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Abstract

In the last decades, the use of the epidemiologi-
cal prevalence ratio (PR) instead of the odds ra-
tio has been debated as a measure of association 
in cross-sectional studies. This article addresses 
the main difficulties in the use of statistical 
models for the calculation of PR: convergence 
problems, availability of tools and inappropri-
ate assumptions. We implement the direct ap-
proach to estimate the PR from binary regression 
models based on two methods proposed by Wil-
cosky & Chambless and compare with different 
methods. We used three examples and compared 
the crude and adjusted estimate of PR, with the 
estimates obtained by use of log-binomial, Pois-
son regression and the prevalence odds ratio 
(POR). PRs obtained from the direct approach 
resulted in values close enough to those obtained 
by log-binomial and Poisson, while the POR 
overestimated the PR. The model implemented 
here showed the following advantages: no nu-
merical instability; assumes adequate probabil-
ity distribution and, is available through the R 
statistical package.

Prevalence Ratio; Logistic Models;  
Cross-Sectional Studies

Resumo

Nas últimas décadas, tem sido discutido o uso 
da razão de prevalência (RP) ao invés da razão 
de chance como a medida de associação a ser 
estimada em estudos transversais. Discute-se 
as principais dificuldades no uso de modelos 
estatísticos para o cálculo da RP: problemas de 
convergência, disponibilidade de ferramentas e 
pressupostos não apropriados. O objetivo deste 
estudo é implementar uma abordagem direta 
para estimar a RP com base em modelos logísti-
cos binários baseados em dois métodos propos-
tos por Wilcosky & Chamblers, e comparar com 
outros métodos. Utilizou-se três exemplos e com-
parou-se as estimativas bruta e ajustada da RP 
obtidas pela função com as estimativas obtidas 
pelos modelos log-binomial, Poisson e razão de 
chance prevalente (RCP). As RP da abordagem 
proposta resultaram em valores próximos aos 
obtidos pelos modelos log-binomial e Poisson, 
e a RCP superestimou a RP. O modelo aqui im-
plementado apresentou as seguintes vantagens: 
não apresenta instabilidade numérica; assume a 
distribuição de probabilidades adequada; e está 
disponível no programa estatístico R.

Razão de Prevalências; Modelos Logísticos;  
Estudos Transversais
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Introduction

Over the past few decades, several authors 
1,2,3,4,5,6,7 have tried to determine the most ap-
propriate association measure to be used in 
cross-sectional studies. The consensus is that the 
prevalence odds ratio (POR) is only a good ap-
proximation of the prevalence ratio (PR) when 
the event of interest is rare 8. Logistic regression 
is the most popular statistical model used in es-
timating POR due to ease of interpretation and 
computational implementation. However, when 
the choice of association measure is the PR, and 
the event of interest is not rare, this model pro-
duces poor estimates. In such cases, several au-
thors have proposed alternatives to logistic re-
gression models to estimate the true PR.

Lee & Chia 9 were the first authors to use Cox 
models with Breslow’s modification (Breslow-
Cox model) to estimate prevalence ratios, but 
in the study, standard errors and, consequently, 
confidence intervals, were not calculated correct-
ly. The correction for standard errors obtained 
by Cox models had already been proposed 10,  
but were not considered. Barros & Hirakata 5 
used the fact that Breslow-Cox and Poisson mod-
els estimate the same effects 11 and used Pois-
son regression models with robust variance to 
estimate the PR. Zou 12 published a simulation 
study demonstrating the reliability of the Poisson 
model with robust variance to estimate PR in 2 
by 2 tables. The main issue with using a Poisson 
model to estimate PR is the misuse of a specific 
counting probability distribution to describe a 
response variable that is dichotomous (presence 
or absence of an outcome).

Skov et al. 4 used a generalized linear model 
with a binomial distribution and a log link (log-
binomial model) to directly estimate PR 13. Al-
though this model allows for directly estimating 
the PR and assumes a probability distribution 
that agrees with the type of the response vari-
able, the lack of convergence in the presence 
of continuous variables remains a problem. To 
solve this issue, Deddens et al. 6 introduced the 
COPY method for finding an approximation to 
the MLE when the log-binomial model fails to 
converge. Due to the convergence problem of the 
log-binomial model, Schouten et al. 14 proposed 
a simple data manipulation that allows for the 
use of logistic regression to obtain the PR. It con-
sists in modifying the data set by duplicating the 
lines where the event occurs and replacing the 
outcome from event to non-event 14,15,16.

Another approach – proposed by Wilcosky 
& Chambless 17, using the conditional and mar-
ginal methods 18 – involves a direct adjustment 
of epidemiological measures through binary re-

gression. An advantage of these methods is that 
they assume a probability distribution for a vari-
able with a binomial response, matching the na-
ture of the observed response variable in cross-
sectional studies. We find one article 19 that uses 
the Wilcosky & Chambless 17 method to estimate 
PR, but it did not mention the software imple-
mentation. Recently, R Core Team developed a 
software package in R (R package version 1.2; The 
R Foundation for Statistical Computing, Viena, 
Austria; http://www.r-project.org) for estimating 
marginal and conditional PRs and confidence in-
tervals via bootstrap and delta methods, but they 
have yet to publish a scientific article explaining 
the details of this package and the differences be-
tween the methods it utilizes to estimate PR.

In this article, we use a direct approach to 
estimate the prevalence ratio from binary re-
gression models based on methods proposed by 
Wilcosky & Chambless 17, and we compare the 
results to those obtained through different meth-
ods presented in the literature. Three different 
data sets are used to illustrate our study.

Methods

Based on the approach proposed by Wilcosky & 
Chambless 17, we use real and simulated data to 
compare PR estimates obtained by the marginal 
and conditional methods. Those estimates are 
also compared with the estimates obtained by 
the binomial, log-binomial and robust Poisson/
Cox models.

Using a logistic model, it is straightforward 
to estimate the probability of occurrence of a 
disease (denominated prevalence in transver-
sal studies) adjusted for two or more variables. 
Suppose, for example, that one has information 
about the diabetes status (1: yes/0: no), age (con-
tinuous) and obesity status (1: yes/0: no) of a 
defined population. With this information, one 
can obtain the adjusted probability of diabetes 
through the following equation:

(Equation 1),

where P is the probability that DIABETES = 1, β0, 
β1, β2 are regression coefficients estimated from 
the data. Note that exp(β2) estimates the odds ra-
tio for diabetes in obese individuals compared to 
non-obese individuals, adjusted by age. Howev-
er, if we are interested in obtaining the estimated 
PR for diabetes, adjusted by age, in obese and 
non-obese individuals, we can proceed in two 
ways, as described below: 
1)	 Marginal method: in each stratum of the vari-
able OBESITY (yes or no), the diabetes preva-
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lence is calculated for each age value included in 
the dataset using Equation 1. The PR is the ratio 
between the average of the prevalences in each 
stratum. Wilcosky & Chambless 17 refer to this es-
timate as the marginal prevalence ratio (MPR);
2)	 Conditional method: in each stratum of the 
variable OBESITY, the diabetes prevalence is cal-
culated using Equation 1, setting age as an aver-
age value obtained from the dataset. Thus, the 
ratio of the two prevalences can be calculated. 
Wilcosky & Chambless 17 refer to this estimate as 
the conditional prevalence ratio (CPR).

In the linear regression model, both methods 
estimate the same value. However, in the logistic 
regression model, we observed significant differ-
ences between the estimates of the two methods 
when p is close to zero or one.

According to Lee & Chia 9, the marginal meth-
od provides an internally adjusted measure, mak-
ing invalid any comparisons to external values of 
PR. With the conditional method, on the other 
hand, one can use default values as the average 
values of covariates, allowing for comparisons 
with other population studies that used the same 
default values. More details about the marginal 
and conditional methods can be found in Lee 20 
and Wilcosky & Chambless 17.

Asymptotic confidence intervals for the con-
ditional and marginal prevalence ratios were 
proposed by Flanders & Rhodes 21. The authors 
also presented an SAS (SAS Inc., Cary, USA) script 
for estimating and calculating the intervals of the 
conditional and marginal prevalence ratio. To the 
best of our knowledge, this was the only imple-
mentation of these measures to date.

The prevalence ratio estimation methods are 
illustrated in three different databases, all con-
taining a binary outcome Y, a binary exposure X, 
and at least one control variable Z.

Application 1: the first database was a toy 
example with 1,000 simulated observations and 
one continuous control variable. In this example, 
we simulated 1,000 binary outcomes with a bi-
nary exposure, X, and a continuous confound-
ing variable, Z. The exposure was sampled from 
a Bernoulli distribution with probability 0.5, the 
confounding variable was sampled from a Nor-
mal distribution with mean zero and unit vari-
ance. The outcome was sampled from a Ber-
noulli distribution with probabilities such that: 
the baseline prevalence was 20%; the conditional 
prevalence ratio for X at Z = 0 was equal to 2; and 
the conditional prevalence ratio for X at Z = 1 was 
equal to 1.919 (regression coefficient β2 = 0.20). 
There were several possible values for the con-
ditional prevalence ratio for X depending on Z.

Application 2: the second database referred 
to a cohort of 1,273 live births in 1993 in the city 

of Pelotas, Rio Grande do Sul, Brazil, studied with 
the aim of linking sociodemographic factors and 
reproductive health, informed by the responsi-
ble female, to the nutritional condition of their 
children after 4-5 years 5. The analysis consid-
ered underweight in 4-5 year old children (with 
a prevalence of 4.1%) as the outcome of inter-
est, Y; previous hospitalization as the exposure, 
X; and birth weight (normal or low birth weight) 
as a control variable, Z. For this application, be-
cause all variables are binary, we were able to 
calculate the prevalence ratio applying the Man-
tel-Haenszel method, considered here to be the  
gold standard.

Application 3: the third database analyzed 
703 sexually active, HIV-infected women, treated 
between 1996 and 2007 in Rio de Janeiro, Brazil, 
with no history of hysterectomy. The data was 
collected in order to assess factors associated 
with high-grade squamous intraepithelial lesions 
(HSIL), lesions that can develop into cancer of 
the cervix 22. Five variables pertaining to the HIV-
infected women were included in analysis: pres-
ence of HPV was the exposure variable, X; pres-
ence of cervical cytological abnormalities was 
the outcome, Y; and the control variables, Z, were 
age, number of pregnancies and the time since 
the last gynecological examination. Variables X 
and Y were binary variables and the others were 
continuous variables. The prevalence of the out-
come was 4.1%.

Adjusted prevalence ratios and prevalence 
odds ratios were estimated by several different 
methods. Prevalence ratios were estimated by 
robust Poisson and log-binomial models, and 
by the conditional and marginal methods pro-
posed by Wilcosky & Chambless 17. POR were 
also calculated using the usual logistic regres-
sion model.

The different methods to obtain prevalence 
ratios were coded in R (The R Foundation for 
Statistical Computing, Vienna, Austria; http://
www.r-project.org). An R function to estimate 
the conditional and marginal prevalence ratios, 
as proposed by Wilcosky & Chambless 17, is avail-
able (Figure 1).

Results

Application 1: toy example

Table 1 presents estimates obtained through dif-
ferent methods for the prevalence ratio of the 
variable X. The true prevalence ratio depends 
on Z, which follows a standard normal distri-
bution. Hence, the true conditional prevalence 
ratio varies from 1.71 to 2.25 for Z varying from  
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Figure 1

R code developed to estimate the conditional and the marginal prevalence ratio, as proposed by Wilcosky & Chambless 17.

(continues)

 
 
#####################################################
### Prevalence ratio from logistic regression models
#####################################################
 
PR = function( model, type="marginal", level=0.95 ){
  # model: output of a glm funtion family=binomial
  # type: "marginal", "conditional", "both" 
   
  p = model$rank-1 
  n = length(model$y) 
   
  xx=rep(0,model$rank-1) 
   
  modeloAux = update(model, x=T) 
  modeloAux2 = glm(modeloAux$y ~ modeloAux$x[,-1], 
                   family=binomial(), weights=modeloAux$prior.weights)
   
  labelCI = paste( (1 + c(-level,level))/2 * 100, "%")
  auxMatrix = data.frame(PR = model$coefficients[-1], sd = NA)
  auxMatrix[, labelCI[1]] = NA 
  auxMatrix[, labelCI[2]] = NA 
   
  auxList = list(Conditional=auxMatrix, Marginal=auxMatrix)
   
  # Condicional 
   
  xmean = apply(modeloAux$x,2, weighted.mean, w=modeloAux$prior.weights)
   
  betaAux = modeloAux2$coefficients 
  varbetaAux = vcov(model) 
   
  for(k in 1:p){ 
    ##### Conditional 
    XcondAuxXk = xmean 
     
    # Xk = x+1 
    XcondAuxXk[k+1] = xx[k]+1 
    etaxkC = drop(betaAux %*% XcondAuxXk)
     
    # P(X_k = x+1) 
    PXk1C = 1/(1+exp(-etaxkC)) 
    # \Delta P(X_k = x+1) 
    DeltaPXk1C = XcondAuxXk * PXk1C * (1 - PXk1C)
     
    # X_k = x 
    XcondAuxXk[k+1] = xx[k] 
    etaxkC = drop(betaAux %*% XcondAuxXk)
     
    # P(X_k = x) 
    PXk0C = 1/(1+exp(-etaxkC)) 
    # \Delta P(X_k = x) 
    DeltaPXk0C = XcondAuxXk * PXk0C * (1 - PXk0C)#exp(-etaxkC) / (1+exp(-etaxkC))^2
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-1.96 to 1.96. The crude prevalence ratio (1.477) 
underestimates this range of the true prevalence 
ratio, whereas the crude and the adjusted preva-
lence odds ratio (2.528 and 2.537) overestimate 
the true range (although their confidence inter-

vals overlap with some of the true range) (Table 
1). The adjusted prevalence ratios are all very 
similar, and all provide reasonable estimates (Ta-
ble 1). The estimates differ only in the second or 
third decimal places, with the smallest estimated 

Figure 1 (continued)

 
    #### Conditional PR_Xk 
    PRXkC = PXk1C / PXk0C 
     
    DeltaPRxkC = (DeltaPXk1C * PXk0C - DeltaPXk0C * PXk1C) / PXk0C^2
    varPRxkC = crossprod(DeltaPRxkC, varbetaAux) %*% DeltaPRxkC
     
    auxList$Conditional[k,] = c( PRXkC,  sqrt(varPRxkC), PRXkC*exp( 
qnorm(c(.025,.975))*sqrt(varPRxkC)/PRXkC ))
     
    ##### Marginal 
    XmargAux = modeloAux$x 
     
    # Xk = 1 
    XmargAux[,(k+1)] = xx[k]+1    
    etaxkM = drop(XmargAux %*% betaAux)
     
    PXk1M = mean(1/(1+exp(-etaxkM))) 
     
    auxVarMarg = exp(-etaxkM) / (1+exp(-etaxkM))^2
     
    DeltaXk1M = 0 
    for(j in 1:n) 
      DeltaXk1M = DeltaXk1M + XmargAux[j,] * auxVarMarg[j] / n    
     
    # Xk = 0 
    XmargAux[,(k+1)] = xx[k]    
    etaxkM = drop(XmargAux %*% betaAux)
     
    PXk0M = mean(1/(1+exp(-etaxkM))) 
     
    auxVarMarg = exp(-etaxkM) / (1+exp(-etaxkM))^2
     
    DeltaXk0M = 0 
    for(j in 1:n) 
      DeltaXk0M = DeltaXk0M + XmargAux[j,] * auxVarMarg[j] / n    
     
    #### Marginal PR_Xk 
    PRXkM = PXk1M / PXk0M 
     
    DeltaPRXkM = (DeltaXk1M * PXk0M - DeltaXk0M * PXk1M) / PXk0M^2
    varPRXkM = crossprod(DeltaPRXkM, varbetaAux) %*% DeltaPRXkM
     
    auxList$Marginal[k,] = c( PRXkM,  sqrt(varPRXkM), PRXkM*exp( 
qnorm(c(.025,.975))*sqrt(varPRXkM)/PRXkM ))  
  } 
   
  switch(type, 
         marginal = return(auxList$Marginal), 
         conditional = return(auxList$Conditional),
         both = return(auxList) 
  )   
} 
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Table 1

Adjusted prevalence ratios and respective 95% confidence interval (95%CI) estimates in the analysis of toy data using Y as the 

outcome, X as the risk factor and the continuous covariate Z as a control factor. 

Regression model (measure) Estimate 95%CI

Robust poisson (PR) 1.950 1.573, 2.416

Log-binomial (PR) 1.942 1.575, 2.418

Logistic regression (POR) 2.537 1.905, 3.398

Logistic regression (CPR)  1.956 1.578, 2.425

Logistic regression (MPR)  1.949 1.574, 2.414

CPR: conditional prevalence ratio; MPR: marginal prevalence ratio; POR: prevalence odds ratio; PR: prevalence ratio. 

Note: the true conditional prevalence ratio for X varies from 1.71 to 2.25 depending on the value of Z (-1.96 to 1.96),

value in the log-binomial model and the largest 
in the conditional prevalence ratio.

Application 2: underweight in 4-5 year-old
children in Pelotas

Table 2 presents the adjusted prevalence ratio of 
the occurrence of underweight in 4-5 year-old 
children (outcome) by previous hospitalization 
(exposure) controlled by birth weight (normal or 
low birth weight).

Despite the low prevalence of the outcome 
(4.1%), a difference was observed of 0.169 be-
tween the crude PR (2.902) and the crude POR 
(3.071) for previous hospitalization. According 
to the crude PR, there was a greater prevalence 
of underweight among children who were pre-
viously hospitalized when compared with those 
without previous hospitalization. The adjusted 
prevalence ratios of the log-binomial, robust 
Poisson, marginal prevalence ratio and Mantel-
Haenszel method presented similar estimates 
(2.481, 2.479, 2.460, and 2.483, respectively). The 
largest adjusted estimates were the POR (2.641) 
and the conditional prevalence ratio (2.532).

Application 3: cervical cytological
abnormalities in HIV-infected women

Table 3 shows the influence of high risk HPV (ex-
posure) in the occurrence of cervical cytological 
abnormalities in HIV-infected women, controlled 
by age, number of pregnancies and time since 
last gynecological examination. Despite the low 
prevalence, the crude POR (7.909) differed from 
the crude PR (7.360) by 0.6. Those women with 
high risk HPV presented 640% more cytological 
abnormalities. The adjusted POR was the high-
est estimated value (7.990). The adjusted preva-

lence ratios obtained by the log-binomial, robust 
Poisson approach and the marginal prevalence 
ratio were very similar. The conditional preva-
lence method led to a ratio up to 46% greater than 
those obtained from other adjusted methods.

Discussion

Difficulties in obtaining prevalence ratios in 
cross-sectional studies have been investigated 
by several authors in recent years. Several au-
thors use strategies for indirect calculation of the 
PR using the Breslow-Cox and Poisson models 
(with and without robust variance), while others 
interpret the prevalence odds ratio obtained in 
logistic regression models as a prevalence ratio.

Lee & Chia 9 were the first authors to discuss 
methods proposed for estimating the PR. Until 
then, most cross-sectional studies in health used 
the logistic regression model estimate (POR), 
since it has the advantage of adjusting for the 
confounding or modifying effects of other vari-
ables. When the outcome is prevalent, however, 
the POR is a poor estimate of the prevalence ratio, 
overpredicting the PR by up to 27 times 23.

Regarding the estimation of the adjusted 
prevalence ratio, in our examples the log-bino-
mial model, robust Poisson model, and marginal 
prevalence ratio provided similar estimates. The 
conditional prevalence ratio (CPR) differed from 
the other estimates but was still smaller than  
the adjusted POR. The CPR proposed by Wachold-
er 13 is the prevalence ratio conditional on the 
mean values of the covariates, yet one could con-
dition on any value for the confounding variables 
(higher or lower risk scenario). For instance, the 
prevalence of cervical cytological abnormalities 
in the 703 HIV-infected women (Application 3)  
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Table 2

Adjusted prevalence ratios and respective 95% confidence interval (95%CI) estimates in the analysis of the data using  

underweight as the outcome (Y), previous hospitalization as the risk factor (X) and birth weight as the control factor (Z).

Regression model (measure) Estimate 95%CI

Mantel-Haenszel (PR) 2.483 1.456, 4.235

Robust poisson (PR) 2.479 1.454, 4.226

Log-binomial (PR) 2.481 1.447, 4.226

Logistic regression (POR) 2.641 1.481, 4.671

Logistic regression (CPR)  2.532 1.471, 4.357

Logistic regression (MPR)  2.460 1.451, 4.171

CPR: conditional prevalence ratio; MPR: marginal prevalence ratio; POR: prevalence odds ratio; PR: prevalence ratio.

Table 3

Adjusted prevalence ratios and respective 95% confidence interval (95%CI) estimates in the analysis of cervical cytological 

abnormalities in HIV-infected women considering high risk HPV as the exposure variable (X), and controlling for three other 

variables (Z). 

Regression model (measure) Estimate 95%CI

Robust poisson (PR) 7.123 2.489, 20.388

Log-binomial (PR) 7.192 2.849, 24.135

Logistic regression (POR) 7.990 3.029, 27.531

Logistic regression (CPR) 7.529 2.617; 21.665

Logistic regression (MPR) 7.118 2.518; 20.124

CPR: conditional prevalence ratio; MPR: marginal prevalence ratio; POR: prevalence odds ratio; PR: prevalence ratio. 

Note: Z variables = age, number of pregnancies, and time since last gynecological examination.

was estimated for those women who had high 
risk HPV (X = 1), based on their respective values 
for age, number of pregnancies, and time since 
last gynecological examination (Z variables), and 
the mean value of the prevalence was computed. 
Similar calculations were performed for those 
women who were not diagnosed with high risk 
HPV (X=0). More detailed information on condi-
tional and marginal methods is well described in 
Wacholder 13 and Wilcosky & Chambless 17.

The main advantage of the log-binomial and 
robust Poisson models is that they are already 
implemented in most popular statistical pack-
ages. The log-binomial has the disadvantage of 
not using a proper link function, leading to nu-
merical instability in the estimation process and 
resulting in non-convergence issues. The COPY 
method 6 was proposed to achieve convergence 
with the log-binomial model, but this method is 

only available in SAS, which is a proprietary soft-
ware. The robust Poisson model assumes that all 
the events in the database occurred at the same 
time. In addition, use of the Poisson distribution is 
not appropriate for modeling a binary outcome 6.  
However, it is important to highlight that the 
likelihood of the Poisson model has been used 
only to obtain an estimation equation and not 
for the purpose of modeling a binary response 
variable. The Schouten et al. 14 approach can be 
implemented easily on any statistical package, 
but in changing the database, it brings extra un-
certainty that should be properly treated. The 
approach used by Wilcosky & Chambless 17, un-
like the log-binomial model, does not suffer from 
convergence problems.

One limitation of our results is that there is 
no “gold standard” for choosing the best method, 
especially when there is a continuous explana-
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tory variable. In Application 2, where all explana-
tory variables were binary, the Mantel-Haenszel 
method was used as the “gold standard”. For 
this application, we found that the prevalence 
ratio estimated by the log-binomial model, Pois-
son robust model and marginal prevalence ratio 
showed estimates similar to the one obtained 
by the Mantel-Haenszel method. We thus con-
clude that, in this application, the equivalence 
of the models applied. In this paper we have not 
explored robust methods based on quasi-likeli-
hood estimation 15.

In summary, we recommend the use of the 
direct approach proposed by Wilcosky & Chamb-

less 17 because it is suitable for a binary response 
when using a variable binomial model, it has 
no convergence difficulties and it is now avail-
able as a package for the open source statistical 
software R. The estimates of the marginal preva-
lence ratio are similar to those of other methods, 
while the conditional prevalence ratio shows the 
prevalence ratio for an average person in the 
database. If one is interested in a particular set 
of control variables, one only need specify the 
values of those variables. The authors are devel-
oping an R package with the Wilcosky & Chamb-
less approach, which will be available along with  
this article.

Resumen

En las últimas décadas, se ha discutido el uso de la ra-
zón de prevalencia (RP), en lugar del odds ratio como 
medida de asociación que se estima en estudios trans-
versales. Se analizan las principales dificultades en el 
uso de modelos estadísticos para el cálculo de la RP: 
problemas de convergencia, disponibilidad de her-
ramientas y supuestos no apropiados. El objetivo es 
realizar un enfoque directo para estimar la RP desde 
modelos logísticos binarios, basados en dos métodos 
propuestos por Wilcosky y Chamblers y compararlos 
con otros métodos. Se han utilizado 3 ejemplos y com-
paramos las estimaciones crudas y ajustadas de RP con 
las estimaciones obtenidas por log-binomial, Poisson y 
odds ratio de prevalencia (ORP). Los RP obtenidos del 
enfoque directo dieron como resultado valores cercanos 
a los obtenidos mediante el log- binomial y de Poisson, 
mientras que la RCP sobreestimó la RP. El modelo que 
aquí se presenta implementó las siguientes ventajas: no 
presenta inestabilidad numérica, toma una distribuci-
ón de probabilidad apropiada y está disponible en sof-
tware estadístico libre R.
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Transversales
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