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Abstract Most ecologic studies use geographical areas as units of observation. Because data
from areas close to one another tend to be more alike than those from distant areas, estimation
of effect size and confidence intervals should consider spatial autocorrelation of measurements.
In this report we demonstrate a method for modeling spatial autocorrelation within a mixed
model framework, using data on environmental and socioeconomic determinants of the inci-
dence of visceral leishmaniasis (VL) in the city of Teresina, Piauf, Brazil. A model with a spheri-
cal covariance structure indicated significant spatial autocorrelation in the data and yielded a
better fit than one assuming independent observations. While both models showed a positive as-
sociation between VL incidence and residence in a favela (slum) or in areas with green vegeta-
tion, values for the fixed effects and standard errors differed substantially between the models.
Exploration of the data’s spatial correlation structure through the semivariogram should pre-
cede the use of these models. Our findings support the hypothesis of spatial dependence of VL
rates and indicate that it might be useful to model spatial correlation in order to obtain more
accurate point and standard error estimates.
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Resumo A maioria dos estudos ecoldgicos utiliza areas geogréaficas como unidades de observa-
¢cdo. Uma vez que as areas geograficamente préximas tendem a ser mais semelhantes do que as
distantes, as estimativas da magnitude do efeito e dos intervalos de confian¢ga devem levar em
conta a auto-correlacéo espacial das medidas. Neste estudo demonstramos um metodo para mo-
delar a auto-correlagao espacial dentro de um referencial de modelo misto, utilizando dados so-
bre determinantes ambientais e socio-econémicos da incidéncia de leishmaniose visceral (LV)
na cidade de Teresina, Estado do Piaui. Um modelo com uma estrutura de covariancia esférica
indicou uma auto-correlacgao espacial significativa nos dados e produziu melhor ajuste quando
comparado com outro modelo que pressupunha observacdes independentes. Embora ambos mo-
delos tenham demonstrado associacdes positivas entre incidéncia de LV e residéncia em favelas
ou areas com vegetagado verde, os valores para os efeitos fixos e erros-padréo diferiram substan-
cialmente entre os modelos. A estrutura da correlacdo espacial dos dados deve ser explorada atra-
vés do semivariograma, antes da utilizacéo destes modelos. Nossos achados favorecem a hipotese
da dependéncia espacial dos coeficientes de incidéncia de LV e sugerem que a modelagem da cor-
recéo espacial poderia ser Util para obter estimativas pontuais e de erros-padrédo mais acuradas.
Palavras-chave Leishmaniose Visceral; Analise Espacial; Estudos Ecolégicos; Epidemiologia
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Introduction

In ecologic studies, geographical areas are the
usual units of observation, data on outcome
are expressed as incidence rates, and data on
explanatory variables may include aggregate,
environmental or global measures (Morgen-
stern, 1998). Data taken within specific regions
(areal data) typically possess spatial structure,
in the sense that observations closer together
tend to be more alike than observations farther
apart (Cressie, 1991). Accordingly, areal data
can be considered a two-dimensional counter-
part of time series data, in which observations
are correlated in the single dimension of time.
As in the analysis of time series, it is important
to model the spatial correlation structure
among observations in order to obtain valid es-
timates of effect size, confidence intervals, and
significance levels (Cressie, 1991).

In this paper we describe a strategy for
modeling spatial covariance structure in eco-
logic studies within a mixed model framework.
The observed data in mixed models consist of
fixed effects, which define the expected values
of the observations, and random effects, which
define the variance and covariance of the ob-
servations (Littell et al., 2000). Since errors in
mixed models for spatial data are correlated,
spatial covariance is modeled through the er-
ror term. As an illustration of these methods,
we present data of an ecologic study of envi-
ronmental and socioeconomic determinants of
the incidence of visceral leishmaniasis (VL) in
Teresina, Piaui, Brazil.

Methods
Study area

Teresina, capital of the State of Piaui, was the
site of Brazil’s first urban epidemic of VL in 1980-
1985 (Costa et al., 1990). In a second epidemic,
from 1992 to 1996, more than 1,200 cases were
reported among a population of 650,000. Fac-
tors that favor transmission of Leishmania cha-
gasi by the sand fly vector Lutzomyia longipalpis
include the city’s tropical climate and vegetation.
Grass, shrubs, and sparse mango and palm trees
are found throughout the city, and tropical for-
est and farmland surround the urban periphery.

Data on visceral leishmaniasis

The age, date of diagnosis, and geographic lo-
cation of the residence of 1,061 persons with VL
in Teresina between 1993 and 1996 were ob-
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tained from the National Health Foundation
(Fundacao Nacional de Saude - FUNASA) and
confirmed from clinical and laboratory records
from all hospitals in Teresina. This figure repre-
sents approximately 95% of the total number
of cases reported to FUNASA during this peri-
od. It is likely that few cases of VL were over-
looked, since there is no alternative center for
treating the disease close to Teresina, and, by
law, all suspected and confirmed cases are re-
ported to FUNASA, which is the sole distribu-
tor of anti-leishmanial drugs in Brazil.

VL incidence rates were calculated for each
of the city’s 494 census tracts using data from
the 1991 and 1996 national censuses. For the
analysis, the original census tracts were con-
solidated into 430 areas (“consolidated census
tracts”) so that at least one case of VL would be
expected in each tract had cases been distrib-
uted uniformly throughout the city. Each of the
64 census tracts with less than one expected
case of VL was joined to an adjoining census
tract with a similar socioeconomic profile. Cen-
sus tracts were considered neighbors if they
shared a common boundary. Similarity of so-
cioeconomic profiles was based on a score de-
rived by principal components analysis (SAS —
SAS Institute, 1996) of census data on house-
hold characteristics such as running water, in-
door plumbing, garbage collection, level of
schooling, and family income. Geographical
coordinates indicating the longitude and lati-
tude of its centroid identify each census tract.

Explanatory variables

From the 1991 census data, each consolidated
census tract was characterized as consisting of
a slum (favela) or non-slum as a proxy for its
socioeconomic status (SES).

Landscape features were identified by re-
mote sensing (RS) using a Landsat 5 Thematic
Mapper (TM) scene (6 bands, 30m resolution)
of Teresina from October 1995. Digital maps of
the consolidated census tracts were produced
using CartaLinx (The Clark Labs, 1998). IDRISI
software (The Clark Labs, 1997) was used to
overlay the digital map on the RS image to ex-
tract the land cover information for each con-
solidated census tract. Environmental features
were also characterized by the Normalized Dif-
ference Vegetation Index (NDVI). The NDVI is a
widely used vegetation index in remote sens-
ing and is defined as (Hay et al., 1996):

NDVI = (Ch2 - Chl)/(Ch2 + Chl)

where Ch1 is the reflectance from each pix-
el in the red wavelength band (Landsat band 3)
and Ch2 is the reflectance in the near-infrared



wavelength band (Landsat band 4). NDVI varies
from -1.0 to +1.0 with positive values generally
indicating green vegetation, and negative val-
ues indicating lack of green vegetation. NDVI
correlates positively with rainfall and humidity,
factors that are related to sand fly abundance
(Hay et al., 1996; Thomson et al, 1997). In this
study we determined the mean NDVI over the
pixels in each consolidated census tract.

Statistical analysis

e Modeling the spatial covariance structure

A general model for our data can be conceptu-
alized as follows:

LINC; = By + ByNDVI; + B,SES; + ¢; )

The natural logarithm of the VL incidence
rates for the ith consolidated census tract (LINC;)
is the continuous outcome variable, the explana-
tory variables are NDVI; and SES; for each ith con-
solidated census tract, and e; is the random er-
ror. Unlike inference from the ordinary least
squares regression, inference from this model
cannot assume an independent error structure
because of spatial autocorrelation. Accordingly,
we employ a mixed linear model in which spatial
autocorrelation is modeled through the error
term, and the data are allowed to exhibit correla-
tion and heteroscedasticity, thereby generalizing
the standard linear model. The mixed model
framework permits modeling of not only the
fixed-effects parameters 3, but their variances
(Var) and covariances (Cov) as well.

In general, spatial correlation models can
be defined by letting (Littell et al., 1996):

Var(ej) = 0;2 and Cov(e;,g)) = 0j; )

Let the spatial location of LINC; be ex-
pressed by s;, which is specified by the two co-
ordinates, latitude and longitude. The covari-
ance is assumed to be a function of the dis-
tance (dj;) between locations s; and s;, and has
the general form (Littell et al., 1996):

Cov(e;.ej) = o2[f(d)] (3)

We have chosen to model f(d;;) by using the
spherical function, available in the procedure
MIXED of SAS software:

f(dj;) = [1-1.5(d;;/p)+0.5(d;j/p)3]1(d;<p)  (4)

This model indicates that the degree of cor-
relation decreases as the distance between two
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observations increases, but it may not ade-
quately account for abrupt changes over rela-
tively small distances (Littell et al., 1996). Itis
possible to model these changes by adding an
additional parameter 0,2, the nugget. The result-
ing covariance models with a nugget effect are:

Var(e;) = 02 + g2 and Cov(ei,ej) = Gz[f(dij)] (5)

Conveniently, some parameters involved in
models (4) and (5) correspond to parameters
described by the semivariogram, the standard
statistical measure of spatial variability as a
function of the distance between observations
(Cressie, 1991). In this model the parameters
0)2, 02 + 0;2, and p correspond to the geostatis-
tics parameters nugget, sill, and range, respec-
tively (Cressie, 1991). The nugget represents
micro-scale variation or measurement error.
The sill corresponds to the variance of the ran-
dom field. The range is defined as the distance
at which the semivariogram reaches the sill.
For distances less than the range, observations
are spatially correlated. For distances greater
than or equal to the range, spatial correlation is
effectively zero.

SAS PROC MIXED does not compute the
semivariogram per se, but estimates of the
range, sill, and nugget from other software
packages can facilitate working with SAS PROC
MIXED, as described below (Littell et al., 1996).

Estimates of the variance and covariance of
these models are obtained through a Restrict-
ed Maximum Likelihood (REML) approach,
and estimates of 3s are obtained through solu-
tions to mixed model equations (Littell et al.,
1996).

e Modeling strategy

The first strategy in the fitting process was to
explore the empirical semivariogram of the
residuals of model described in (1), and to fit a
model for it using S+SPATIALSTATS (Figure 1).
The semivariogram detects spatial dependence
in the residuals and provides estimates for the
sill, nugget, and range, for use within SAS
PROC MIXED. Because most models for spatial
covariance structure require that the assump-
tion of isotropy (spatial dependence is the
same in all directions) (Cressie, 1991), we next
estimated empirical semivariograms for 4 dif-
ferent directions (Figure 2). Correlation struc-
tures were fairly similar in all 4 directions, sug-
gesting that the assumption of isotropy holds
for the VL data.

Figure 1 depicts the best model for residu-
als of equation (1). The spherical model fit the
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Figure 1

Fitted spherical semivariogram for the visceral leishmaniasis data.
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data well, and suggests a range of about 2,200
meters, a nugget effect of about 0.25, and a sill
of approximately 0.45. Based on these esti-
mates, the spatial covariance for the residuals
of equation (1) was modeled using the spheri-
cal function in SAS PROC MIXED. This model
was then compared to the independent model
(that ignored the presence of spatial correla-
tion), using the Likelihood Ratio Test (based on
-2REML Log Likelihoods).
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Results

The results obtained with the spherical model
for the covariance structure indicate that there
is significant spatial correlation in the VL data.
According to this model, the estimate for the
range is 2101.3, indicating spatial correlation
in VL rates of consolidated census tracts that
are within 2km of each other. The estimates for
the nugget and the sill were 0.28 and 0.51, re-
spectively.

The model with a spherical covariance
structure fit the data better than the indepen-
dence model (p < 0.0001, Likelihood Ratio
Test) (Table 1). Both models provided the same
qualitative result, that is, living in a favela
and/or in areas covered by green vegetation
was positively associated with the incidence of
VL. However, the values for the fixed effects
and standard errors of mean NDVI changed
substantially when moving from the indepen-
dence model to the spherical model, with a
relative increase of about 60% and 17%, re-
spectively. No major changes were detected in
the fixed effects or standard errors associated
with SES.

Discussion

Several studies have used different approaches
to explore spatial autocorrelation when model-
ing areal data (Clayton et al., 1993; Cook &
Pocock, 1983; Cressie & Chan, 1989; Leyland et
al., 2000; Richardson et al., 1995). Following
previous studies (Penello et al., 1999; Pickle,
2000; Pickle et al., 1999), in this report we use a
mixed model framework for modeling areal da-
ta. Compared to models that do not take spa-
tial autocorrelation of measurements into ac-
count, this approach provides more valid esti-
mates for fixed effects and standard errors, and
provides a description of the spatial structure
underlying the data. Modeling spatial depen-
dence in this way in essence requires only a
single step using a restricted maximum likeli-
hood estimation process.

We identified three important issues for the
researcher who intends to use these models.
The first is that most models for spatial covari-
ance structure require that the assumption of
isotropy hold, which can be tested by compar-
ing empirical semivariograms for different di-
rections (Cressie, 1991). When the isotropic as-
sumption is violated, strategies for removing
large-scale variation (spatial gradient), such as
median polishing techniques should be tried
(Cressie & Read, 1989).



The second issue pertains to the choice of a
model for spatial covariance. A preliminary ex-
ploration of the features of the semivariogram
is highly recommended to obtain a sense of the
spatial correlation structure. This step will fa-
cilitate the selection of the best model from the
various available models such as the linear, lin-
ear-log, Gaussian, and others, and avoid the
extensive effort required to sort these out as
well as problems with convergence.

The third issue refers to the fact that Gen-
eralized Linear Mixed Models with the Poisson
link function are the most appropriate way of
dealing with count data. Unfortunately, proce-
dures for running models in programs such as
SAS PROC GEE at present do not allow the
specification of spatial covariance structures.
Therefore, it is necessary to run SAS PROC
MIXED using transformed data, with the at-
tendant loss of direct interpretability of the
regression coefficients and covariance para-
meters.

Our application of this approach to the da-
ta from Teresina supports the hypothesis of
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