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ABSTRACT
Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, 
which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest 
degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity 
may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. 
Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in 
their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new 
types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species 
reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity 
of glands recorded to date for a single structure.
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Introduction
Apocynaceae is an extremely diverse family in 

morphological terms, represented by trees, shrubs, herbs 
and climbers, with single leaves usually opposite, rarely 
alternate or whorled, with stipules modifi ed in colleters in 
several species (Endress & Bruyns 2000; Capelli et al. 2017) 
and with various secretory structures in vegetative and 
reproductive organs of recognized importance in taxonomy, 
phylogeny and/or ecology (Th omas & Dave 1991; Demarco 
2008). Due to their highly elaborate fl owers, the family 
stands out among the eudicotyledons, especially when 

considering its most derived subfamily Asclepiadoideae.
Th e close relationship between the former families 

Apocynaceae and Asclepiadaceae has always been recognized 
since its establishment as “Apocineae” by Jussieu (1789). 
Although Brown (1810) divided it into two families and 
this separation had been maintained in the subsequent 
taxonomic studies until recently (Cronquist 1981), many 
researchers have found a gradation in the morphology of 
the complex reproductive organs between the two families. 
Phylogenetic studies carried out mainly during the 1990s 
have shown that the two families form a monophyletic 
group, thus constituting a single family (Judd et al. 1994;
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Struwe et al. 1994; Endress et al. 1996; Sennblad & 
Bremer 1996; 2002). As a result, Endress & Bruyns (2000) 
proposed a new classification for Apocynaceae s.l., including 
Asclepiadaceae, based mainly on morphological evidence, 
and grouped the current 366 genera (Endress et al. 2014) 
into five subfamilies: Rauvolfioideae (=Plumerioideae), 
Apocynoideae, Periplocoideae, Secamonoideae and 
Asclepiadoideae.

The members of Asclepiadoideae, also known as 
asclepiads, are recognized for having the most complex 
and elaborate flowers of all eudicots (Endress 1994; 
2016). Some characteristics are so distinct from the most 
basal Apocynaceae that only with the joint evaluation of 
the other subfamilies is it possible to understand how 
asclepiads reached this degree of complexity (Endress & 
Bruyns 2000). They have an unusual flower synorganization 
that led to the origin of new organs. From the corolla and 
the androecium, the corona and a complicated system of 
channels for secondary presentation of nectar evolved. 
From the androecium and gynoecium, the gynostegium 
was formed through postgenital adnation of the anther to 
the base of the style head, and the pollinarium was formed 
by the pollinia plus the translator, which is secreted by the 
epidermis of the style head (Endress 1994).

Asclepiadoideae consist of ca. 3000 species (Rapini 
2012) occurring in diverse areas ranging from deserts and 
open vegetation to swamp and shaded areas in tropical 
and subtropical regions and with centers of diversity in 
Africa (about 35 % of species ) and South America (about 
20 % of species), becoming less diverse and abundant in 
temperate regions (Rapini 2000). The members of this 
subfamily can be distinguished from other Apocynaceae by 
the presence of pollinaria carrying only two pollinia (Kunze 
1994; Swarupanandan et al. 1996; Endress & Bruyns 2000; 
Demarco 2014).

Asclepiads have received the attention of researchers 
for centuries because of their complex pollination system, 
but few anatomical studies have attempted to unravel 
the complex floral morphology of the group. The first 
comprehensive anatomical studies were made by Brown 
(1810), who described the formation of the translator in 
Asclepias syriaca L., and Corry (1883), Gager (1902) and Frye 
(1902), all of which described many flower characteristics 
of Asclepias species, especially the gynostegium. Despite 
the great diversity of species and the long period of study, 
there is little information available on the anatomy of the 
species of this group.

The complex f loral pollination mechanism of 
Asclepiadoideae is only comparable to orchids (Endress 
2016). These two families present a series of evolutionary 
convergences that allowed the production and dispersion 
of pollen aggregate into pollinia. Apparently, a high 
degree of synorganization of the floral organs seems to 
have been necessary to allow the evolution of pollinia. In 
Apocynaceae, the presence of corona has greatly increased 

the morphological complexity of the flowers (Fig. 1). In 
addition, the highly complex pollination mechanism seems 
to have influenced mainly the diversity of clades bearing 
pollinia in Apocynaceae and Orchidaceae since these clades 
represent more than half of the species of both families 
(Endress 2016). The relation of at least some glands with 
pollination resulted in a large diversity of floral secretory 
structures and, theoretically, the greater the complexity 
and/or the specificity of the pollination mechanism, the 
greater the number of glands that provide this interaction.

Secretory structures
Among the anatomical characters reported for 

Apocynaceae, only three are present in Asclepiadoideae and 
all other members of the family: amphiphloic siphonostele, 
laticifers and style head. Of these three, the latter two 
are secretory, and Metcalfe & Chalk (1950) considered 
the occurrence of laticifers as one of the most important 
characteristics demonstrating the close relationship between 
the former Apocynaceae and Asclepiadaceae. In addition, 
one of the diagnostic features of the family is the style 
head, which has a secretory epidermis (Judd et al. 2002).

The floral secretory structures found in this group are 
extremely diverse and distinguish asclepiads as the group 
with the largest number of glands in a single flower among 
the angiosperms, which is related to a large extent to the 
complex reproductive system of this group. The glands 
reported up to now added to those described in this review 
are the following: colleters, glandular trichomes, laticifers, 
secretory idioblasts, nectaries (primary and secondary), 
osmophores, style head, tapetum, staminal wing gland, 
extragynoecial compitum, stylar canal and obturator. These 
structures are detailed later.

Floral glands in asclepiads

The secretory structures of asclepiads occur in 
vegetative and/or reproductive organs and are involved in 
the production of different compounds of the secondary 
metabolism. They may be classified as protective glands, 
which play a defensive function, or nuptial glands, associated 
with pollination.

The protective function is performed by external and 
internal glands of the flowers, which are also frequently 
found in the stem and/or leaves; the defensive function is 
also necessary for vegetative organs. On the other hand, 
the nuptial glands of asclepiads are exclusive to flowers 
and serve to attract or provide nutritional resources for 
the pollinator. In some cases, they are also related to pollen 
removal and/or pollen adhesion to the stigma, as a stimulus 
for pollen germination, a guide and nourisher for pollen 
tubes, etc. All these functions and others are found in the 
flowers of asclepiads.
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Figure 1. Flowers of Asclepiadoideae. (A) Asclepias curassavica L. (B) Peplonia axillaris (Vell.) Fontella & Rapini. (C) Matelea denticulata 
(Vahl) Fontella & E.A. Schwarz. (D) Oxypetalum banksii subsp. banksii Roem. & Schult. (E-F) Blepharodon bicuspidatum E. Fourn. (F) 
Longitudinal section of the flower. Abbreviations: C, corona; GR, guide rail; P, petal; S, stigma; SC, stigmatic chamber; SH, style head; 
arrow, translator.
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External protective glands

Colleters (Fig. 2)

Colleters are widespread in Apocynaceae (Endress & 
Bruyns 2000) and occur in flowers of all Asclepiadoideae. 
In this family, they are calycine emergences (Fig. 2) that 
produce a viscous secretion which protects the meristems 
against desiccation (Thomas 1991) and can also protect the 
flowers against fungal proliferation (Ribeiro et al. 2017).

The position of colleters may be variable (Woodson & 
Moore 1938), but the asclepiads have colleters alternating 
with the sepals (Frye 1902; Rao & Ganguli 1963; Tiagi & 
Dixit 1965; Valente et al. 1973; Silva et al. 1975; Valente 
1983; 1984; 1995; Pereira & Schwarz 1983; Endress & 
Bruyns 2000; Valente & Costa 2005; Demarco 2008), 
except in Oxystelma esculentum R.Br., which have opposite 
colleters (Rao & Ganguli 1963). Although alternisepalous 
colleters have been considered a plesiomorphic feature 
in Apocynaceae (Woodson & Moore 1938), they occur in 
almost all members of Asclepiadoideae, which is the most 
derived subfamily.

Morphologically, the calycine colleters are much 
more constant than those in the leaf (Demarco 2005). 
In general, they are classified as the standard type in the 
family (Thomas 1991), being cylindrical or dorso-ventrally 
flattened, persistent (Thomas et al. 1989; Thomas & Dave 
1989a; b; c; 1991; Thomas 1991; Appezzato-da-Glória & 
Estelita 2000; Schwarz & Furlan 2002; Demarco 2005; 
Simões et al. 2006; Martins et al. 2010; Martins 2012) 
(Fig. 2C), and may be found at the base of fruits (Thomas 
1991; Thomas & Dave 1991; 1994). The most frequent 
variations observed are the presence or absence of peduncles 
(Fig. 2D) and the number of colleters per flower (Rao & 
Ganguli 1963; Ramayya & Bahadur 1968; Silva et al. 1975; 
Stevens 1975; 1988; Pereira & Schwarz 1983; Thomas & 
Dave 1989a; Schwarz & Furlan 2002; Demarco 2005; Rio 
et al. 2005; Simões et al. 2006; Martins et al. 2010; Martins 
2012). Colleters have taxonomic significance for the family 
(Woodson & Moore 1938; Thomas 1991; Simões et al. 2006) 
and their occurrence, type and/or position have been used 
as diagnostic characters in identification keys at the genus 
and species level (Barroso 1986; Rio & Kinoshita 2005; Rio 
et al. 2005).

Colleters are formed early in the ontogeny of sepals, 
originating from the adaxial side of the connate portion 
of the calyx (Fig. 2A-B), just below the sinus. Immediately 
after their formation in the floral meristem, the colleters 
begin secreting. The secretory portion is composed of a 
uniseriate palisade epidermis covering a non-secretory 
parenchyma (Demarco 2005; 2008) (Fig. 2C-D). More than 
one layer of secretory epidermis has been observed in a few 
species of other subfamilies of Apocynaceae (Ramayya & 
Bahadur 1968; Thomas et al. 1989). Secretory cells have 
dense cytoplasm, and the secretion is accumulated in a 

periplasmic space before it is released to the outside through 
the cell wall and cuticle (Ribeiro et al. 2017). According to 
Fahn (1990), secretion release in colleters usually occurs due 
to cuticle rupture, but this was not observed in my study 
nor in several species recently investigated (Appezzato-
da-Glória & Estelita 2000; Rio et al. 2002; Demarco 2005; 
2008; Simões et al. 2006; Martins et al. 2010; Martins 2012; 
Canaveze & Machado 2015).

Calycine colleters are always avascularized in asclepiads 
(Woodson & Moore 1938), but vascularized colleters have 
already been recorded in flowers of other subfamilies 
(Woodson & Moore 1938; Rao & Ganguli 1963; Dave et al. 
1987; Thomas & Dave 1989c) and crystalliferous idioblasts 
and laticifers are often found in many species (Ramayya 
& Bahadur 1968; Arekal & Ramakrishna 1980; Fjell 1983; 
Murugan & Inamdar 1987a; b; Thomas & Dave 1989a; b; 
Subramanian et al. 1989; Thomas et al. 1989; Thomas & Dave 
1991; Appezzato-da-Glória & Estelita 1997; 2000; Schwarz 
& Furlan 2002; Demarco 2005; 2008; Martins et al. 2010).

Calycine colleters remain in secretory activity during 
the entire floral development and maintain their shape 
during the post-secretory phase in post-anthetic flowers, 
unlike the leaf colleters (Demarco 2005; 2008). Among the 
asclepiads analyzed histochemically to date, the production 
of a heterogeneous secretion composed of mucilage and 
lipidic compounds seems to be predominant (Fig. 2E-H), 
with the occurrence of exclusively mucilaginous secretion 
found only in Peplonia (Ribeiro et al. 2017). Proteins, 
phenolic compounds and fatty acids have been detected in 
the secretion of calycine colleters, as well as several alkanes. 
The distinct components of secretion confer different 
functions to the colleters. While the mucilage protects 
against desiccation, the lipophilic compounds provide an 
antifungal property (Ribeiro et al. 2017).

Glandular trichomes (Fig. 3)

Glandular trichomes have a restricted occurrence in 
Apocynaceae and have been reported for only eight genera 
of Asclepiadoideae: Araujia, Dischidia, Fischeria, Gongronema, 
Gonolobus, Marsdenia, Matelea and Sarcostemma (Solereder 
1908; Woodson 1941; Metcalfe & Chalk 1950; Stevens 
1975; 1988; Murphy 1986; Morillo 1998). Among these 
genera, the presence of mixed indumentum composed of 
long tector trichomes and short glandular trichomes in 
Fischeria and Matelea is unique and shows the relation of 
these genera (Woodson 1941), both grouped in the subtribe 
Gonolobinae (Endress et al. 2014).

These glandular trichomes have never been studied 
anatomically and are described for the first time in the 
present work for Matelea denticulata. In this genus, glandular 
trichomes are present on the pedicel and abaxial side of the 
sepals (Stevens 1975; 1988) (Fig. 3A-B). In M. denticulata, 
they are multicellular, uniseriate with lignified peduncle 
(Fig. 3C-D) and an apical secretory cell with a dilated base 
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Figure 2. Calycine colleters in Asclepiadoideae. (A) Matelea denticulata (Vahl) Fontella & E.A. Schwarz. (B, F) Oxypetalum banksii 
subsp. banksii Roem. & Schult. (C, E, G-H) Asclepias curassavica L. (D) Blepharodon bicuspidatum E. Fourn. (A-B) Colleter initiation in 
floral buds (asterisk). (C-D) Mature colleters formed by palisade secretory epidermis and a parenchyma axis. (C) Colleter with peduncle 
(standard type). (D) Sessile colleter. (E) Detection of acidic mucilage with ruthenium red. (F) Identification of starch grains using 
safranin, astra blue and iodine-potassium iodide. (G-H) Lipids detected with Sudan black B (G) and Nile blue (H). Abbreviations: P, 
petal; Pe, peduncle; S, sepal.
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Figure 3. Glandular trichomes in flowers of Matelea denticulata (Vahl) Fontella & E.A. Schwarz. (A-B) General view of the glandular 
trichomes in light microscopy (A) and scanning electron microscopy (B). (C, E) Mature trichomes. (D, F) Identification of secondary 
cell walls. Polarization microscopy of 3C and 3E respectively. (D) Secondary walls in the peduncle cells. (F) Crystal in the apex of the 
glandular cell (arrow). (G) Detection of proteins with aniline blue black. Abbreviations: Pd, pedicel; S, sepal.
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and an elongated, acuminate upper portion (Fig. 3C, E). This 
cell has a rounded tip with a constriction just below it where 
crystals are located, providing a mechanical rupture (Fig. 
3F). The secretion is composed exclusively of amino acids 
and/or proteins (Fig. 3G). The morphology of the trichome, 
composition of the secretion and its mechanism of release to 
the outside resemble those of stinging trichomes (Thurston 
& Lersten 1969; Thurston 1974; 1976; Fahn 1979).

Internal protective glands

Laticifer (Fig. 4)

Laticifers are ubiquitous in Apocynaceae (Metcalfe & 
Chalk 1950) and are found in all vegetative and floral organs 
of asclepiads, absent only in the ovules (Demarco et al. 
2006). Although those laticifers are generally interpreted 
as non-articulated type in the family (Chauveaud 1891; 
Solereder 1908; Metcalfe 1967; Mahlberg 1993), recent 
developmental studies of laticifers indicate that possibly 
all the vegetative and floral laticifers of Apocynaceae are 
articulated anastomosing (Fig. 4A-C) with early dissolution 
of the terminal walls, a fact that led many authors to 
misclassify them (Demarco et al. 2006; Demarco & Castro 
2008; Gama et al. 2017, and references therein).

Laticifers branch by lateral fusion in the meristematic 
regions, forming a system that likely interconnects most 
laticifers of the adult plant (Demarco et al. 2006; Demarco & 
Castro 2008; Lopes et al. 2009; Canaveze & Machado 2016; 
Gama et al. 2017) (Fig. 4D). Cell walls are dissolved from the 
center to periphery, followed by the fusion of protoplasts, 
resulting in a continuous multinucleated protoplast 
throughout the laticifer system (Gama et al. 2017). They 
are found in the fundamental and vascular systems of all 
organs (Groom 1889; Blaser 1945; Milanez 1960/1961; 
1966; 1977; Mahlberg 1963; Valente 1977; 1984; 1995; 
1996; Murugan & Inamdar 1987a; b; Appezzato-da-Glória 
& Estelita 1997; Sacchetti et al. 1999; Valente & Costa 
2005; Demarco et al. 2006; Demarco & Castro 2008) (Fig. 
4E-F) and ultrastructural analyses have demonstrated the 
impossibility of intrusive growth of these laticifers (Gama 
et al. 2017).

The laticifer cell walls are exclusively primary and 
highly hydrated, especially in the young portion, where 
their acidic characteristic (Fig. 4G) makes them more 
flexible, allowing the increase of cell diameter (Demarco 
et al. 2006). Immunocytochemical studies of laticifers in 
Asclepias speciosa Torr.(Serpe et al. 2001; 2002) have shown 
that the pectin composition of the cell wall in the mature 
portions of the laticifers is different from that of the younger 
portions.

Latex is observed from the younger region of the laticifer 
and corresponds to its protoplast (Demarco 2015). Some 
vesicles and small vacuoles with secretion fuse to the 
central vacuole, transferring their contents and increasing 

its volume, restricting the cytoplasm to a thin parietal 
layer (Gama et al. 2017). According to Giordani (1978), 
Fahn (1979) and Fineran (1983), the protoplast can remain 
intact or degenerate at maturity. However, the protoplast 
disarrangement is apparently due to an artifact during the 
plant collection and fixation caused by the destabilization 
of the turgor pressure, modifying all laticifer content.

The latex of Apocynaceae may have different colors 
(Solereder 1908), but the few latices described for flowers 
to date have all been milky-white (Appezzato-da-Glória & 
Estelita 1997; Demarco et al. 2006; Demarco & Castro 2008; 
Demarco 2015). While the latex is generally described as 
having predominantly lipids (Fig. 4H-I), especially terpenes 
(Die 1955; Warnaar 1982; Giordani 1996), many other 
compounds have been detected in the latex of the family, 
such as triterpenes and polyisoprenes, steroids, fatty and 
aromatic acids, polysaccharides (Fig. 4J), cardenolides and 
proteins (Fig. 4K), including enzymes, phenolic compounds 
and alkaloids (Die 1955; Rao & Malaviya 1966; Wilson et al. 
1976; Yoder & Mahlberg 1976; Baas et al. 1981; Groeneveld 
& Made 1982; Warnaar 1982; Allen & Nessler 1984; Eilert 
et al. 1985; Murugan & Inamdar 1987b; Giordani & Lafon 
1993; Giordani 1996; Appezzato-da-Glória & Estelita 1997; 
Sacchetti et al. 1999; Giordani et al. 2000; Castro & Demarco 
2008; Demarco 2015). The various compounds protect the 
plant against herbivores and microorganisms as well as 
seal wounds (Fahn 1979; 1990; Farrel et al. 1991; Hunter 
1994; Demarco 2015).

Secretory idioblasts (Fig. 5)

There have been few reports of secretory idioblasts in 
Apocynaceae, and almost all are restricted to vegetative 
organs (Solereder 1908; Metcalfe & Chalk 1950; Baas & 
Gregory 1985; Endress & Bruyns 2000; Demarco 2005). In 
Asclepiadoideae, secretory idioblasts have been reported 
for the tribes Ceropegieae and Asclepiadeae (Solereder 
1908; Metcalfe & Chalk 1950; Endress & Bruyns 2000), 
but their presence varies, even in the same subtribe. All 
of these reports referring to vegetative organs and floral 
secretory idioblasts are described in asclepiads for the first 
time in this review.

Oil idioblasts have been identified in flowers of Peplonia 
axillaris (Fig. 5A). The production of oil by idioblasts has 
been reported for 12 genera of Apocynaceae, but none of 
them belongs to the subfamily Asclepiadoideae (Metcalfe 
& Chalk 1950). The idioblasts of P. axillaris occupy the most 
outer region of the pedicel cortex (Fig. 5B) and are found 
beneath the epidermis of sepals (Fig. 5C) and petals (Fig. 
5D-E). Their shape varies from cubic to elongated and have 
trilamellar walls with a median suberin lamella between 
two cellulosic portions of the cell wall (Fig. 5F-G), as is 
normally observed in oil idioblasts (Postek & Tucker 1983) 
with the oil occurring as droplets in the periphery of the 
vacuole (Fig. 5H-I).
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Figure 4. Articulated anastomosing laticifers in flowers of Asclepiadoideae. (A, I-J) Matelea denticulata (Vahl) Fontella & E.A. Schwarz. 
(B, F, K) Peplonia axillaris (Vell.) Fontella & Rapini. (C, G) Asclepias curassavica L. (D-E, H) Oxypetalum banksii subsp. banksii Roem. & 
Schult. (A-C) Origin of laticifers in the floral buds. (D) Branched mature laticifer. (E) Laticifers in the pedicel. (F) Laticifers in the stamen. 
(G) Acidic character of the laticifer walls (violet) detected with triple Flemming’s staining. (H-K) Histochemical identification of latex 
components. (H-I) Identification of lipids using Sudan IV (H) and Nile blue (I). (J) Polysaccharides identified with PAS reaction. (K) 
Proteins stained with aniline blue black. Abbreviations: Pc, procambium; arrow, terminal wall of the laticifer cells; arrowhead, laticifer.
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Figure 5. Oil idioblasts in flowers of Peplonia axillaris (Vell.) Fontella & Rapini. (A) General view of the flower in longitudinal section. 
(B-D) Oil idioblasts in the pedicel (B), sepal (C) and petal (D) with the secretion stained red. (E-F) Detection of cellulose with calcofluor 
white under UV. (F) Idioblast trilamellar wall. Note the absence of cellulose in a median lamella inside the cell wall (arrow). (G) Presence 
of suberin in the median lamella inside the cell wall (arrow) detected with Sudan IV. (H-I) Detection of oil using Sudan black B (H) 
and Sudan IV (I). Abbreviations: Id, oil idioblast; P, petal; St, stamen.
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Nuptial glands

Nectary (Figs. 6-7)

Nectaries occur exclusively in flowers of Apocynaceae. 
Although there have been reports of extrafloral nectaries 
in the group, in actuality, these reports misinterpreted the 
colleters (Thomas 1991, and references therein).

The position of the nectaries is controversial in 
asclepiads, often due to the terminology applied in the 
description of flowers and to the inaccuracies in relation 
to the complex floral morphology. However, all species 
of this subfamily have primary nectaries in the filament 
tube (Galil & Zeroni 1965; Christ & Schnepf 1985; Kunze 
1991; 1995; 1997; Kunze & Liede 1991; Endress & Bruyns 
2000; Vieira & Shepherd 2002; Demarco 2005; Monteiro & 
Demarco 2017) (Fig. 6A), which corresponds to the secretory 
epidermis of the stigmatic chamber (Galil & Zeroni 1965; 
Valente 1977; 1984; 1995; Schnepf & Christ 1980; Valente 
& Silva 1984; Kunze 1991; 1995; 1999; Kunze & Liede 1991; 
Vieira & Shepherd 2002; Demarco 2005; Valente & Costa 
2005; Monteiro & Demarco 2017) (Fig. 6B-E). In general, it 
is assumed that only the primary nectary is secretory and 
the nectar flows through an intricate capillary system to the 
nectar holder (Galil & Zeroni 1965; Kunze 1997). However, 
nectariferous tissue has been described in the corona of 
some genera (Rao & Ganguli 1963; Valente & Silva 1984; 
Bruyns 1993; Kunze 1995; 1999; Valente 1995; Demarco 
2005; Monteiro & Demarco 2017) (Fig. 7), in this case 
referred to as a secondary nectary. The nectariferous tissue 
of the stigmatic chamber is usually composed of a uniseriate 
epidermis (Fig. 6C, E). However, the secondary nectary 
may be composed of only epidermis in the staminal corona 
(Fig. 7A-D) or epidermis and several layers of nectariferous 
parenchyma in a ring-shaped corona (Monteiro & Demarco 
2017).

The nectar also has varied composition depending on the 
type analyzed. The nectar of all primary nectaries (stigmatic 
chambers) studied thus far is composed of carbohydrates 
(Fig. 6E), including glucose and mucilage, in addition to 
lipids (Christ & Schnepf 1985; Monteiro & Demarco 2017); 
this also holds true for the secondary nectary of Peplonia 
axillaris, but in Matelea denticulata, the secondary nectary 
exudes exclusively carbohydrates (Monteiro & Demarco 
2017). The difference detected between the nectars may 
be related to distinct functions. The nectar in the stigmatic 
chamber may have a dual function: a resource for pollinators 
and an inducer of pollen germination (Galil & Zeroni 1965; 
Eisikowitch 1986; Kunze 1991) (Fig. 6E). However, flowers 
with two types of nectaries may divide these functions with 
the secondary nectary producing nectar for the pollinator 
and the primary nectary acting exclusively as an inducer of 
pollen germination (Monteiro & Demarco 2017).

Osmophore (Fig. 8)

The osmophore (or scent gland) is a structure secreting 
volatile substances of variable composition (Jürgens et 
al. 2008; 2010) and having the function of attracting 
pollinators over long distances (Vogel 1990). Except for 
the study of Vogel (1990) with Ceropegia elegans Wall., the 
osmophores of Apocynaceae have been studied structurally 
only in two other species (Plachno et al. 2010). In the rest of 
family, this gland is only mentioned without any structural 
corroboration (Endress 1994; Demarco 2005). The main 
reports have been the description of the scent in taxonomic 
studies and a few chemical analyses (Stevens 1988; Vogel 
1990; Rohrbeck et al. 2006; Jürgens et al. 2008; 2010; 
Setzer 2014). In Ceropegia, the osmophore was found at 
the tip of petals, consisting of secretory epidermis and 
subepidermal layers, as well as in Ditassa (Fig. 8A-F) and 
Boucerosia, but Orbea has two types of secretory epidermal 
cells with distinct structural characteristics (Vogel 1990; 
Plachno et al. 2010).

The main components of the scents are terpenes and 
phenolic compounds of low molecular weight (Jürgens et 
al. 2010), which produce a sweet aroma in some species 
and a fetid aroma in others (Stevens 1988; Vogel 1990; 
Wolff et al. 2008). The different types of scents are often 
associated with the corolla color, as in the sapromyophilic 
flowers of Ceropegieae, which have dark brown, red or 
yellow corollas and release a characteristically putrid aroma 
(Meve & Liede 1994). In general, sweet scents are related 
to white corollas (Vogel 1990), as is the case with Ditassa 
gracilis (present study).

Style head (Fig. 9)

The style head is present in all Apocynaceae and 
corresponds to the upper portion of the styles (Figs. 1E-
F, 9A), which fuses postgenitally and dilates. With the 
exception of Rauvolfioideae, in all other members of the 
family the style head is adnate to the anthers through the 
retinaculum, forming the gynostegium (Rao & Ganguli 
1963; Fallen 1986; Endress 1994; Swarupanandan et al. 
1996; Endress & Bruyns 2000). The style head in the family 
is covered by a secretory epidermis (Walker 1975; Fallen 
1986; Kunze 1993; 1994; Galetto 1997; Lin & Bernardello 
1999; Demarco 2014) (Fig. 9A-B), and its secretion is related 
to the process of pollen transportation. Initially, it helps 
adhere the pollen to the pollinator and then assists in the 
capture of pollen by the stigma or the guide rail/stigmatic 
chamber of another flower. The secretory surface is present 
only on the lateral side of the style head and alternate with 
the anthers in asclepiads (Fig. 9B-C), but in Rauvolfioideae 
and Apocynoideae it covers almost the entire surface of 
this dilated portion of the style apex. This is one of the 
differences that led Fallen (1986) to describe four basic 
types of style head and define a morphological progression 
of this structure for the family.
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Figure 6. Primary nectaries in flowers of Blepharodon bicuspidatum E. Fourn. (A) General view of the primary nectaries (stigmatic 
chambers) behind the guide rail in transversal section. (B) Detail of the nectary which is formed by the nectariferous epidermis of 
the stigmatic chamber. (C) Detail of the nectariferous epidermis. (D) Longitudinal view of the stigmatic chamber and its opening at 
the stigma level. (E) Pollinium inserted into the guide rail and germinated due to the presence of nectar in the stigmatic chamber. 
Note the entrance of pollen tubes into the stigma (section stained with PAS reaction). Abbreviations: GR, guide rail; Po, pollinium; 
S, stigma; SC, stigmatic chamber.
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Figure 7. Secondary nectaries in flowers of Blepharodon bicuspidatum E. Fourn. (A) General view of the secondary nectary in the 
staminal corona. (B) Longitudinal view of the nectariferous epidermis of the corona. (C) Detail of B. (D) Nectariferous tissue composed 
exclusively of epidermis. Abbreviation: Cs, staminal corona.
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Figure 8. Osmophore in flowers of Ditassa gracilis Hand.-Mazz. (A) General view of the flower in longitudinal section. Note the 
presence of osmophore in the upper part of the petal above the trichomatous zone. (B) Detail of the osmophore in the adaxial face of 
the petal. (C) Secretory tissue occurs in the free portion of petals from the gamopetalous corolla. (D) Main portion of the osmophore 
is located in the lateral sides of the petal, except in the margins. (E) Osmophore is composed of epidermis and two to three layers of 
parenchyma. (F) Presence of multiple vesicles in the secretory cells and a prominent vacuole. Abbreviations: Cs, staminal corona; P, 
petal; T, trichomes.

In Asclepiadoideae, the formation of the style head 
occurs during the beginning of floral development and is 
an indication of its complexity and importance in the later 
stages (Fallen 1986; Endress 1994; Swarupanandan et al. 
1996; Demarco 2014). The secretory tissue is responsible 

for the secretion of the translator in Periplocoideae, 
Secamonoideae and Asclepiadoideae (Brown 1810; Corry 
1883; Rao & Ganguli 1963; Vijayaraghavan & Cheema 1977; 
Dicko-Zafimahova 1980; Valente & Silva 1984; Endress 
1994; Kunze 1994; Valente 1995; Endress & Bruyns 2000; 
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Figure 9. Style head of Blepharodon bicuspidatum E. Fourn. flowers. (A) General view of the style head in longitudinal section. (B) 
Style head is pentagonal in transverse section and present five secretory regions alternate to anthers. (C) Secretory portion of the style 
head constituted of a palisade epidermis. (D) Translator composed of corpusculum and two caudicles produced by the style head. (E) 
Morphology of the pollinarium formed by the translator and two pollinia. Abbreviations: A, anther; Ca, caudicle; Co, corpusculum; 
Po, pollinium; SH, style head; Tl, translator.

Valente & Costa 2005; Demarco 2014) (Fig. 9D).
In asclepiads, the translator is a thick secretion composed 

of a corpusculum and two caudicles which attach to two 
pollinia of adjacent anthers, forming the pollinarium (Brown 
1810; Corry 1883; Schumann 1895; Valente 1977; 1984; 

1995; Valente & Silva 1984; Kunze 1993; 1994; Endress 
1994; Swarupanandan et al. 1996; Valente & Costa 2005; 
Demarco 2014) (Fig. 9D-E). The caudicles are absent only 
in Fockea and Cibirhiza (Kunze 1993; 1994; Swarupanandan 
et al. 1996), genera placed in Marsdenieae, the most basal 
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tribe of Asclepiadoideae (Endress & Bruyns 2000). The 
morphogenesis of the translator begins in the early stages 
of floral development, and its specific shape is mainly due 
to the differential secretory activity of the cells and the 
undulated outline of the secretory surface of the style 
head (Kunze 1994; Demarco 2014). Serbanescu-Jitariu 
& Tarnavschi (1976) observed that the structure of the 
pollinarium provides useful characters for the identification 
and classification of this subfamily, which is still used in 
taxonomic and phylogenetic studies today (Endress & 
Bruyns 2000; Rapini et al. 2003; Rapini 2012).

Secretory cells produce different amounts of secretion 
and distinct types of compounds in each region of the 
style head. The translator is composed mainly of lipids, 
but the composition of the corpusculum and caudicles is 
different (Woodson 1954; Safwat 1962; Vijayaraghavan & 
Cheema 1977; Schnepf et al. 1979; Demarco 2014). Fatty 
acids, phenolic compounds, mucilage and proteins have 
been detected in the corpusculum and only neutral lipids 
and mucilage in the caudicles (Vijayaraghavan & Cheema 
1977; Demarco 2014). This difference in the composition of 
the translator parts is related to their different functions. 
The corpusculum must adhere to the pollinator’s body, 
while the caudicles dehydrate after pollinarium removal 
from the flower and often contracts, moving the pollinia 
to the correct position for their insertion in the stigmatic 
chamber (Vijayaraghavan & Cheema 1977; Kunze 1991; 
Demarco 2014). Although there is a high probability that 
the corpusculum and caudicles differ from each other in 
relation to the chemical composition in the majority of 
asclepiads, the shape of some pollinaria does not change 
after dehydration of the caudicles (Wiemer et al. 2012).

Tapetum (Fig. 10)

Although the tapetum is usually not considered a 
secretory structure, all Apocynaceae have tapetum of the 
secretory type (Pacini et al. 1985), which plays an important 
role in the formation of pollinia and pollinarium as a whole 
in all asclepiads (Woodson 1954; Linskens & Suren 1969; 
Schnepf et al. 1979; Demarco 2014) (Fig. 10A-H).

The pollinium corresponds to the aggregation of all 
pollen grains from a pollen sac, and this grain aggregation 
is increased by the secretion by the tapetum cells of a 
pellicle, which surrounds externally the entire pollinium 
(Fig. 10G) and internally every pollen grain. This pellicle is 
mainly composed of lipids (sporopollenin) (Vijayaraghavan 
& Shukla 1976; Schill & Jäkel 1978; Schill & Dannenbaum 
1984; Pacini & Hesse 2005; Wyatt & Lipow 2007; Demarco 
2014), and the secretion produced by tapetum may help 
the caudicle adhere to the pollinium apex (Schnepf et al. 
1979). In Matelea, the tapetum produces a projection of 
the pellicle (hyaline crest) in a sterile portion of the anther 
which will attach to the caudicle after anther dehiscence 
(Demarco 2014).

Staminal wing gland (Fig. 11)

In most Apocynaceae, there is a transfer of the pollen 
capture area from the gynoecium to the androecium, which 
seems to have also occurred in Apocynoideae (Fallen 1986). 
In Asclepiadoideae, the capture function is performed by 
the guide rail (Figs. 6E; 11A-B), which guides the insect to 
the nectar holder in an interstaminal position at the base 
of the flower (Fig. 1E) and retains the pollinium brought 
by the pollinator inside the stigmatic chamber (primary 
nectary). The nectar present in this chamber induces pollen 
germination (Bookman 1981; Kunze 1991; Endress 1994; 
Vieira & Shepherd 2002; Demarco 2017; Monteiro & 
Demarco 2017) (Fig. 6E). The upward movement of the 
pollinator, directed by the guide rail, also leads the proboscis 
or leg of the pollinator to the corpusculum of the translator 
(Fig. 1E), promoting the removal of the whole pollinarium 
(Kunze 1991; Wiemer et al. 2012; Demarco 2014).

Recently, an ontogenetic study of Asclepiadeae flowers 
has shown that the origin of the wings, which compose the 
guide rail, is variable. In Asclepias, Oxypetalum and Peplonia, 
they are formed by lateral projections of the anther and 
filament and, therefore, should be designated staminal wings 
(Demarco 2017) and not anther wings, as reported by several 
authors (Frye 1902; Rao & Ganguli 1963; Valente 1977; 
1980; 1983; 1995; Valente & Silva 1984; Swarupanandan 
et al. 1996; Endress & Bruyns 2000; Vieira & Shepherd 
2002; Valente & Costa 2005). In the intermediate stages 
of the floral bud development, two glands are formed 
along the staminal wings: one at the outer margin and the 
other at the inner margin of the guide rail (Fig. 11C-E). The 
secretory tissue is composed exclusively of the epidermis 
which secretes mucilage and lipids. These glands senesce 
and necrose before pre-anthesis (Demarco 2017) (Fig. 11F).

During pollination, the secretion exuded by the staminal 
wing gland in the floral bud is present inside the guide rail 
and might play an important role as lubricant, facilitating 
the entrance of the insect’s proboscis or leg in this slit 
and/or assisting in the removal of pollinium or part of the 
pollinarium adhering to the insect. The disintegration of 
the gland before anthesis is also related to the introduction 
of proboscis and/or pollinium into the guide rail due to the 
increase of the chamber area without the glands (Demarco 
2017).

Extragynoecial compitum (Fig. 12)

All asclepiads have an apocarpic bicarpelar gynoecium 
with partially free styles, united only in the apical region 
where the style head and a subterminal stigma are formed 
(Fallen 1986; Endress & Bruyns 2000) (Fig. 1F). Since the 
stigma is located below the style head, it has been proposed 
that one of the functions of this connate region may be to 
act as a compitum (Fallen 1986). However, the compitum is 
formed by the union of the transmitting tissue tract from 
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Figure 10. Tapetum in flowers of Blepharodon bicuspidatum E. Fourn. (A-F) Floral buds. (G-H) Mature flower. (A) Bithecal, bisporangiate 
anther with initial projection of the staminal wing from its dorsolateral side (asterisk). (B) Longitudinal section of the young anther. 
(C) Secretory tapetum surrounding elongated microspore mother cells. (D) Presence of secretory globules in the tapetum cells. (E) 
Tapetum in secretory activity around the microspores. (F) Detail of the tapetum with secretory globules and vacuoles with heterogenous 
content (arrow). (G) Mature anther without tapetum containing pollinia covered by a pellicle (arrowhead) secreted by tapetum. (H) 
Pollinarium formed by translator and two pollinia from adjacent anthers. Abbreviations: A, anther; Po, pollinium; Tl, translator.
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Figure 11. Staminal wing gland of Ditassa gracilis Hand.-Mazz. flowers. (A-B, F) Anthetic flowers. (C-E) Floral buds. (A) General view 
of anthers in transverse section. (B) Anther with two pollen sacs and two lateral wings. Staminal wings of two adjacent anthers form 
the guide rail. (C) Guide rail with glands in front of the stigmatic chamber. (D) Staminal wing glands in the outer and inner margins of 
the guide rail. Note staminal wings completely lignified, except in the glandular areas. (E) Detail of the glands with palisade secretory 
epidermis. Note the presence of lignified trichomes in the middle region of the guide rail. (F) Necrotic wing glands in a mature flower. 
Abbreviations: A, anther; GR, guide rail; Po, pollinium; SC, stigmatic chamber; Ws, staminal wing; arrow, wing gland.
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Figure 12. Extragynoecial compitum in flowers of Oxypetalum banksii subsp. banksii Roem. & Schult. (A) Longitudinal section. (B-F) 
Transverse sections. (A-B) Extragynoecial compitum formed by the secretion produced by the inner epidermis of the filament tube in 
its upper portion. (C) Secretory epidermis around the dry stigma. (D) Detail of C. (E) Continuity between the secretory epidermis of 
the stigmatic chamber and extragynoecial compitum at stigma level. (F) Secretory portion of the extragynoecial compitum composed 
exclusively of epidermis. Abbreviations: EC, extragynoecial compitum; FT, filament tube; S, stigma; SC, stigmatic chamber; St, stamen; 
arrow, epidermis of the extragynoecial compitum.
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each carpel at the level of style, which allows pollen tubes 
to reach the ovules of different carpels (Carr & Carr 1961) 
independently from where they entered the stigma. The 
analysis of the connate region of the style below the stigma 
in asclepiads shows that the two strands of transmitting 
tissue are independent in most species and the pollination by 
a single pollinium generally forms one single follicle (Kunze 
1991). Among the asclepiads, compitum has been identified 
only in Tylophora and Matelea (Kunze 1991; Demarco 2008).

In addition to this type of gynoecial compitum, some 
species have a secretion involving the stigma (or stigmata) 
that allows the entrance of pollen tubes through different 
regions in order to reach all the free ovaries (Endress 1980). 
This secretion functions as an extragynoecial compitum. 
In Apocynaceae, the production of twin follicles from a 
single pollinium demonstrates the presence of a compitum 
in the asclepiad Oxypetalum banksii, and the anatomical 
study revealed the presence of an extragynoecial compitum 
formed by the mucilage produced by epidermal cells of the 
inner surface of the filament tube around the stigma (Vieira 
& Shepherd 2002) (Fig. 12A-F). This is the only report for 
the family.

In addition, the mucilage of some Monimiaceae flowers 
not only acts as an extragynoecial compitum but also serves 
as a primary pollen receptor and has been given the name 
hyperstigma (Endress 1979; 1980; 1982). Although the 
mucilage present in the primary nectar within the stigmatic 
chamber (Monteiro & Demarco 2017) does not have the 
function of pollinium capture in Asclepiadoideae and the 
concept may not be applied in the same sense, this secretion 
has previously been considered a hyperstigma in Oxypetalum 
(Vieira & Shepherd 2002).

Stylar canal (Fig. 13)

The general description of the pollen tube paths through 
the gynoecium in asclepiads begins with the germination 
of pollen grains in the stigmatic chamber promoted by the 
nectar (Eisikowitch 1986; Kevan et al. 1989; Valente 1994; 
Wyatt & Broyles 1994; Sage & Williams 1995; Monteiro 
& Demarco 2017). Pollen tubes penetrate the dry stigma 
and grow through a non-secretory transmitting tissue, 
reaching a canal lined with a secretory epidermis (Sage et al. 
1990; Kunze 1991; Sage & Williams 1995; Demarco 2008) 
(Fig. 13A-F). The pollen tubes grow through the canal and 
obliterate it, as occurs with the adjacent parenchyma cells 
(Sage et al. 1990; Sage & Williams 1995; Vieira & Shepherd 
2002). In the ovary, pollen tubes grow in the ovarian locule 
on the surface of the placenta to the ovule micropyle (Sage 
& Williams 1995; Vieira & Shepherd 2002).

Along the pathway through the style, pollen tubes 
grow, digesting the cells of the transmitting tissue strand 
at first but then grow immersed in the secretion of the 
stylar canal at a later stage (Sage & Williams 1995; Vieira 
& Shepherd 2002; Demarco 2008). Stylar canals, occurring 

in all asclepiads (Kunze 1991), are very narrow (Fig. 13B, 
F) and promote a place of strong pollen tube competition, 
increasing the male gametophyte selection (Kunze & Liede 
1991). The secretory activity starts in pre-anthetic flowers, 
and the secretion is composed of mucilage and lipids, which 
will nourish and direct the pollen tubes towards the ovarian 
locule (Demarco 2008) (Fig. 13B).

Obturator (Fig. 14)

Upon reaching the ovary, the pollen tubes are directed 
through the locule to the micropyle of the ovules by 
an obturator (Fig. 14A-B). The obturator was first 
reported and described for Apocynaceae in Aspidosperma 
(Rauvolfioideae; Demarco 2005); later, its presence was 
also confirmed for Asclepiadoideae (Demarco 2008), and 
recently, the obturator was also identified in another 
species of Rauvolfioideae (Morokawa et al. 2015). It is 
possible that it is present in all Apocynaceae. In some 
Rauvolfioideae, the obturator is composed of secretory 
placental trichomes (Demarco 2005; Morokawa et 
al. 2015), but in asclepiads it is formed by secretory 
cubic cells on the surface of placenta and at the base of 
funiculus (Fig. 14C-F), which is described for the first 
time for asclepiads in this review.

The aperture of the stylar canal is continuous with 
the ovary locule (Fig. 14A), and the secretory epidermis 
of this canal is continuous with the secretory epidermis 
of the placenta and funiculus (Fig. 14B). The secretion 
produced by the obturator fills the entire locule and has 
the same components as the secretion of the stylar canal: 
mucilage and lipids. Therefore, the pollen tubes grow inside 
a continuous layer of secretion from the style to the ovary 
until they fertilize the ovules (Demarco 2008).

Evolution and ecological importance of the glands

Some secretory structures found in the flowers of 
asclepiads reveal their relationship with other members 
of Apocynaceae due to their conservative nature, such as 
the presence of the style head and articulated anastomosing 
laticifers in the entire family (Tab. 1). On the other hand, the 
huge diversity of floral glands in Asclepiadoideae and their 
much more elaborate and synorganized flowers emphasize 
their derived condition in the family and highlight the 
asclepiads as the group with the largest diversity of floral 
glands among the angiosperms. In the 13 types of glands 
described in this review, Matelea (Gonolobinae, Asclepiadeae; 
Endress et al. 2014) has 11 in the same flower (colleters, 
glandular trichomes, laticifers, primary nectaries, secondary 
nectaries, osmophores, style head, tapetum, staminal wing 
gland, stylar canal and obturator; Demarco 2008). The two 
remaining secretory structures have restricted occurrence. 
Secretory idioblasts have been observed only in Peplonia 
(Metastelmatinae, Asclepiadeae) and extragynoecial 
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Figure 13. Stylar canal in flowers of Blepharodon bicuspidatum E. Fourn. (A) General view of the gynoecium with two free ovaries and 
the free portion of the styles in longitudinal section. (B) Secretory stylar canal with opening in the ovarian locule. Note the presence 
of secretion (arrow). (C) Stylar canals in the free portion of the styles surrounded by the filament tube. (D) Stylar canal occurs in the 
adaxial side of the style at the suture line. (E) Stylar canal originated from the adaxial epidermis of the folded style. (F) Stylar canal with 
a very narrow lumen lined by a secretory epidermis. Abbreviations: FT, filament tube; Sc, stylar canal; Su, suture; O, ovary; Sl, style.
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Figure 14. Placental-funicular obturator in flowers of Asclepiadoideae. (A-B, E-F) Ditassa gracilis Hand.-Mazz. (C-D) Blepharodon 
bicuspidatum E. Fourn. (A-B) Longitudinal sections. (C-F) Transverse sections. (A) Continuity between the secretory epidermis of the 
stylar canal and obturator. (B) Detail of A. (C) General view of the ovaries. (D-E) Obturator composed of the secretory epidermis of 
placenta and funiculus base. (F) Detail of the obturator. Abbreviations: Fu, funiculus; Ov, ovule; Pl, placenta.
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compitum only in Oxypetalum (Oxypetalinae, Asclepiadeae; 
Tab. 1). In absolute numbers, if we consider the quantities 
of each gland type, we could count dozens of glands in 
the same flower, not to mention the countless laticifers, 
idioblasts and/or glandular trichomes.

Among the Apocynaceae already studied, the genus 
with the lowest number of floral glands is Aspidosperma 
(Aspidospermateae, Rauvolfioideae; Endress et al. 2014) 
with three types of glands (laticifers, style head and tapetum; 
Demarco 2005), the one with the largest number being 
Matelea (Gonolobinae, Asclepiadeae, Asclepiadoideae). 
When the position of these genera is analyzed in the 
phylogeny, Aspidospermateae is the most basal tribe of 
the family and Asclepiadeae the most derived (Yang et al. 
2016). The exponential increase in the number of gland 
types per flower in the family is directly related to the greater 
complexity of pollination types in asclepiads, mainly due 
to their dispersion of pollen grains in pollinia.

If we consider the origin of the secretory tissues in the 
glands, we noticed that 10 of the 13 gland types present 
in the flowers have secretory tissue originating exclusively 
from the protoderm or mainly from this meristem. The large 
number of postgenital connations and adnations occurring 
during flower development in this group is also due to the 
fusion of protodermal surfaces and related to the floral 
evolution of the group. Studies focusing on protoderm are 
needed to better understand the evolution of epidermal 
tissues which exude completely different compounds with 
distinct functions in so many parts of the flower.

Two evolutionary trends may be noted within asclepiads 
in relation to the glands: 1) redundancy in protection 
with external and internal glands protecting the flowers 
against herbivory, microorganism proliferation, meristem 
desiccation, etc. (e.g., colleters, trichomes, laticifers and 
idioblasts) and 2) functional division between glands (e.g., 
primary and secondary nectaries) or between cells of a same 
secretory tissue (e.g., style head).

The redundancy in relation to the protection of glands 
is reflected in the low predation rate of these plants, but 
the division of functions between glands or between cells of 
the same gland is related to the evolution of the secretory 
structures in the family. When we analyze the secretory 
epidermis of the style head from the most basal genera, 
all cells produce the same type of secretion. On the other 
hand, in Periplocoideae, Secamonoideae and Asclepiadoideae 
the thick secretion (translator) produced by this tissue has 
specific morphology and distinct chemical composition 
in each part, demonstrating differences in the secretory 
activity of the cells of the style head.

	 In spite of the great diversity of glands in the 
flowers of asclepiads and the occurrence of some specific 
secretory structures in some genera, the glands related to 
pollination are relatively constant throughout the group 
(Tab. 1), making the general description of the pollination 
more uniform. The pollinator is often attracted by the 
scent produced by osmophores or by the accumulation of 
nectar in cups formed by staminal corona. When collecting 
the nectar in the corona or in the interstaminal position, 

Table 1. Distribution of floral glands in the tribes and subtribes of Asclepiadoideae (sensu Endress et al. 2014).

Tribe Subtribe Glands already registered
Fockeeae L, PN, Os (2), SH, T

Eustegieae L, PN, SH, T
Marsdenieae C, GT (3), L, PN, SN (1), Os (5), SH, T, SC

Ceropegieae

Heterostemminae C, L, PN, SH, Os (1), T, SC
Leptadeniinae C, L, PN, SH, T, SC
Anisotominae C, L, PN, SH, T, SC

Stapeliinae C, L, PN, SN (3), Os (13), SH, T, SC

Asclepiadeae

Astephaninae C, L, PN, SH, T, SC
Asclepiadinae C, L, PN, SN (2), SH, T, WG (1), SC, Ob (1)
Cynanchinae C, GT (1), L, PN, SN (2), Os (1), SH, T, SC
Tylophorinae C, L, PN, SN (1), Os (1), SH, T, SC

Pentacyphinae C, L, PN, SH, T, SC
Diplolepinae C, L, PN, SH, T, SC
Orthosiinae C, L, PN, Os (2), SH, T, SC

Metastelmatinae C, L, SI (1), PN, SN (3), Os (2), SH, T, WG (3), SC, Ob (3)
Tassadiinae C, L, PN, SH, T, SC

Oxypetalinae C, GT (1), L, PN, Os (2), SH, T, WG (1), EC (1), SC, Ob (1)
Gonolobinae C, GT (3), L, PN, SN (1), Os (2), SH, T, WG (1), SC, Ob (1)

Note. The number in parenthesis represents the quantity of genera where the gland has already been registered and its absence 
indicates the ubiquitous occurrence of the gland in the group. The references for this data survey are found in the description of 
each gland in this review. C = colleter; GT = glandular trichome; L = laticifer; SI = secretory idioblast; PN = primary nectary; SN = 
secondary nectary; Os = osmophore; SH = style head; T = tapetum; WG = staminal wing gland; EC = extragynoecial compitum; SC = 
stylar canal; Ob = obturator. 
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the insect introduces the proboscis or leg in the guide rail 
and can only withdraw it by making a movement forward 
and upward. The corpusculum secreted by the style head 
and located above the guide rail adheres to the part of the 
pollinator’s body, thus removing the entire pollinarium 
from the flower. When collecting nectar from another 
flower, the insect is again caught by the guide rail and, by 
making the movement forward and upward, introduces the 
pollinium into the guide rail or the stigmatic chamber by 
its basal aperture. The insertion of the pollinium or part 
of the pollinarium into the guide rail is facilitated by the 
secretion of the wing gland and the primary nectar, present 
in the stigmatic chamber, stimulating the germination of 
the pollen grains, which will grow through the nectar of 
the chamber to the stigma located below the style head. 
When the pollen tubes penetrate the gynoecium, they are 
directed by transmitting tissues to the stylar canal, where 
they grow immersed in the secretion of the canal until 
the ovary and then grow immersed in the secretion of the 
placental-funicular obturator, fertilizing the ovules.

Future perspectives
The floral glands of asclepiads have been poorly studied in 

structural terms and, despite their simple tissue composition 
often containing only a secretory epidermis, recent studies 
have shown that their secretion may be much more complex 
and heterogeneous than previously thought, demonstrating 
a high metabolic complexity of their cells. Therefore, new 
studies are still necessary to verify the actual composition 
of some secretions, how the exudates are produced by the 
organelles, the process of secretion release to the outside 
and the ontogenetic factors related to the formation of the 
different glands in an evolutionary perspective.
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