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ABSTRACT. We propose a new method of depth migration based on a constant density variable velocity wave equation in the space-frequency domain. A complex

Padé approximation of the wave equation evolution operator is used for wavefield extrapolation. This method mitigates the inaccuracies and instabilities due to evanescent

waves and produces images with fewer numerical artifacts than those obtained with a real Padé approximation of the exponential operator, mainly in media with strong

velocity variations. Tests on zero-offset data from the SEG/EAGE salt model and the 2D Marmousi prestack dataset show that the proposed migration method can handle

strong lateral variations and also has a good steep dip response. We compare the results of the proposed method with those obtained using split-step Fourier (SSF),

phase shift plus interpolation (PSPI) and Fourier finite-difference (FFD) methods.

Keywords: depth migration, one-wave equation, complex Padé approximation, prestack migration.

RESUMO. Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domı́nio da freqüência.

Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões

e instabilidades devido às ondas evanescentes e produz imagens com menos ruı́dos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o

operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de

tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também

tem uma boa resposta para refletores com mergulhos ı́ngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF),

phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).

Palavras-chave: migração em profundidade, equação unidirecional da onda, aproximação de Padé complexa, migração pré-empilhamento.
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INTRODUCTION

Wave equation migration methods perform better imaging than
ray-based migration methods in media with strong lateral velocity
variations. The majority of wave equation methods are based on
solving one-way acoustic wave equation. There are many diffe-
rent methods to numerically solve a given one-way wave equa-
tion. These methods can be grouped into three classes: Fourier
methods (Stoffa et al., 1990; Gazdag & Sguazzero, 1984) sol-
ved in the wavenumber domain; finite-difference methods (FD)
(Claerbout, 1985; Hale, 1991) and mixed methods that are a li-
near combination of spectral and Fourier finite-difference methods
(FFD) (Ristow & Rühl, 1994). In both FD and FFD migration
methods, the purely real Padé approximation or a simple Taylor
expansion is usually used to approximate the square-root opera-
tor. Real operators cannot handle evanescent waves (Millinazzo
et al., 1997), to deal with this problem they proposed a complex
Padé approximation.

The complex Padé expansion was previously used in ap-
plied geophysics. Zhang et al. (2003) used the method in finite-
difference migration however its implementation was not efficient
for wide-angle migration. Zhang et al. (2004) derived a split-step
complex Padé-Fourier solution for one-way equation using both
[1/1] and [2/2] Padé approximations. Recently, Amazonas et al.
(2007) used the complex Padé approximation for wide-angle FD
and FFD prestack depth migration. These works show that com-
plex Padé approximation mitigates the inaccuracy and instability
due to evanescent waves.

We use the exact acoustic wave equation to derive the down-
ward continuation operator, instead of starting from an one-way
wave equation. The propagation of the wavefield from one depth
level to the next is carried out by the complex Padé approxima-
tion of the exact downward continuation operator. The discreti-
zed approximation of this operator produces a tridiagonal linear
system which is solved to obtain the extrapolated wavefield from
the previous one.

In the following sections, we derive the FD Padé solution for
the wave equation using the complex Padé approximation. Then
we present zero-offset migration results for the SEG/EAGE salt
model. Next, the 2D Marmousi dataset is used to test the prestack
shot-record depth migration scheme that is developed, based on
the FD method using complex Padé approximation propagators.
The cross-correlation between source and receiver wavefields is
applied for prestack imaging condition. A comparison with the
standard (real-valued) FD, FFD, Fourier split-step, PSPI and our
method is also given. The test results show that our FD migra-
tion method is capable of imaging structures with strong lateral

velocity variation.

THEORY AND THE METHOD

The finite-difference solution method is based on a depth extra-
polation of the temporally transformed constant density acoustic
wave equation given by:

∂2 P

∂z2
= −

ω2

c2
P −

∂2 P

∂x2
−

∂2 P

∂y2
, (1)

where P(x, y, z, ω) denotes the Fourier transform of the pres-
sure field p(x, y, z, t), ω is the temporal frequency, x and y
are the horizontal coordinates, z is the depth and c(x, y, z) is
the velocity.

The wave equation may be spatially discretized on a uniform
mesh (x, y, z) followed by a selection of a second derivative ap-
proximation to transform it into a system of ordinary differential
equations (Kosloff et al., 2006) as follows,

d2 P (x, y, z, ω)

dz2
= −

ω2

c2
o

D P (x, y, z, ω) , (2)

where,

D =
c2

o

c2 (x, y, z)
+

c2
o

ω2
∇2 (3)

and co is a constant velocity (usually chosen as the minimum
velocity in each layer).

We assume that within each layer (z, z +1z) the velocity is
vertically constant. Then the upward propagating solution to (2)
within a layer can be formally written as

P (x, y, z + 1z, ω)

= exp
(

i
ω 1z

co

√
D

)
P (x, y, z, ω) .

(4)

Introducing δ ≡
ω 1z

co
, we have

P (x, y, z +1z, ω) = exp(iδ
√

D) P (x, y, z, ω) . (5)

The operator D in (3) contains both positive and negative va-
lues which respectively correspond to propagating and evanes-
cent waves (Kosloff et al., 2006).

A complex treatment of the exponential term is applied to
mitigate inaccuracy and instabilities due to the evanescent waves
(Milinazzo et al., 1997; Zhang et al., 2004). This can be done
using a complex Padé approximation of the square root.

Before applying the Padé approximation, the branch cut of the
square-root is rotated by an angle θ . The operator in equation (5)
can be rewritten as

δ
√

D = δ′
√

D′ + 1 , (6)
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where δ′ = δ ei θ/2 and D′ = D e− i θ − 1 . Then

P(x, y, z + 1z, ω) = eiδ′
eiδ′ Z P(x, y, z, ω) . (7)

where, Z =
√

D′ + 1 − 1 .
Applying Padé approximation to

√
D′ + 1 we have (Zhang,

et al., 2003):

Z =
√

D′ + 1 − 1 =
N∑

n=1

an D′

1 + bn D′ , (8)

where N defines the order of the Padé expansion, an and bn are
real-valued coefficients. This expansion permits us to write

eiδ′ Z =
N∏

n=1

exp
(

ian D′

1 + bn D′

)
. (9)

Considering only the first-order approximation, equation (8)
becomes

Z ∼=
a1 D′

1 + b1 D′ =
a D′

1 + b D′ . (10)

where a = 1/2 and b = 1/4 for conventional [1/1] Padé
expansion.

To derive a finite-difference representation of the downward
continuation operator, we use the following approximation of the
exponential operator in equation (9), which is second-order ac-
curate and unitary:

e±i x ∼=
1 ± i x/2

1 ∓ i x/2
. (11)

The continuation operator, equation (7), is then approximated as

P (x, y, z + 1z, ω)

= eiδ′ (2 + m D′)

(2 + m∗ D′)
P(x, y, z, ω) .

(12)

where, m = 2 b + ia δ′ and m∗ its complex conjugate. We
implemented this algorithm for 2D case, accordingly,

D =
c2

o

c2
+

c2
o

ω2

∂2

∂x2
. (13)

We use a second-order finite-difference scheme to approxi-
mate the partial derivative on a regular grid. Using the notation
Pn

i ≡ P(xi , zn, ω), that is given by:

∂2 Pn
i

∂x2
∼=

Pn
i+1 − 2 Pn

i + Pn
i−1

(1x)2
. (14)

Substituting this finite-difference approximation into equation
(12), we obtained after some algebra the linear system

Nx∑

j=1

Ai j Pn+1
i = eiδ′

Nx∑

j=1

Bi j Pn
i ; i = 1, . . . , Nx (15)

where Nx is the number of grid points along the x−coordinate.
Using the Kronecker symbol δi, j , the matrices Ai j and Bi j can
be expressed as

Ai j = β ′δi, j − α′ (δi, j+1 + δi, j−1
)

,

Bi j = βδi, j − α
(
δi, j+1 + δi, j−1

)
,

with

β ≡ 2 +
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0
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(
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0
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0
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)

m∗e−iθ ,

α ≡
c2

0

c2
me−iθ , α′ ≡

c2
0

c2
m∗e−iθ .

The matrices Ai j and Bi j in equation (15) are tridiagonal.
Solving this linear system we can obtain Pn+1

i , the wavefield at
zn + 1z, from the known wavefield Pn

i at depth zn . In conse-
quence of equation (9), this scheme can be applied recursively,
with appropriate coefficients an and bn , to include higher-order
terms in the extrapolation.

Poststack migration

The inputs to the proposed migration method using the com-
plex Padé approximation are the zero-offset data and a reasona-
ble estimate of the velocity distribution. The wavefield is extra-
polated in depth, and the imaging condition is accomplished by
the exploding-reflector model. The migrated image is obtained at
each depth level by adding all frequencies. The output is a migra-
ted depth section in depth domain.

Migration example – SEG/EAGE salt model

We used an exploding-reflector dataset for a 2D slice of the
SEG/EAGE salt model to test the migration imaging capability of
the complex Padé FD method. The velocity model is shown in
Figure 1. The dataset consists of 1290 traces; each trace has
626 time samples with a sampling interval of 8 ms. The velo-
city model contains 1290 by 300 nodes with a node spacing of
12.192 m along both the horizontal and vertical directions. For
comparison, we also apply the split-step Fourier (SSF), Fourier
finite-difference (FFD) and phase shift plus interpolation (PSPI)
methods to the same dataset. Figures 2 and 3 show images with
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Figure 1 – SEG/EAGE salt model velocity field.

θ = 0 (real Padé approximation) and 5 degrees, respectively.
Some migration artifact is apparent in the result presented in Fi-
gure 2. Taking θ 6= 0 (Fig. 3) we obtain a image with fewer
evanescent-energy artifacts than those shown in Figure 2. Fi-
gure 4 shows the image obtained with SSF method using the
average velocity as a reference velocity. Figure 5 was obtained
with PSPI using 5 reference velocities and the Figure 6 shows
the result with FFD, now using the minimum velocity as a refe-
rence velocity. Comparing the SSF (Fig. 4), PSPI (Fig. 5) and
FFD (Fig. 6) and the proposed method (Fig. 3), we see that our
method also gives good images of the top and base interfaces of
the salt body. Moreover, the image in Figure 3 has fewer nume-
rical artifacts than those obtained with SSF and FFD migration
methods.

Figure 2 – Migration result for θ = 0◦ using real Padé approximation.

Figure 3 – Migration result for θ = 5◦ using complex Padé approximation.

Figure 4 – Split-step Fourier (SSF) migration result.
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Figure 5 – PSPI migration result using 5 reference velocities.

Figure 6 – Fourier finite-difference (FFD) migration result.

Prestack migration

Claerbout (1970, 1971) suggested that prestack migration could
be done by summing migrated common shot gathers (profiles).
Stolt & Benson (1986) applied the method to marine profiles.
In order to migrate shot profiles we need the temporal Fourier
transform of the recorded common shot profiles at the surface
PU (x, z = 0, ω), the interval velocity field c(x, z) and the
shot waveform PD(x, z = 0, ω).

The method can be summarized by the following steps (Claer-
bout, 1970, 1971):

1) Downward continuation of the source waveform, PD :

PD(x, z + 1z, ω) = L̃s PD(x, z, ω) . (16)

The downward extrapolation operator, L̃s , comes from equation
(12) and the downward continuation of the source constitutes a
forward modeling.

2) Downward continuation of the waveform recorded by re-
ceivers at the surface PU :

PU (x, z + 1z, ω) = L̃r PU (x, z, ω) . (17)

The downward continuation operator for the receivers, L̃r , comes
from equation (12).

3) Evaluation of the reflectivity function R, in frequency do-
main, can be formulated by the following equations:

PU (x, z + 1z, ω)

= PD(x, z + 1z, ω) R(x, z + | 1 z, ω) .
(18)

Multiplying both sides of equation (18) by the complex con-
jugate of PD , we have:

R(x, z + 1z, ω)

=
PU (x, z + 1z, ω)PD

∗(x, z + 1z, ω)

PD(x, z + 1z, ω)PD
∗(x, z + 1z, ω)

.
(19)

If equation (19) is inverse Fourier transform over frequency
and imaging condition of t = 0 at each z step is invoked, it
becomes (Claerbout, 1971):

R(x, z + 1z)

=
∑

ω

PU (x, z + 1z, ω)PD
∗(x, z + 1z, ω)

PD(x, z + 1z, ω)PD
∗(x, z + 1z, ω)

.
(20)

This imaging principle was proposed by Claerbout (1971) and
it can find in space those points where upgoing and downgoing
waves are time-coincident, which is where reflectors exist. In or-
der to cure a zero-divide problem, a small positive number ε(z)
can be added to the denominator in equation (20), but it is typi-
cally difficult to determine since it is data dependent.

The depth image is often obtained by cross-correlating these
two wavefields. For several shots it is given by:

R(x, z + dz)

=
∑

xs

∑

ω

PU (x, z + dz, ω; xs)PD
∗(x, z + dz, ω; xs).

(21)

2D Marmousi model

In this section we use the 2D Marmousi dataset to test our 2D
prestack shot-record depth migration scheme developed based on
the complex Padé expansion. The imaging condition is the zero
lag of cross-correlation of the downward continued upgoing and
downgoing wavefields. The velocity model is illustrated in the
Figure 7. Figure 8 shows the migrated sections using the first-
order FD method with rotation angles θ = 0◦ and θ = 10◦

Brazilian Journal of Geophysics, Vol. 27(1), 2009



“main” — 2009/7/23 — 11:53 — page 100 — #6

100 WAVE EQUATION DEPTH MIGRATION USING COMPLEX PADÉ APPROXIMATION

Figure 7 – Velocity model of 2D Marmousi dataset.

(a) (b)
Figure 8 – Comparison of the prestack depth migration results of the 2D Marmousi dataset obtained with the first-order FD complex Padé approximation method:
(a) θ = 0◦ and (b) θ = 10◦.

using only the first term of the equation (8). Figures 9a and 9b
further show the migration sections with the second- and third-
order FD method for θ = 10◦, respectively. The imaging re-
sult with the complex Padé propagations shows a significant im-
provement when compared with the FD imaging results using
the real Padé propagations. For comparison we also migrated
this dataset with the split-step Fourier (SSF) method using the
average velocity as a reference velocity (Fig. 10a) and the phase
shift plus interpolation (PSPI) algorithm (Fig. 10b) implemented
with 8 reference velocities for each depth extrapolation.

The results of FD migration using complex Padé approxima-
tion in Figure 9 are similar to the image SSF and PSPI. Some

differences between the images are concentrated upper left part of
the image, where the FD image lack focusing for the steep reflec-
tors associated to the faults. We believe these differences can be
reduced with a better choice of the rotation angle θ . Further study
is still needed to determine an optimum choice of this parameter
for each velocity model.

CONCLUSIONS

We have developed a complex Padé FD technique for seismic
migration. The method uses the acoustic wave equation direc-
tly. Using the Padé approximation of an exponential operator, our
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(a) (b)

Figure 9 – Prestack depth migration result of the 2D Marmousi dataset obtained: (a) with the second-order FD complex Padé approximation method for θ = 10◦.
(b) with third-order FD complex Padé approximation method for θ = 10◦.

(a) (b)

Figure 10 – Migration result obtained with: (a) the split-step Fourier method (b) with the PSPI method (8 reference velocities).

method allows the use of a larger grid spacing in depth. A complex
treatment of the propagation operator is used to treat the evanes-
cent waves and improve the stability of the numerical approxima-
tion. The synthetic results show that high quality images can be
obtained with this proposed approach. This technique could be
easily extended to the Fourier finite-difference method and also
can be improved by using second- or higher-order approximation
terms. Further study is still needed to determine the best rotation
angle for each velocity model.
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MILLINAZZO FA, ZALA CA & BROOKE GH. 1997. Square-root approxi-

mations for parabolic equation algorithms. J. Acoust. Soc. Am., 101(2):

760–766.

KOSLOFF D, TAL-EZER H, BARTANA A, RAGOZA E & SHABELANSKY

A. 2006. Three dimensional wave equation depth migration by a direc-

tion solution method. Expanded Abstracts 76th Ann. Inter. Mtg., SEG,

2490–2493.
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