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ABSTRACT
We assess the impact of climate change on the geographic distribution and productivity of Euterpe oleracea (Arecaceae), 
commonly called açaí. To construct the ecological niche model of E. oleracea, we used 95 points of occurrence, fi ve 
bioclimatic variables in current and future climate scenarios and Maxent software. Th e Akaike Information Criteria 
(AIC) was used to rank the ability of the models (considering ecological, socioeconomic and spatial variables) to 
explain the variation in productivity of E. oleracea among 200 municipalities. Th e maps showed that regions with 
higher environmental suitability for E. oleracea were concentrated in northern and northeastern Brazil, which 
was similar to the spatial pattern of productivity data of E. oleracea. Future climate conditions tend to promote an 
increase in the geographical distribution of this species, even though the new regions are in the arch of Amazon 
deforestation. Only space and the environmental suitability (indicated by the ecological niche model) were important 
for explaining the productivity of E. oleracea. Th at is, municipalities that are more productive are located in more 
suitable environmental regions. Th erefore, it is important to use niche models to explain demographic changes and 
to estimate species demographic attributes.

Keywords: açaí, environmental suitability, Maxent, palm, sustainable harvesting

Introduction
Global climate change has aroused much interest and 

concern in the mass media and academia, which refl ects a 
growing number of papers published on the topic in recent 
years (Nabout et al. 2011). Recent studies have investigated 
the impact of global climate change on biodiversity, food 
security, economic impacts (e.g. Tol 2009), and socio-
environmental vulnerability (e.g. Torres et al. 2012). Th ese 

studies have shown that global climate change may reduce 
the area that is climatically suitable for focal species or shift 
their geographical distributions (mainly studies in Brazil, see 
Diniz-Filho et al. 2009a), which may also lead to economic 
losses and increases in socio-environmental vulnerability 
(see Tôrres et al. 2012). In parallel, some studies have 
focused on developing mitigation strategies, such as the 
selection of conservations areas for future climate scenarios 
(e.g. Loyola et al. 2013) and international agreements for 
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reducing greenhouse gases (for example, the Kyoto protocol).
In the case of plants, global climate change can affect 

geographic distribution, life cycle, biological interactions, 
and many others factors (see Thuiller et al. 2008). Moreover, 
global climate change can affect the productivity of many 
plant species, especially species that undergo harvesting 
and extractive practices (Nabout et al. 2011; 2016). Such 
species may suffer progressive changes in their production 
in coming years, particularly in the Brazilian Amazon region, 
which is a very important part of the local and rural economy 
(Homma 2012).

Among the extractive products with large natural stocks, 
the fruit of the açaí palm (Euterpe oleracea) is considered 
particularly important (Homma 2012). Belonging to the 
family Arecaceae, E. oleracea has a predominantly tropical 
and subtropical distribution. In 2014, E. oleracea fruit 
became one of the most important non-wood extractive 
activities, with highest value of production (in Real) among 
other plants (Brasil 2014). The majority of E. oleracea 
fruit production (about 80%) has its origin in extractive 
harvesting. Only 20% comes from the areas that are 
managed and grown in the lowland and upland regions 
(IBGE 2016).

Experimental, empirical, or mathematical models can 
been used to evaluate the impact of global climate change 
on biodiversity (Nabout et al. 2011). Recently, the use 
of Ecological Niche Models (ENM) has increased in the 
scientific literature

and has proved a very effective tool in various areas of 
science (Peterson et al. 2011; Vaz et al. 2015). For example, 
ENM has been used to predict the spatial abundance, genetic 
variability, spatial distribution, and extinction of species 
(Nabout et al. 2011; 2016; Peterson et al. 2011; Tôrres et al. 
2012; Diniz-Filho et al. 2015; Soares et al. 2015).

Besides climate (obtained by ENM), socio-economic 
factors may be able to explain the variation in productivity, 
abundance, or genetic variability among sites (Diniz-Filho 
et al. 2009b; Soares et al. 2015). For plants of economic 
interest, it is expected that high productivity regions occur in 
municipalities with lower socioeconomic development (see 
for example, Nabout et al. 2012) and better environmentally 
protected regions (Nabout et al. 2016).

Here, we investigate the effects of climate change on the 
geographic distribution and productivity of E. oleracea in 200 
Brazilian municipalities. In addition, we also determined the 
relative importance of ecological (ENM) and socioeconomic 
factors in the total harvested production of E. oleracea in 
200 Brazilian municipalities.

Materials and methods

Productivity data

Productivity data for E. oleracea were obtained from 
the Brazilian Institute of Geography and Statistics (IBGE, 

www.ibge.gov.br) in 2013, using their website’s automatic 
recovery system (SIDRA) and “Vegetal Extraction” tab. We 
identified a total of 200 Brazilian municipalities from all five 
geographic regions in which the production of E. oleracea 
had been recorded over ten years period (2002 – 2011). 
For each municipality, we calculated the average annual 
production, and as these municipalities have different 
geographic areas, we also measured the average production 
of each municipality by its geographic area, according to 
IBGE. Thus, the average production of E. oleracea fruits 
per municipalities is given in tons per hectare (ton.ha-1).

Socioeconomic and ecological data

For each of the 200 E. oleracea producing municipalities, 
we obtained the follow socio-economic data: i) Gross 
Domestic Product (GDP) per capita (Brazilian Real; R$), ii) 
Municipal Human Development Index (HDI), iii) Percentage 
of Conservation Units (%CONSERV) by municipalities, and 
iv) Percentage of Rural Population (%RURAL). We then 
used these data to build statistical models to explain the 
average productivity of E. oleracea in each municipality. 
We expected that the HDI and GDP variables would have 
a negative relationship with productivity (i.e., a higher 
productivity rate in poorer municipalities). In contrast, we 
expected that the %CONSERV and %RURAL variables would 
show a positive relationship (i.e., higher production in the 
best preserved regions, comprising a larger proportion of 
the rural area).

We obtained GDP data per capita (R$), Municipal HDI, 
and total population data in the city and rural population (for 
the year 2007) from the “Download channel electronics” tab 
IBGE database. We obtained the %CONSERV and %RURAL 
variables for each municipality from the database of the 
Socio-Environmental Institute and Monitoring Program of 
Protected Areas and GIS Laboratory (Brasil 2016).

We also used spatial eigenvectors as a proxy of other 
environmental and/or socioeconomic processes that have 
geographic patterns and were not explicitly included in 
this study. We used the Principal Coordinates of Neighbor 
Matrices (PCNM) method to generate the spatial eigenvectors 
(Griffith & Peres-Neto 2006). PCNMs were based on the 
distance among municipality centroids, with a truncation 
distance equal to 307.1 km. A total of 53 PCNMs were 
generated, however, only one (PCNM2) was used in further 
analyses. To select the spatial eigenvector, numerous linear 
regressions (combining all eigenvectors) with the response 
variable (productivity) were carried out and we selected an 
eigenvector that captured the spatial structure (indicated by 
lower spatial autocorrelation in residual regression). PCNMs 
were performed in SAM (Spatial Analysis in Macroecology 
v 4.0) (Rangel et al. 2010).

To obtain the ecological suitability of E. oleracea for each 
municipality we used the Ecological Niche Model approach. 
We compiled occurrence data for E. oleracea by searching the 
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Figure 1. The locations of the 95 occurrence data-points for 
Euterpe oleracea used in the analyses.

scientific publications available on the “Centro de Referência 
em Informação Ambiental” (CRIA 2013) website (http://
splink.cria.org.br) and other publications known to us (Fig. 
1). A total of 95 unique occurrence points were obtained.

We used five climatic variables in the model: Annual Mean 
Temperature (BIO1), Temperature Annual Range (BIO7), 
Precipitation of Wettest Month (BIO13), Precipitation 
of Driest Month (BIO14), and Precipitation of Warmest 
Quarter (BIO18). The same variables were used for the 
future scenario, derived from a pessimist (A2a) scenario 
of the CCCma global climate model (Canadian Centre for 
Climate Modelling and Analysis) (see Karl & Trenberth 2005). 
The climate scenarios (current and future) were obtained 
from Worldclim (www.worldclim.org), with values projected 
to the year 2080 for the future scenario (Hijmans et al. 
2005). All climate variables were converted into a grid with 
0.0417 degrees of resolution. We selected these variables 
using the Jackknife criteria (considering all 19 climatic 
variables available in the Worldclim database) (see, for 
example, Nemésio et al. 2012). We generated potential 
species distribution models for South America using the 
MaxEnt algorithm in MaxEnt 3.3.3 (Phillips et al. 2006). 
The input parameters followed the program default choices; 
except that the number of iterations was set at 1000 and 
duplicates were removed. We tested the efficiency of the 
model using the area under the ROC curve method (AUC; 
see Elith et al. 2006).

Data analysis

We used the Akaike Information Criterion (AIC) to 
select the best model (with set of predictors variables) 
that explains the productivity of E. oleracea in Brazilian 
municipalities. We used the following variables as predictors: 
Present Environmental Suitability (PES), GDP per capita 
(R$), Municipal HDI, %CONSERV, %RURAL, and PCNM. We 
generated 63 models, however, we presented only models 
the best models for productivity (delta AIC<2; Burnham 
& Anderson, 2002). The AIC was performed in the Spatial 
Analysis in Macroecology (SAM V.4) software (Rangel et 
al. 2010). The variables PES, GDP, and productivity were 
log-transformed (logX+1) while HDI, %CONSERV, and 
%RURAL were arcsine-square root transformed.

Results
The majority of the 200 municipalities that had 10 years’ 

of productivity data for E. oleracea were concentrated in the 
northern and northeastern regions of Brazil. Therefore, 
the average productivity (i.e., 2002–2011) of E. oleracea 
is higher in these regions. A total of 92 municipalities of 
northern and northeastern of Brazil (36% of all investigated 
municipalities) have average productivity ranging between 
0.9886 and 0.0102 ton.ha−1. There were a total of 6 

municipalities with the highest average productivity values 
(5.46 to 11.98 ton.ha-1); these municipalities were located 
in the state of Pará.

The state of Pará has 94 municipalities that currently 
produce E. oleracea (46% of the investigated municipalities), 
and these municipalities together are responsible for 
86% of the total national productivity of E. oleracea. The 
municipality with the highest average yield was Limoeiro 
do Ajuru (Pará-PA), which recorded 11.9 ton.ha-1, followed 
by the municipality of São Domingo do Capim (PA), with 
10.0 ton.ha-1.

The potential geographical distribution of E. oleracea 
indicated that under the present climate scenario, the 
species is distributed mainly in the northern and the 
northeastern part of Brazil (Fig. 2A). The area under the 
curve (AUC) generated by the MaxEnt algorithm was equal 
to 0.941, indicating an efficient model. Under the future 
climate change scenario, the limits of the distribution 
range underwent few changes; moreover, there was no size 
reduction in the geographic distribution (Fig. 2B). While, 
some regions that were considered poorly suited became 
appropriate; other regions with high climate suitability 
became unsuitable under the future climate scenario.

More than 60% of the municipalities that produce E. 
oleracea may gain favorable climatic conditions in the future, 
according to future climate change predictions (Fig. 3). The 
municipalities that are expected to gain suitability in the 
future are in the state of Amazonas (Tapauá, Jutaí, and Tefé), 
whose suitabilities will change from 0.33, 0.44 and 0.53 to 
0.61, 0.66 and 0.74, respectively. The municipalities that are 
expected to reduce the greatest amount of suitability are 
in the state of Pará (Alenquer, Medicilândia, and Uruará), 
whose suitabilities will change from 0.53, 0.65 and 0.52 to 
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0.37, 0.52 and 0.39, respectively.
We generated 63 models to explain the average 

productivity of E. olereacea by municipalities. By using AIC, 
we found that the best model to explain the average yield 
was the model that combines Environmental Suitability 
and Spatial Filters, followed by the model using only spatial 
filters (Tab. 1). It is noteworthy that the top five models were 
good because the AICcs were lower than two (Burnham & 
Anderson 2002). Moreover, the PES presented a positive 
relationship with the productivity of E. oleracea, which 
means that productivity tends to be higher in municipalities 
found in regions with higher environmental suitability 
(predicted by ENM) (Tab. 2). Another important variable 

was the spatial eigenvector, however, in the present paper 
this variable indicates the spatial structure of productivity, 
thus geographically close municipalities tended to present 
similar productivity values (Tab. 2).

Table 1. Top five models generated and AIC numbers found for 
the combinations of variables: Present Environmental Suitability 
(PES), Human Development Index (HDI), Proportion of Rural 
Population (%RURAL), Percentage of Conservation Unit Areas 
(%CONSERV), and Spatial eigenvectors filters (PCNM)

Models R2 AICc Delta AICc
PES, PCNM 0.254 −115.723 0
PCNM 0.244 −114.991 0.733
PES, %RURAL, PCNM 0.257 −114.36 1.364
PES, HDI, PCNM 0.256 −114.192 1.532
HDI, PCNM 0.247 −113.887 1.836

Table 2. Importance of each variable and the angular coefficient 
indicating the relationship with the dependent variable (i.e., 
productivity of Euterpe oleracea). The importance of considering 
the AIC across all models in the set in which this variable occurs. 
AIC ranges from 0 to 1, with values closer to 1 indicating that the 
variable occurred in the best models.

Variable Importance Angular 
Coefficient

Present Environmental Suitability 0.526 0.404
Gross national product Per Capita 0.3 −0.034
HDI 0.373 0.237
Proportion of Rural Population 0.345 −0.053
Percentage of Conservation Units Areas 0.287 0.039
Spatial eigenvectors filters 1 −1.433

Figure 2. Environmental suitability map for Euterpe oleracea, with its occurrence in the present (A) and future (B) scenario. Please 
see the PDF version for color reference.

Figure 3. Frequency distribution of Δ values of climate suitability 
of Euterpe oleracea -producing municipalities.
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Discussion
Here, we have project the potential geographical 

distribution of E. oleracea in Brazil under both current 
and future climate scenarios, and highlighted potential 
areas for its sustainable harvest. E. oleracea presented a 
geographic distribution in northern and northeastern 
of Brazil, covering only some states (see above). Thus, E. 
oleracea is highly dependent on the moisture that restricts 
its natural geographical distribution, since it requires well-
irrigated soils, such as those found in naturally occurring 
floodplains (Muller 2016).

This study has demonstrated the relevance of ENM 
for predicting the productivity of E. oleracea, along with 
the potential impact of climate change on the geographic 
distribution of this species. Numerous studies have shown 
the importance of ENM as ecological predictors. In fact, 
most studies that use ENM have used these models to 
understand (sometimes visually) the geographic distribution 
of species under different climate scenarios (e.g. Collevatti et 
al. 2013). However, only recently have studies used models 
as predictors of population/genetic information (see Diniz-
Filho et al. 2009b; 2015; Wal et al. 2009; Nabout et al. 2011; 
2012; 2016; Tôrres et al. 2012). In all cited papers, niche 
models were good to evaluate the positive relationship 
between habitat suitability and productivity or density. 
Although, various algorithms (i.e. techniques) exist for 
the construction of niche models (e.g. MaxEnt, GARP, 
distances approaches; see Franklin 2009), with variations 
in the relationship with the biology of studied species (see 
Tôrres et al. 2012, Diniz-Filho et al. 2015), generally all 
techniques of niche models have found positive Pearson 
correlation coefficients (see Diniz-Filho et al. 2015). Thus, 
different techniques of niche models were able to predict 
productivity or other demographic variables (see Diniz-Filho 
et al. 2015). Here, we used the MaxEnt algorithm, which is 
one of the most commonly used methods (Vaz et al. 2015), 
it is a machine and statistical learning method (Franklin 
2009), which associates presence-only species records with 
bioclimatic variables, according to the principle of maximum 
entropy (see Elith et al. 2011). Despite the wide availability 
of methods, MaxEnt is among the top-performing methods 
in terms of prediction accuracy (Elith et al. 2006).

The positive relationship between suitability and 
productivity shows the relevance of ENM for the management 
of native species of economic importance. Thus, by using 
maps generated by niche models we can indicate current and 
future geographic regions for sustainable harvesting and 
suggest areas for the conservation of species of economic 
importance. Therefore, the integration of science and 
policy is essential to make decisions, such as the selection 
of areas for conservation and the planning of methods to 
stimulate rural economies. Particularly for the Amazon, 
which has undergone rapid changes to its landscape (see 

Sawyer 2008), where niche models might be an important 
tool to understand the distribution of species in a still little 
known biome.

The other predictors used in this study (%CONSERV, 
%RURAL, GNP and HDI) were not important in explaining 
the variation of E. oleracea productivity between the studied 
municipalities. In fact, other studies have shown that 
socioeconomic variables are not important in explaining 
the productivity of mangaba, but are important in explaining 
the productivity value (see Nabout et al. 2016). Thus, 
municipalities with higher GPD tend to have higher mangaba 
productivity value (Nabout et al. 2016).

Most plant ENMs have shown that there will be a 
reduction in the potential geographical distribution of 
such species under current predictions of future climate 
scenarios (e.g. Diniz-Filho et al. 2009a; Mendoza-Gonzalez 
et al. 2013; Simon et al. 2013). However, E. oleracea has 
showed a potential increase in its geographic distribution; 
although relatively small. Moscoso et al. (2013) conducted 
a study with 12 native Amazon species; six woody species 
and six species of palm (E. oleracea included) under current 
climatic conditions, and the results of the generated models 
were similar to those in the present study. Of course, this is 
good for the preservation of biodiversity, and for the local 
economy as it is a species of economic interest. Therefore, 
it is important to use this approach, especially to stimulate 
other municipalities that will have areas of potential climate 
suitability to invest in long-term conservation planning.

Although our study suggests there will potentially be 
new occurrences of this species, it is important to consider 
that this scenario is optimistic because other variables, 
such as land use, change of pollinators and pests were not 
considered in the niche model (Hannah et al. 2002). In 
other words, although climatically suitable according to 
ENM, new regions may not be appropriated for the presence 
of E. oleracea at the present moment. In fact, the future 
distribution model for E. oleracea indicates regions that are 
currently known as the arc of deforestation (see Malhi et 
al. 2008), especially in the state of Tocantins.

Finally, based on the results presented in this paper, we 
indicate some guidelines for future studies: i) assess whether 
current protected areas include the future distribution of E. 
oleracea, particularly for regions in the arc of deforestation; 
ii) assess the economic loss and gain of this species in the 
municipalities that currently produce it; iii) investigate 
appropriate management strategies, preventing its over-
exploitation; and, iv) encourage new municipalities to 
produce this species, especially those that are currently in 
regions where the future climatic conditions will be suitable.
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