost per unit per unit time Ch = 13, Production cost per unit CP= 130, Deteriorative cost per unit
Cd = 130, Rate of Deteriorative item θ = 0.01, Selling price per unit PS= 150, Constant demand
rate in PDD a = 465, Coefficient of Constant demand rate in PDD = 0.1

Optimum solution: The solution is obtained as follows.

Third order equation is 2750T 3 +750000T 2 −303030.30 = 0

Optimum cycle time T= 0.6349, Optimum quantity Q = 285.70, Production time T1 = 0.5714,
Maximum inventory Q1= 28.57, Production cost = 58500 , Setup cost = 204.75, Holding cost =
185.71 , Deteriorative cost = 18.57, Total cost = 58909.03 , Total sales = 67500, Total profit =
8590.96.

Sensitivity analysis and discussion

In order to assess the relative impact of the different input parameters on the solution quantity,
systematic sensitivity analysis was performed on the above example.

4.3.1. Sensitivity Analysis with respect to Rate of Deteriorative items (θ )

Table 6 shows a study of the rate of the deteriorative items with cycle time, optimum quantity,
production time, maximum inventory, setup cost, and holding cost deteriorating cost, total cost
and total profit. There is a positive relationship between the increase in the rate of deterioration
for items θ with setup costs, deteriorating costs, and total costs, while there is a negative rela-
tionship between the increase in the rate of deterioration for items θ with cycle time, optimum
quantity, production time, maximum inventory, holding cost and total profit.
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Table 6 – Result of sensitivity analysis with respect to deteriorative items.

θ T Q T1 Q1 Setup cost Holding cost DC Total cost Profit
0.01 0.6349 285.70 0.5714 28.57 204.75 185.70 18.57 58909.03 8590.96
0.02 0.6072 273.25 0.5465 27.32 214.08 177.61 35.52 58927.22 8572.77
0.03 0.5828 262.27 0.5245 26.22 223.04 170.48 51.14 58944.67 8555.32
0.04 0.5611 252.50 0.5050 25.25 231.67 164.13 65.65 58961.45 8538.54
0.05 0.5416 243.74 0.4874 24.37 240.00 158.43 79.21 58977.65 8522.34
0.06 0.5240 235.81 0.4716 23.58 248.07 153.28 91.96 58993.32 8506.67
0.07 0.5080 228.60 0.4572 22.86 255.90 148.59 104.01 59008.50 8491.49
0.08 0.4933 222.00 0.4440 22.20 263.50 144.30 115.44 59023.25 8476.74
0.09 0.4798 215.93 0.4318 21.59 270.90 140.36 126.32 59037.58 8462.40
0.10 0.4674 210.33 0.4206 21.03 278.12 136.71 136.71 59051.56 8448.43

5 COMPARATIVE STUDY

A comparative study was carried out between stock dependent demand, price dependent demand
and integrated stock and price dependent demand, fixing the deterioration rate at a low value of
0.01. From the comparative study it is observed that the holding cost rate is very low in integrated
Stock and Price dependent demand rather than in Stock dependent demand and Price dependent
demand individually. Also it is observed that when demand value is kept equal in all the three
models the values obtained for total sales are also equal in all the three models for comparative
purpose.

Table 7 – Comparative Study.

S.No. Inventory Stock Dependent Price Dependent Stock and Price
Parameters Demand Demand Dependent Demand

1. Optimum cycle time 0.6277 0.6349 0.5558
2. Optimum quantity 282.48 285.70 250.12
3. Production time 0.5649 0.5714 0.5002
4. Maximum inventory 28.24 28.57 25.01
5. Demand 450 450 450
6. Production cost 58500.00 58500.00 58500.00
7. Setup cost 207.09 204.75 233.88
8. Holding cost 183.61 185.71 162.58
9. Deteriorative cost 18.36 18.57 16.25
10. Total Cost 58909.06 58909.03 58912.72
11. Total Sales 67500.00 67500.00 67500.00
12. Total profit 8590.93 8590.96 8587.27
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6 CONCLUSION AND FUTURE STUDIES

The price and stock dependent demand for deteriorating items was included in this study’s in-
ventory model. Instead of assuming constant values for variables such as supply and demand,
the model makes use of actual assumptions about stock integration and price-dependent demand.
For example, the model assumes that the demand rate is constant. It has been shown that the ideal
cycle duration and the optimal lot size can be determined with the help of visual basic 6.0, which
has led to the development of a mathematical model and the production of an effective solution.

Each model contains a numerical example that was analyzed as well as the sensitivity of the result
examined. Sensitivity analysis shows that the two demand parameters a and b have the greatest
impact on the choice variables and the total profit function. This implies that organizations must
first focus on raising their income by improving client demand via well-designed marketing
tactics. In order to boost profitability, organizations should focus on reducing buying and ordering
expenses through negotiation with suppliers. To maximize profitability, the third stage might be
to lower the selling price. Companies should lower the unit selling price for promoting demand
and enhance revenues if ordering and buying expenses are decreased.

Future studies: The suggested model may be further developed in a variety of ways.

1. For example, supposing that the demand rate is a non-linear selling price function, stock level,
or time, is one expansion that might be considered.

2. There are many other alternatives, such as taking into account scarcities, the rate at which
objects degrade, and the worth of money in relation to the passage of time.

3. The influence that advertising has on the demand function may also be taken into account.

4. One further way is to model the demand as a time function.

5. Additionally, the time value concept might be introduced.
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