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ABSTRACT

Peripheral nerve trauma results in functional loss in the in-
nervated organ, and recovery without surgical intervention is 
rare. Many surgical techniques can be used for nerve repair. 
Among these, the tubulization technique can be highlighted: 
this allows regenerative factors to be introduced into the 
chamber. Cell therapy and tissue engineering have arisen 
as an alternative for stimulating and aiding peripheral nerve 
regeneration. Therefore, the aim of this review was to provide 
a survey and analysis on the results from experimental and 
clinical studies that used cell therapy and tissue engineering 
as tools for optimizing the regeneration process. The articles 
used came from the LILACS, Medline and SciELO scientific 
databases. Articles on the use of stem cells, Schwann cells, 
growth factors, collagen, laminin and platelet-rich plasma 
for peripheral nerve repair were summarized over the course 
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of the review. Based on these studies, it could be concluded 
that the use of stem cells derived from different sources 
presents promising results relating to nerve regeneration, 
because these cells have a capacity for neuronal differentia-
tion, thus demonstrating effective functional results. The 
use of tubes containing bioactive elements with controlled 
release also optimizes the nerve repair, thus promoting 
greater myelination and axonal growth of peripheral ner-
ves. Another promising treatment is the use of platelet-rich 
plasma, which not only releases growth factors that are 
important in nerve repair, but also serves as a carrier for 
exogenous factors, thereby stimulating the proliferation of 
specific cells for peripheral nerve repair. 

Keywords - Peripheral Nerve System/injuries; Regenerative 
Medicine; Nerve Regeneration

INTRODUCTION

Peripheral nerve transection traumas are extremely 
common in clinical practice and recovery without sur-
gical intervention is rare. Lesions with loss of nerve 
substance produce serious problems for the patient. 
Besides causing pain and morbidity, these injuries 
usually generate permanent sequelae, such as sen-
sory deficit and functional dysfunction. These lesions 
cause damages that substantially diminish the quality 
of life of these patients, including physical disability 
and total or partial loss of their productive activities, 
which gives rise to important social and economic 
consequences(1). The current repair techniques offer 
random and frequently unsatisfactory results. In view 

of these limitations, many researchers seek therapeu-
tic options to improve the repair of lesions with pe-
ripheral nerve transections(2).

Nowadays autologous peripheral nerve transplan-
tation represents the gold standard of repair when 
there is loss of substance that precludes neurorrhaphy. 
However, it presents some limitations, such as the 
need to perform two surgical procedures at different 
sites, the consequent greater morbidity and the shorta-
ge of nerve donor sites, besides the resulting sensory 
deficit in the area from which it was removed(2,3).

In cases where the extent of the lesion precludes the 
simple joining of the stumps, an available and widely 
used repair technique is tubulization. This technique, 
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cells include the mesenchymal cells of the bone mar-
row and of the adipose tissue, as well as the actual 
Schwann cells(6,7,19-33) (Table 1). 

These cells can be applied directly after density 
gradient separation (Ficoll-Paque®) or be cultivated 
and differentiated in vitro for subsequent applica-
tion, as is the case of stem cell differentiation into 
Schwann cells. We present below a description of 
some of the cell types used most often in nerve 
repair surveys.

Table 1 – 

Cell Study model Reference

7
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also called entubulation, is a surgical procedure in 
which the sectioned nerve stumps are introduced and 
fastened inside a tubular prosthesis, aiming to pro-
vide a favorable environment for regeneration. It also 
serves as a guide for the nerve growth of the broken 
or sectioned ends(2,4), protecting the nerve fibers of 
the scar tissue and avoiding neuroma formation(5). Tu-
bulization presents another interesting characteristic: 
it can be optimized with the addition of regenerative 
factors(6-8).

It is known that tissue repair requires a complex 
interaction between cells, extracellular matrix and 
trophic factors, which are all important elements in-
volved in nerve regeneration(9). Consequently, cell 
therapy and tissue engineering have been receiving 
a great deal of attention in recent decades, and are 
widely used in different areas(7,10-13).

Although the complexity of molecular and cellular 
events of tissue repair is not yet completely clarified, 
existing knowledge of the mechanisms of the cascade 
that induces regeneration after peripheral nerve le-
sions is vast, and provides important information for 
a better conception of nerve repair. Therefore, the 
aim of this review is to provide a survey and analy-
sis of experimental and clinical studies regarding the 
results obtained from peripheral nerve repair tech-
niques, which use cell therapy and tissue engineering 
as tools to optimize the regeneration process. The 
articles used are from scientific databases LILACS, 
Medline and SciELO.

REVIEW OF LITERATURE 

Cell therapy and peripheral nerve repair

Cell transplantation is one of the cell therapy and 
tissue engineering strategies aimed at the creation 
of a favorable microenvironment for tissue regen-
eration. Stem cells have important characteristics 
that differentiate them from other cell types, are un-
differentiated precursor cells that have self-renewal 
ability and can differentiate into multiple lineages(14). 
They are present in several tissues and are respon-
sible for their regeneration in the event of injuries 
or lesions(15). Bone marrow, adipose tissue, umbilical 
cord blood and peripheral blood are some sources 
of stem cells; however, these cells can be tissue-
specific, i.e., originating directly from specialized 
tissues(6,14,16-18). In nerve repair, the most widely used 

Schwann cells in nerve repair

The cells most commonly used in nerve regenera-
tion are autologous Schwann cells (SC). These rep-
resent glial cells in the peripheral nervous system, 
and their main function is to provide support to the 
axons through the release of growth factors and iso-
lation of the axon through formation of the myelin 
sheath(34). The addition of SCs in synthetic tubes as-
sists regeneration in nerve defects, although repair 
with autologous graft, in most studies, still presents 
superior recovery(27,29,33,35-37). Besides synthesizing 
growth factors, SCs also are able to produce extracel-
lular molecules, such as laminin and type IV collagen. 
The extracellular matrix can serve as a reservoir of 
growth factors that are secreted by SCs(38).

Experimental studies based on the use of SCs 
as a therapeutic option for the recovery of nerves 
with loss of substance proved the efficacy of these 
cells(28,32,39). SCs play an important role in the main-
tenance, nutrition and in the repair of peripheral 
nerves. Although there are still limiting factors in 
the use of SCs, these have promising results in tis-
sue, physiological and functional improvement in 
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lesions caused by trauma or pathologies in periphe-
ral nerves.

Bone marrow mesenchymal cells and nerve rege-

neration

Many researchers have developed studies on stem 
cells(19,25,27,40). Embryonic stem cells, as well as those 
obtained from adult cerebral tissue, are able to un-
dergo expansion and neuronal differentiation in vitro 
and in vivo. However, the inaccessibility of these cells 
limits their clinical use, which stimulated the search 
for cells that are capable of differentiating into neu-
ronal lineages(28,41). Moreover, there is controversy 
involving research with the use of stem cells concer-
ning the sources from which these are obtained. In 
particular, the use of embryonic stem cells, although 
legally regulated in Brazil, allowing research into 
and the manipulation of these cells obtained through 
“unviable embryos”, is still a subject of ethical and 
political discussions(29,30,42,43). 

An alternative and viable source of mesenchymal 
stem cells is bone marrow. Adult bone marrow-derived 
cells are characterized as multipotent, as they are able 
to differentiate into cell lineages of mesodermal ori-
gin(44,45). Several surveys on transplantation of bone 
marrow-derived mesenchymal stem cells (BMDMSC) 
have reported that these cells also present in vitro neuro-
nal differentiation ability, which means they can be used 
in peripheral nerve repair(46-52). Additionally, Montzka et 
al(53) demonstrated the ability of human BMDMSCs to 
express different neuronal and glial cell markers.

Experimental studies in rodents(20,21,23), rabbits(22,54) 
and primates(55) prove the efficiency of these cells, 
presenting positive functional outcomes in peripheral 
nerve repair. The combination of bone marrow mesen-
chymal cells with bioabsorbable tube increases nerve 
regeneration and sciatic nerve functional recovery in 
mice(56). BMDMSCs can positively influence the re-
generation of peripheral nerves not only through the 
direct release of neurotrophic factors, but also through 
indirect modulation of the behavior of SCs(24,46).

There is clinical evidence indicating BMDMSCs 
as an effective treatment in peripheral nerve repair. 
In comparing the tubulization technique with and wi-
thout the addition of bone marrow mononuclear cells 
(this group of cells contains a fraction of stem cells) in 
44 patients with damage to the median or ulnar nerve, 
it was verified that lesions treated with these cells 

presented better results in the regeneration process 
than conventional tubulization(7). 

However, BMDMSCs present some limitations. 
Besides the fact that these cells are obtained with the 
application of epidural or general anesthesia, since 
harvesting occurs through a very painful procedure, 
the quantity of cells acquired often fails to reach the 
necessary number(57).

Adipose tissue-derived mesenchymal cells and ner-

ve regeneration

Mesenchymal stem cells are not only present in 
the bone marrow, but also in other tissues including 
the adipose tissue(18). Most authors call them adipose-
-derived stem cells, or ADSCs. 

There is a strong resemblance between ADSCs and 
BMDMSCs, since both present a similar immunophe-
notypical profile, as well as the ability to differentiate 
into osteogenic, chondrogenic, myogenous and adipo-
genic lineages(58,59). The advantage of using ADSCs is 
their widespread availability, as human subcutaneous 
fat is abundant, and can be harvested easily throu-
gh the liposuction procedure, besides the fact that it 
appears much more frequently in the adipose tissue 
than mesenchymal cells in the bone marrow(60).

The ability of mesenchymal cells originating from 
the adipose tissue to differentiate into cells with neu-
ronal features was proved in vitro. Kingham et al(61) 
reported that ADSCs are able to differentiate into cells 
similar to the genuine SC, when cultivated together 
with a combination of glial trophic factors.

Cells derived from adipose tissue of murinae and 
humans, after neuronal induction, presented morpho-
logy typical of nerve cells, which were positive for 
immunocytochemical expression of GFAP, nestin and 
neuron-specific nuclear protein (Neu-N). Pre-treat-
ment with epidermal growth factor (EGF) and basic 
fibroblast growth factor (FGF) increases the neuronal 
differentiation of adipose-derived human stem cells, 
whose use has important biological and clinical im-
plications(41). However, the adipose-derived mesen-
chymal stem cell should have the ability to produce 
myelin sheath, the main function of SCs. This cha-
racteristic was confirmed in in vitro studies, thus be-
coming another option for the treatment of peripheral 
nerve injuries(57). 

The adipose-derived mesenchymal stem cells pre-
sent results similar to bone marrow-derived cells in 
vivo(25,26). However, due to the ease of their harvesting 
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and abundant quantity of cells available in subcutane-
ous deposits, ADSCs are indicated as a better alterna-
tive for clinical application(25).

Growth factors in nerve repair

The complexity of nerve regeneration involves 
a range of elements that interact with one another, 
and are all essential to the process; among them, the 
growth factors (GF) aroused a great deal of interest in 
the scientific community(62), due to their performance 
as important cell modulators(62-78) (Table 2). 

Degenerated peripheral nerves are an important 
source of these factors, as are the SCs. These pro-
teins are basically a set of three families of molecules 
and their receptors, responsible for maintaining the 
growth and survival of the sensory and motor axons 
and neurons after tissue damage(62).

The local presence of GFs is important in the 
control of the survival, migration, proliferation and 
differentiation of various types of cells that are en-
gaged in nerve repair(9,62). For these reasons, the use 
of therapies based on GFs has increased in the last 
few decades. Growth factors should be administered 
locally to achieve a more adequate therapeutic effect 
with few adverse reactions. Therefore, the delivery of 
growth factors for nerve regeneration can be ideally 
combined with nerve conduits(34).

Among neurotrophic factors, the nerve growth 
factor (NGF) is the most researched factor, due to 
its action in the proliferation and differentiation of 
neurons(64) and as it assists in the repair and functional 
recovery of injured nerves(63). When combined with 
biomaterials and with controlled release, its effect can 

be strengthened(79-81). The ability of the NGF to pro-
mote functional recovery after lesions was confirmed 
in experimental studies(65,81). 

The endogenous brain-derived neurotrophic 
factor (BDNF) demonstrates an important role 
in the induction of the cell body response in in-
jured rat neurons. When exposed to mitogens such 
as BDNF, stem cells differentiate into neuronal
lineages in vitro(68).

The glial cell line-derived neurotrophic factor 
(GDNF) is considered the most protective factor for 
motor neurons(70), and is essential in their formation, 
as well as that of sensory neurons during the rege-
neration process(82). GDNF has its expression eleva-
ted in experimental models of motor neuropathies in 
rats, several human neuropathies and in traumatized 
human nerves(82). In a model of peripheral nerve le-
sion in rats, it was demonstrated that the combina-
tion of nerve conduits composed of chitosan, GDNF 
and laminin was significantly more efficient during 
the initial stages of nerve repair, promoting greater 
axonal growth and myelination in six weeks after the 
animals’ nerve transection(83). 

The ciliar neurotrophic factor (CNTF) assists in 
the differentiation and in the survival of a variety of 
neurons, and the mRNA expression levels of CNTF 
decrease significantly and continue low for a long 
time after peripheral nerve transection(71).

Similarly, the insulin-like growth factor (IGF) 
also assists in nerve regeneration. IGF-1 is present 
in several stages of development of the peripheral 
nerve system, performing a wide range of functions, 
including the promotion of the regeneration of motor 
and sensory axons(72-75). Evidence suggests that high 
levels of IGF in denervated muscle can stimulate re-
generation with nerve sprouting(84).

Besides acting essentially in the vascular tis-
sue, the vascular endothelial growth factor (VEGF) 
also assists nerve regeneration, due to the close 
relationship existing between the nerve fibers and 
the blood vessels during this process. The addition 
of VEGF significantly increases the infiltration of 
blood vessels in nerve conduction chambers, and 
is related to the increase of axonal regeneration 
and migration of SCs(76,77). Moreover, the VEGF 
acts as a neuroprotective agent in neurons in vitro 
after ischemic lesion(78). In an experimental study, 

Table 2 –

Growth factor Main target Reference

62

70

71
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the use of VEGF demonstrated an effect on vas-
cular blood supply, with a significant increase of 
axonal regeneration and of SCs, stimulating nerve 
regeneration(85).

Collagen and laminin as carriers

Components of the extracellular matrix are
collagen and laminin, essential for guidance and axo-
nal growth during the nerve regeneration process. 
Collagen and laminin are involved in the regenera-
tion process through the formation of a substrate for 
the migration of non-neuronal cells. The filling of 
silicone tubes with these components presents an 
increase in the regeneration rate(86) and in the con-
nection of extensive defects(87). This effect, however, 
depends on some factors such as the concentration 
and permeability of the tube(87,88). 

Nowadays, different gels containing collagen 
or laminin (Matrigel®) are being used as a support 
for cells and growth factors(27,35,37). Collagen, as the 
main component of the extracellular matrix, is used 
in various surgical prostheses. A study on an animal 
model demonstrated the efficacy of a biological ma-
trix composed of collagen (Tissudura™ ) when used 
in nerve regeneration(89). 

As is the case of collagen, laminin also plays an 
important role in in vivo axonal growth. Surveys in-
clude this component of the extracellular matrix in 
animal models to repair injured sciatic nerves and 
to obtain an improvement in some areas of axonal 
regeneration. The application of tubes composed of 
chitosan combined with laminin demonstrates that the 
tube optimizes the nerve regeneration process during 
the initial phases of repair(83).

Use of platelet-rich plasma in peripheral nerve repair

Autologous blood-derived platelet-rich plasma 
(PRP) is defined as a volume of plasma with plate-
let concentration around five times above the phy-
siologic levels(90). The platelets that constitute PRP 
are able to release various growth factors that are 
essential for the healing of lesions, such as the three 

(91,92). The 
platelets are also responsible for the synthesis and 
storage of BDNF(93). 

PRP has been used by areas such as oral and bu-

comaxillofacial surgery for some time(94-96), and it 
has aroused considerable interest in cosmetic(97,98) and 
orthopedic(99,100) surgery. In experimental studies, PRP 
was used in peripheral nerve lesions, promoting re-
myelination in the facial(91) and sciatic nerve of rats(8).

The application of PRP increases the number of nerve 
fibers after peripheral nerve lesions, and can produce 
a neurotrophic effect, stimulating the proliferation of 
Schwann cells and myelination, important components 
during peripheral nerve repair(6,101).

Data in literature on the effect of PRP on peripheral 
nerve regeneration are scarce, which stimulates the 
search for more precise information about its per-
formance. Therefore, this treatment should receive 
attention and be expanded, as it has the potential to 
become another safe option of low associated cost for 
the treatment of a wide variety of lesions and neuropa-
thies in peripheral nerves.

CONCLUSION

The concept of an ideal treatment to assist in ner-
ve repair is based on the creation of synthetic tubes, 
preferentially bioabsorbable, covered by components 
of the extracellular matrix and that are appropriate for 
controlled release of one or more neurotrophic factors, 
bioactive elements or cells. The combination of two 
or more growth factors probably has a synergic effect 
on nerve regeneration, especially when they belong 
to different families and act by distinct mechanisms. 
In spite of the vast knowledge already acquired about 
these proteins in the improvement of nerve regenera-
tion, more experimental studies are necessary before 
their use in clinical practice. 

The use of cells, whether actual Schwann cells or 
the stem cells obtained from varied sources, demon-
strates considerable benefits in the repair of peripheral 
nerves, with great potential to become one of the most 
promising options at the clinic. 

Another interesting technique that has not yet been 
fully explored is the use of PRP, which releases au-
tologous growth factors and serves as a carrier for 
other exogenous factors in nerve regeneration. 

Considering the evidence found, it was ob-
served that a promising treatment is based on the 
combination of biological and synthetic elements 
for regeneration to be optimized and to provide 
better results.

Rev Bras Ortop. 2011;46(6):643-49
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