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RESUMO: “Ferramentas biotecnológicas para a produção de dihidro-epideoxiarteanuina 
B, um antiulcerogênico isolado de Artemisia annua L.”. Foram desenvolvidas metodologias 
para o estabelecimento e cultivo de raízes de Artemisia annua L. (híbrido CPQBA 2/39 x PL5). 
Estas raízes foram submetidas a diferentes condições de luz e a transformação genética com 
Agrobacterium rhizogenes (cepas 8196 e 15834). As raízes transgênicas e não-transgênicas 
(normais) foram cultivadas em meios de Murashige e Skoog (1962), mantidas sobre diferentes 
condições de fotoperíodo e analisadas para avaliação do conteúdo do composto antiulcerogênico 
dehidro-epideoxiarteanuína B (composto A). A confi rmação do caráter transgênico das raízes foi 
obtida por Dot Blot. Os extratos dos materiais vegetais foram analisados por Cromatografi a Gasosa 
acoplada a um Espectômetro de Massas (CG/EM). Os cromatogramas dos extratos das raízes 
normais revelaram a presença de dehidro-epideoxiarteanuína B e de um outro composto (composto 
B). As condições fotoperiódicas de cultivo infl uenciaram na produção destes dois compostos, sendo 
que sobre condição de escuro contínuo, dehidro-epideoxiarteanuína B foi intensamente produzido 
e o composto B foi detectado em pequenas proporções, enquanto que sob fotoperíodo de 16 horas, 
o inverso ocorreu. A quantifi cação de dehidro-epideoxiarteanuína B por Cromatografi a Gasosa 
acoplada a um Detector de Ionização de Chamas (CG/FID) revelou um aumento de aproximadamente 
cinco vezes na produção deste composto pelas raízes normais cultivadas sobre escuro contínuo em 
relação às raízes cultivadas na presença de 16 horas de luz. O terpeno dehidro-epideoxiarteanuína 
B não estava presente nas raízes transgênicas. 

Unitermos: Artemisia annua, terpeno, cultura de raízes in vitro, raízes transgênicas, luz.

ABSTRACT: Methodologies were developed for the establishment and cultivation of Artemisia 
annua L (CPQBA 2/39 x PL5 hybrid) roots submitted to light conditions and genetic transformation 
performed with Agrobacterium rhizogenes (15834 and 8196 strains). The transgenic and non-
transgenic (normal) roots were cultured in Murashige and Skoog (1962) medium, kept under 
different photoperiodic conditions and analyzed for evaluation of the antiulcerogenic dihydro-
epideoxyarteannuin B (compound A) contents. The Dot Blot technique was used to confi rm the 
transgenic nature of the roots. The plants′s crude extracts were analyzed by Gas Chromatography 
coupled to Mass Spectrum (CG/MS). The chromatograms of the extracts taken from normal 
roots revealed the presence of dihydro-epideoxyarteannuin B and other compound (compound 
B). Photoperiods during cultivation infl uenced the production of these two compounds: under 
continuous darkness dihydro-epideoxyarteannuin B was intensely produced and the compound B 
present in small amounts, while on 16 h photoperiod, the inverse occurred. The quantifi cation of 
dihydro-epideoxyarteannuin B by Gas Chromatography coupled to Flame Detector Ionization (CG/
FID) revealed an approximately fi vefold increase in the production of this compound by normal 
roots kept under continuous darkness compared to roots kept under 16 h light period. The terpene 
dihydro-epideoxiarteannuin B was not present in transgenic hairy roots. 

Keywords: Artemisia annua, terpene, in vitro roots culture, hairy roots, light. 
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INTRODUCTION

The specie A. annua is a rich source of 
sesquiterpenes, isoprenoids, volatile oils, mono and 
diterpenes with important pharmaceutical properties, 
including antimalarial, antitumoral, antiviral, anti-
infl ammatory, antibiotic and antiulcerogenic activities 
(Sy; Brown, 2001; Tan et al., 1998; Duarte et al., 2004). 
Foglio et al. (2002) demonstrated that the artemisinin 
extraction by-product exhibited intense antiulcerogenic 
activity in ulcer models induced by indometacin and 
ethanol comparable to the standard drug carbenoxolone. 
According to the authors, artemisinin did not 
provide cytoprotection under the experimental models 
tested. Only the dihydro-epideoxyarteannuin B and 
deoxyartemisinin decreased the ulcerative lesion index 
produced by ethanol and indomethacin in rats. Thus, 
these compounds have proved to be promising drugs in 
ulcer control. The gastric ulcer is a disease that attacks 
large number of population. Actual lifestyle factors such 
as diet, stress, alcoholic drinks and drug abuse are known 
to worsen ulcer conditions. Therefore, there is an urgent 
need for new effi cient drugs for gastric ulcer prophylaxis 
(Dias, 1997).

Small quantities of dihydro-epideoxyarteannuin 
B was found in A. annua roots cultured both in vivo and in 
vitro conditions (Marques, 2002). Tools of biotechnology 
such as tissue culture and genetic transformation have 
been a promising possibility to increase the production 
of antimalarial artemisinin in A. annua (Weathers et al., 
2005; Abdin et al. 2003). The advantage of in vitro cultures 
is the easy manipulation of environmental conditions 
such as light condition or culture medium specifi city to 
maximize the metabolic production.
 Metabolic route engineering is a very important 
tool for increasing a target compound, thus the complete 
elucidation of biosynthetic route of artemisinin (and 
precursors) is required. Wallaart et al. (1999) proved that 
dihydroartemisininic acid and dihydroartemisininic acid 
hydroperoxide are the direct biosynthetic precursors of 
artemisinin. Several authors confi rmed that the level of 
artemisinin and others terpenes production is dependent 
of factors such as O2 (Wallaart et al., 2000) and light 
conditions (Jaziri et al., 1995; Wang et al., 2001; Liu et 
al., 2002; Weathers et al., 2005). Light can greatly affect 
the regulation of some genes involved in terpenoids 
biosynthesis as CLA1 that encodes 1-Deoxy-D-xylulose-
5-phosphate syntetase (DXPS) and 1-Deoxy-D-xylulose-
5-phosphate reductoisomerase (DXPR). These enzymes 
are involved in initial steps in the biosynthesis of 
isopentenyl diphosphate (IPP) (Souret et al., 2002).

Terpenoids are derived from the precursor 
IPP. Higher plants have two independent biosynthetic 
pathways leading to the formation of IPP: mevalonate 
pathway in the cytoplasm and the mevalonate-
independent alternative pathway associated with plastids. 
This alternative pathway is involved in the biosynthesis 

of plastidic terpenoids, mainly monoterpenes, diterpenes 
and carotenoids whereas sesquiterpenes appear to be 
synthesized primarily from the cytoplasmatic pools of 
IPP (Souret et al., 2002).

A careful analysis under different conditions 
of the regulation of the key biosynthetic genes 
involved may improve  the selection of root growth 
conditions to maximize production of either plastidial or 
cytoplasmically produced terpenes. The aim of this work 
was the establishment and cultivation of A. annua L. 
roots submitted to different light conditions and genetic 
transformation performed with two strains of A. rhizogenes 
(15834 and 8196) for studying antiulcerogenics dihydro-
epideoxyarteannuin B production. This protocol can 
be used for future scale-up bioreactors production. It is 
suggested a possible pathway for the biosynthetic route 
of dihydro-epideoxyarteannuin B and related compounds 
and its relation with artemisinin biosynthetic route. 

MATERIAL AND METHODS

Plant material and tissue culture conditions 

 Hybrid plants of A. annua L. (CPQBA 2/39 
x PL5) were collected in Centro Pluridisciplinar de 
Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) 
experimental fi eld localized in Paulínia/SP, Brazil 
(22o48´Lat.S.47o07´Long, alt. 669m). Dr. Condorcet 
Aranha of Instituto Agronômico de Campinas (IAC) was 
responsible for the specie identifi cation. Approval for 
the collection was granted by the appropriate authority 
in the country of origin as cultivated species. Exsicate 
localization: CPQBA 1246. The seeds were germinated 
aseptically in MS (Murashige; Skoog, 1962) medium as 
previously described by Marques and Shepherd (2000). 
The seedlings obtained were monthly transferred to others 
fl asks containing the same medium. 

Establishment of normal root cultures

 Normal roots cultures were established by 
transferring root tips (1-2 cm in length) of sterile A. annua 
plantlets onto Erlenmeyer fl asks (250 mL) containing liquid 
MS medium supplemented with 0.01 mg l-1 of synthetic 
auxin indol butyric acid (IBA). These cultures were kept 
under two photoperiodic conditions: 16 h light/day (16 h 
photoperiod) and 24 h darkness/day (continuous darkness) 
(Marques; Shepherd, 2000). Environmental conditions of 
culture such as temperature (25 ± 2 °C); incandescent white 
light (3000 mM m-2.s-1); pH value of 5.8 and orbital shaker 
velocity (110 rpm) were equal in all experiments of this 
work. 

Establishment of transgenic root cultures

 Microcuttings (nodal segments of 1.5 cm in length 
containing two leaves) were excised from sterile A. annua 
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plantlets and inoculated with two strains of A. rhizogenes 
(8196 and 15834). In order to obtain transgenic hairy 
roots, the basal side of each segment was placed on freshly 
prepared bacteria culture disposed on solid AT (Petit; 
Tempé, 1978) medium as previously described by Peres 
et al. (2001). Inoculated segments were plunged, basal end 
up, into solidifi ed medium composed by distilled water and 
agar (8.0 gl-1). As result of inoculation, roots emerged in the 
basal end up of segments. These roots were individualized 
and placed in a media containing half strength MS salts. 
Antibiotic (Claforan-100 mgl-1) was added into the medium 
to prevent bacterial growth (Marques; Shepherd, 2000). 
After the Agrobacterium elimination, the axenic hairy roots 
were cultivated in hormone free MS medium supplemented 
with 3% w/v sucrose and 8.0 gl-1 agar. The cultures were 
kept under two photoperiodic conditions: 16 h photoperiod 
or continuous darkness.

Extracts preparation

Roots cultivated in vitro were excised and dried 
under air circulation (40 °C) then grinded for use. The 
following dry weight data was obtained: 1.48 g (normal 
roots cultivated on darkness); 1.05 g (normal roots 
cultured on 16 h photoperiod); 0.98 g (transgenic hairy 
roots cultured on darkness) and 1.25 g (transgenic hairy 
roots cultured on 16 h light). 

For extraction, the resulting dry material was 
dynamically macerated with dichloromethane solution, 
placed in shaker for 2 h and then, fi ltered. This procedure 
was repeated three times. The fi ltered material was then 
stored. The crude dichloromethane extracts result in: 
52.20 mg of roots cultured on darkness; 33.91 mg of roots 
cultured on 16 h light; 34.42 mg of transgenic hairy roots 
cultured on 16 h light and 30.05 mg of transgenic hairy 
roots cultured on darkness.

DNA extraction and molecular analysis of hairy roots

 The hairy roots DNA extraction was performed 
according to methodology reported by Fulton et al. (1995). 
Dot Blot analysis used approximately 500 ng of hairy root 
extracted DNA and each sample was prepared in 5 μl fi nal 
volume and deposited onto a nylon membrane following 
standard procedures (Sambrook; Russel, 2001). Samples 
of tomato transgenic and non-transgenic roots were used 
as positive and negative controls respectively, which were 
kindly provided by Patrícia Gleydes Morgante (Peres et 
al., 2001). Membrane hybridization was carried out as 
described by Sambrook; Russel (2001) after 32P-labeling 
of probe with the Random Primers DNA Labeling 
System (Invitrogen™ Life Technologies). In order to 
search for positive transgenic root clones, a 3.6 kbp ORF13 
fragment from T-region of A. rhizogenes plasmid Ri (pRi) 
was selected to probe the membrane.

Column chromatography

 The chromatography of the sesquiterpene-enriched 
fraction (2.5 g) was made on Silica gel 60 (0.063-0.200 
mm) using an increasing polar mixture of hexane/ethyl 
acetate 35%. Dihydro-epideoxyartenuin B was identifi ed 
comparing their spectral data with previous studies data 
(Foglio et al., 2002).

Gas chromatography coupled to spectrum mass (GC/
MS)
 
 Analysis were carried out using a HP-5890/5970 
system equipped with a J & W Scientifi c DB-5 fused 
capillary column (25 m x 0.2 mm x 0.33 m), temperature 
program 40 °C (5 °C/min) – 300 °C (10 min), with an injector 
temperature equal to 250 °C and detector temperature equal 
to 300 °C. Helium was used as the carrier gas (0.7 bar, 1 ml 
min-1). The Spectrum Mass was taken at 70 eV. Scanning 
speed was scans/s from 40 to 550. Sample volume was 1 
μl. 

Gas chromatography coupled to fl ame ionization 
detector (CG/FID) – Quantifi cation

 The conditions used for GC/MS were maintained. 
Linear calibration standard curve of this sesquiterpene was 
obtained in 0.18 mg ml-1, 0.73 mg ml-1 and 1.82 mg ml-1 

(Curve equation: y = 31658x – 1167.5 and R2=0.9976, 
where y = height and x = length).

RESULTS

 The normal and the transgenic roots obtained 
grew vigorously in specifi cs media. Infected microcuttings 
with 15834 A. rhizogenes strain induced 75% of explants 
to root and 7.87 ± 1.17 roots/microcuting. The inoculation 
with 8196 A. rhizogenes strain promoted a smaller rooting 
percentage (30%) and number of roots/microcutting (3.37 
± 0.98). 
 The molecular characterization of hairy roots 
was undertaken by Dot Blot analysis and revealed the 
positive transgenic character of clones FL, C3, C5, C6, 
C7, C8, C10, C11, C12, C14, C15 - inoculated with 
A. rhizogenes 15834 strain and clones C1*, C3*, C4* 
- inoculated with A. rhizogenes 8196 strain (Figure 1). 
Dihydro-epideoxyarteannuin B was not present in any of 
transgenic hairy root clones analyzed. The C8 transgenic 
root clone CG/MS analysis showed another compound 
(in this paper assigned as compound C) with retention 
time 20.97 min and molecular ion in m/z 220 (data not 
shown). 
 The presence of dihydro-epideoxyarteannuin 
B in normal roots was confi rmed by CG/MS comparison 
with the authentic standard (Foglio et al., 2002). Gas 
Chromatography analysis of the root extracts revealed 
a peak assigned to A with 12.76 min retention time and 



294

Biotechnology approaches for production of antiulcerogenic dihydro-epideoxyarteannuin B isolated from Artemisia annua L.

Rev. Bras. Farmacogn.
Braz J. Pharmacogn.

16(3):jul/set. 2006

a molecular ion in m/z 234 identical to mass profi le as 
dihydro-epideoxyarteannuin B (compound A). Another 
peak assigned B with 23.87 min retention time and m/z 204 
molecular ion observed in Mass Spectrum was detected in 
these root extracts (compound B).
 Comparison  of  chromatografi c profi les showed 
that under  continuous darkness, dihydro-epideoxyarteannuin 
B was intensely produced and compound B was present in 
small amounts (Figure 2) whereas the inverse occurred 
under16 h photoperiod (Figure 3). Quantifi cation of 
dihydro-epideoxyarteannuin B by GG/FID revealed an 
approximate fi vefold increase in the production of this 
compound by normal roots cultivated under continuous 
darkness compared to roots cultivated on 16 h photoperiod 
(Table 1). 

DISCUSSION

The biochemistry analysis was carried at 28 days 
after roots inoculation. This is the period corresponding 
of the peak of growth for the roots (both transgenic and 

non-transgenic) as shown by Pellegrino et al. (1999). 
Clones C6, C7 and C8 (inoculated with 15834 A. 
rhizogenes strain) cultured under 16 h photoperiod were 
chosen for chemistry analysis because exhibited the hairy 
roots phenotypic and revealed a higher growth yield 
(preliminary results). Transformed roots metabolism 
resulted in a compound C (a compound not found in the 
non-transgenic roots) suggesting the formation of this 
compound is under a genetic infl uence, rather than a 
environmental one. 
 Our results revealed the absence of dihydro-
epideoxyarteannuin B in transgenic hairy roots kept 
under both 16 h photoperiod and continuous darkness. 
Hypothetically, the synthesis of this compound was 
powerfully infl uenced by high auxin level present in the 
transformed roots. The genetic transformation mediated 
by 15834 A. rhizogenes strain promotes endogenous 
auxin level increment because aux genes are introduced 
in the plant genome (Mallol et al., 2001).
 In agreement   with  the sesquiterpenes 
biosynthetic route (in cytoplasm) suggested by 

Sample Heights (y) Concentration-mg/L (x) 
N1 2521 0.12 
N2 18978 0.64 

Revenue: N1= 0,12 / 30 mg roots and N2= 0,64 / 30 mg roots

Table 1. Dihydro-epideoxyarteannuin B concentration detected by CG/FID in normal (non-transgenic) roots cultivated in MS 
medium kept under 16 h photoperiod (N1) and kept under continuous darkness (N2). Heights y when substituted on y = 31658 x 
– 1167.5 equation reveals x amount correspondent to dihydro-epideoxyarteannuin B concentration in each sample. 

Figure 1 . Molecular analysis by Dot Blot of Artemisia annua genetic transformed roots after 
inoculation with 15834 Agrobacterium rhizogenes strain and molecular hybridization using 
the ORF13 fragment from T-region of A. rhizogenes pRi as a probe. The DNA samples FL, C1, 
C3, C5, C6, C7, C8, C10, C11, C12, C14 and C15 refer to clones obtained. CN corresponds to 
normal (non-transgenic) tomato roots sample (negative control) and CP corresponds to tomato 
transgenic hairy roots sample (positive control). The A. annua transgenic hairy root clones 
were confi rmed by visualization of dark dots, as one seen in the positive control CP and it is 
absent in the negative control CN. 
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Figure 2. Chromatogram of normal (non-transgenic) roots cultivated in hormone free MS 
medium kept under continuous darkness obtained on Gas Chromatographic (HP5890) 
coupled to Mass Detector (HP 5970). (a) Peak A with retention time 23.874 minutes 
corresponding to compound A (dihydro-epideoxyarteannuin B) and peak B with retention 
time 12.767 minutes corresponding to compound B. (b) Spectrum Mass with molecular ion 
m/z 234 identical to the compound A authentic standard. (c) Spectrum Mass with molecular 
ion in m/z 204 correspondent to compound B. 
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Figure 3. Chromatogram of normal (non-transgenic) roots cultivated in MS medium 
hormones free kept under 16 h photoperiod obtained on Gas Chromatographic (HP5890) 
coupled to Mass Detector (HP 5970). (a) Peak A with retention time 23.874 minutes 
correspondent to compound A (dihydro-epideoxyarteannuin B) and peak B with retention 
time 12.767 minutes correspondent to compound B. (b) Spectrum Mass with molecular 
ion in m/z 204 correspondent to compound B. (c) Spectrum Mass with molecular ion m/z 
234 identical the compound A (dihydro-epideoixyarteannuin B) authentic standard.
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Bowmeester et al. (1999) and Wallaart et al. (2000), after 
the conversion of artemisininic acid to dihydroartemisininic 
acid, all other further conversions up to artemisinin are not 
enzymatic, but oxidative or photoxidative transformations 
and thus largely infl uenced by light. The light presence 
infl uences the terpenes production in both cytoplasmatic 
and plastidic biosynthetic routes. Therefore, the analysis 
of our results revealed that dihydro-epideoxyarteannuin 
B concentration in non-transgenic roots cultivated in 
hormone free MS medium kept under continuous darkness 
condition was fi vefold higher than those observed in 
roots cultivated under light and dark cycle (Table 1). 
It is possible that under total darkness, light dependent 
reactions (oxidation and photoxidation) were inhibited, 
promoting the accumulation of dihydroartemisininic acid 
and the direct conversion of this compound to dihydro-
epideoxyarteannuin B, possibly by a desidrogenase action 
(Figure 4a). Hypothetically, this enzyme was activated by 
accumulation of the substrate dihydroartemisininic acid 
under continuous darkness conditions (Nelson and Cox, 
2000). In the presence of light (16 h photoperiod), the 
oxidation and photooxidation reactions were activated 
promoting substrate dihydroartemisininic acid decrease 
by conversion of dihydroartemisininic acid to compound 

dihydroartemisininic hydroperoxide acid. Substrate 
dihydroartemisininic acid decrease also could promote 
the desidrogenase inactivation and consequently the 
decrease production of dihydro-epideoxyarteannuin 
B. Therefore dihydro-epideoxyarteannuin B was 
produced in small quantities during the 8 h darkness 
period. Dihydro-epideoxyarteannuin B production 
was inversely proportional to that observed for the 
unidentifi ed compound B: dihydro-epideoxyarteannuin 
B was intensely produced and the compound B present 
in small proportions under continuous darkness (Figure 
2) whereas the opposite occurred under 16 h photoperiod 
(Figure 3). In the presence of light the compound B was 
preferentially formed. 

In  accordance to Wallaart et al. (2000), 
artemisinin production occurs in the presence of 
light continuous by oxidation of the direct precursor 
dihydroartemisininic hydroperoxide acid and demands a 
great quantity of 1O2. The authors affi rm that this oxygen 
form production can take place by some secondary 
products assigned to chromatophores. These compounds 
are effi cient in catalyzing the transference energy of a 
photon for the triple oxygen (3O2) producing the single 
oxygen (1O2). The 1O2 is essential for conversion of 

 Artemisininic Hydroperoxide acid 8 

6 

14 

H 

  

5 

H H 

o 
H O HOO 

   NADPH 
 
    NADP+  

Dihidroartemisininic Hydroperoxide acid  

H 

H 
H 

O 
Artemisinin 1  1 

O 
O 

O 
O 

HO
O 

  

  

  

 3 
2 O

2 

    

O 
O 

H 
H 

H  2 
1 O

2 NADPH 
 

(desidrogenase) 

2 NADP  
H 

  

H 

H 
H H O 

O 

   P  
 

Dihydro-epideoxi-artenuin B 7 

Air  oxidation 3O2

(a) 

A D P 

H 

O 

H 
H O 

O 

Epideoxi-artenuin B  
O 

H 

H O O H 

  

Metabolic route IPP  

      Difosfate farnesil (FDP)  

H 

Artemisininic acid  3
o 

H O 

H 

Artenuin B  
9 

O 
O H O 

H 

H 
-------------- -

Dihydroartemisininic acid  

Photooxidation 

(b) 

(dehydrogenase) 

COMPOUND B 

COMPOUND  A 

Figure 4. Artemisinin and precursor’s biosynthetic route in A. annua, adapted from Boumeester et al (1999) and 
Wallaart et al. (2000). (a) Possible way to dihydro-epideoxyarteannuin B formation. The direct transformation of 
dihydroartemisininic acid to dihydro-epideoxyarteannuin B by desidrogenase action could occur under continuous 
darkness conditions. (b) Hypothetical pathway where the compound B could be formed under 16 h photoperiod.
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dihydroartemisininic acid to artemisinin in A. annua 
(Wallaart et al., 1999). 

The artemisinin synthesis in root systems of 
plants cultivated in fi elds is limited by light absence 
together with the small quantity of atmospheric oxygen. 
Meanwhile, artemisinin presence has been detected in 
A. annua transgenic hairy roots in vitro cultivated under 
light conditions (Liu et al., 2002; Souret et al., 2002; 
Weathers et al., 2005). Plants  can produce high levels 
of 1O2 under stress condition, such as limited water, 
high UV-B radiation, low temperature, and wounded 
tissue (Wallaart et al., 2000). Hypothetically, the in 
vitro culture condition and wounds promoted by cuts in 
plant tissues could generate a stress condition, exposing 
root cromatophores to atmospheric air in the fl ask and 
producing 1O2 in the presence of light (Murashige, 1990). 
The restricted airfl ow inside the fl ask did not allow 
suffi cient 1O2 formation for synthesis of artemisinin, but 
it was suffi cient for dihydroartemisinin hydroperoxide 
acid production. It is already known that the great 
instability of dihydroartemisinin hydroperoxide acid 
(Wallaart et al., 1999) and the adverse effects of peroxide 
accumulation can generate wounds and loss of function 
of organelles (Wallaart et al., 1999). Based on these 
facts, we suggest that a detour of the metabolic route has 
occurred and, consequently, other compounds, other than 
artemisinin captured reactive oxygen. The great quantity 
of compound B in non-transgenic root extracts kept under 
16 h photoperiod suggests that the detour of the metabolic 
route occurred in the direction of this compound (Figure 
4b). 

For therapeutic and economic purpose is 
necessary optimization of the antiulcerogenic dehydro-
epideoxiartannuin B production such as manipulation 
of environmental conditions of normal roots. Constant 
darkness was shown to be essential condition for the 
process be successful. Our efforts will continue to focus 
on developing strategies that can enhance the production 
of commercially valuable compounds.
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