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Abstract: Aldose Reductase (AR) is the polyol pathway key enzyme which 
converts glucose to sorbitol. High glucose availability in insulin resistant 
tissues in diabetes leads into an accumulation of sorbitol, which has been 
associated with typical chronic complications of this disease, such as 
neuropathy, nephropathy and retinopathy. In this study, 71 flavonoids AR 
inhibitors were subjected to two methods of SAR to verify crucial substituents. 
The first method used the PCA (Principal Component Analysis) to elucidate 
physical and chemical characteristics in the molecules that would be essential 
for the activity, employing VolSurf descriptors. The rate obtained explained 
53% of the system total variance and revealed that a hydrophobic-hydrophilic 
balance in the molecules is required, since very polar or nonpolar substituents 
decrease the activity. Artificial Neural Networks (ANNs) was also employed 
to determine key substituents by evaluating substitution patterns, using NMR 
data. This study had a high success rate (85% accuracy in the training set and 
88% accuracy in the test set) and showed polihydroxilations are essential for 
high activity and methoxylations and glicosilations primarily at positions C7, 
C3' and C4' decrease the activity.
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Introduction

 The high incidence and degree of morbidity 
make diabetes a serious disease in modernity, affecting 
more than 150 million people worldwide. The World 
Health Organization estimates that diabetes deaths are 
likely to increase by more than 50% in the next 10 years 
without urgent action (WHO, 2000).
 The pathological mechanism of this disease is 
complex but is based on the pathway of polyols, which 
has the aldose reductase (AR) as a key enzyme (EC 
1.1.1.21) (Kinoshita, 1974). AR catalyzes the reduction of 
glucose to sorbitol using nicotinamide-adeninenucleotide 
phosphate (NADPH) as a cofactor and, in normal tissues, 
this conversion occurs in little extent because AR has 
low substrate affi nity to glucose. Concomitantly, sorbitol 
is oxidized to fructose by sorbitol dehydrogenase. In 
diabetes mellitus, however, the increased availability of 
glucose in insulin resistant tissues such as lens, nerve, 
and retina leads to an increased formation of sorbitol 

through the polyol pathway and so, sorbitol is produced 
faster than its oxidation to fructose (Fernández et al., 
2005). It is known that sorbitol does not readily diffuse 
across cell membranes and its intracellular accumulation 
has been implicated in chronic complications of diabetes 
such as cataract, neuropathy, retinopathy, myocardial 
ischemic injury and atherosclerosis due to hyperosmotic 
effect (Demiot et al., 2006; Sun et al., 2006; Iwata et al., 
2006; Fernández et al., 2005). These fi ndings suggest 
that an aldose reductase inhibitor prevents the conversion 
of glucose to sorbitol and may have the capacity of 
preventing and/or treating several diabetic complications 
(Matsuda et al., 2002).
 Numerous AR inhibitors obtained from natural 
sources such as coumarins, stilbenes, monoterpenes, 
and related aromatic compounds have been reported 
in the literature (Koukoulitsa et al., 2006). One class 
of AR inhibitory compounds found to be effective are 
the fl avonoids, which are phenolic compounds isolated 
from a wide range of vascular plants, with more than 
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5000 individual known compounds. Some structural 
requirements of flavonoids for AR inhibitory activity 
were clarified, as flavones and flavonols having a catechol 
moiety at the B ring (3’,4’-dihydroxyl moiety) show 
stronger activity (Matsuda et al., 2002). Mercader et al., in 
2008, constructed predictive QSAR models of inhibitory 
activity against AR enzyme for 55 flavonoids using a 
lot of kinds of descriptors (topological, geometrical and 
physical-chemical). A QSAR study of 57 flavones using 
topological descriptors associated with Multiple Linear 
Regressions (MLR) and Partial Least Squares (PLS) 
suggest some structural features for activity as structures 
rich in aromatic CH fragments, with a limited number of 
aliphatic fragments and and free hydroxyls in positions 7, 
3’ and 4’ (Prabhakar et al., 2006).
	 Flavonoids are a class of secondary plant 
phenolics with significant antioxidant and chelating 
properties; cardioprotective effects stem from the 
ability to inhibit lipid peroxidation, chelate redox-active 
metals, and attenuate other processes involving reactive 
oxygen species. The basic syntheses, hydroxylases, and 
reductases of flavonoid pathways are presumed to have 
evolved from enzymes of primary metabolism. They 
possess a high variety of biological activities including 
antiinflammatory, antimicrobial, antiallergenic, antiviral, 
vasodilating action and antioxidant activity. These 
compounds are able either to suppress free radical 
formation and chain initiation or to scavenge free radical 
and chain propagation (Varma, 1986; Heim et al., 2002; 
Stafford, 1991; Fernández et al., 2005).
	 Flavonoids contain a basic structure constituted 
of 15 carbon atoms arranged in three rings (C6-C3-C6), 
and derive part of their structures from shikimate and 
part from polyketide pathway, and show the molecular 
structural requirements for a remarkable AR inhibition 
effect. It is reported that the two planar hydrophobic 
regions with hydrogen bonding substituents and an area 
containing a group such as a carbonyl or a thiocarbonyl, 
capable of undergoing reversible nucleophilic attack, 
are important to a satisfatory AR inhibition (Kador et 
al., 1985). The polyhydroxylation, especially at C-7 and 
C-4’, is also linked to an AR inhibition effect (Kador et 
al., 1985; Klopman Buyukbingol, 1988).
	 Studies that relate the biological activity or 
pharmacokinetic properties, including absorption, 
distribution, metabolism and excretion (ADME), of 
compounds with their physico-chemical and structural 
properties can lead to the identification of most promising 
candidates for new drugs (Yamashita & Hashida, 
2004). The molecular properties calculated from three-
dimensional (3D) maps of interaction energy have 
emerged as a new approach to explore pharmacokinetic 
profiles and their determinants. In this context, VolSurf 
(Cruciani et al., 2000a,b,c; Crivori et al., 2000) is a 
computational procedure capable of computing the 3D 

maps of molecular interactions and, using methods of 
image processing, transform these fields into simple 
molecular descriptors to interpret. 
	 In order to describe the compounds molecular 
structure, in addition to the interaction energy maps data, 
13C NMR data (Nuclear Magnetical Ressonance Carbon 
13) can be used. 13C NMR spectrum is sensitive in detecting 
small differences in the molecule, which are measured by 
the variation of chemical shifts and the values can be used 
to associate the chemical structure with the respective 
biological activity, since this association can help to 
understand the influence of the chemical environment on 
the biological activity selected. The combination of such 
data can be made using a computational procedure called 
Artificial Neural Networks or ANNs, which are systems 
not restricted to linear correlation approaches (Lawrence, 
1994; Pierce & Hohne, 1995), making them an option for 
data analysis with unknown or uncertain correlation. 
	 The most used ANN architecture for pattern 
recognition is the Kohonen network, also named Self-
Organizing Map (SOM) (Kohonen, 2001). A SOM can 
map multivariate data onto a two dimensional grid, 
grouping similar patterns near each other and it was 
successfully used in several applications using chemistry 
database, such as classification of photochemical reactions 
(Zhang & Aires-de-Souza, 2005), chemotaxonomy of the 
Asteraceae family (Da Costa et al., 2005; Hristozov et al., 
2007), for a series of 103 sesquiterpene lactones which 
showed anti-inflammatory activity (Wagner et al., 2006), 
in drug design (Gasteiger et al., 2003), in the prediction 
of the cytotoxic potency of 55 SLs (Fernandes et al., 
2008), in the comparison of dataset compounds (Bernard, 
1998), in the classification of metabolites (Gupta & Aires-
de-Sousa, 2007) and in the prediction of the diterpene 
skeletons (Emerenciano et al., 2006) classification of 
plants at lower hierarchical levels (Correia et al., 2008).
	 This study is an attempt to identify the molecular 
substituents that lead to a high capacity in inhibiting AR 
enzyme and to identify those that decrease the activity 
when inserted in the flavonoid molecule, proposing a 
model compound for further focused studies, helping the 
rational development of drugs against diabetes.

Material and Methods

Dataset and Molecular Modeling

	 The starting compounds analyzed for the 
AR inhibitory activity were the 71 compounds (Table 
1) presented by Fernández et al. 2005, in which the 
activities were spectrophotometrically measured in 390 
nm by the enzymatic method of NADPH consumption 
(Okuda et al., 1984). The potential of in vitro inhibition 
was quantified in IC50. Parameter pIC50 was calculated 
by IC50 value (pIC50=-logIC50), expressed as mol/L. 
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Molecules were classified as active (37 molecules with 
pIC50>5,69 µmol/L) and inactive ones (34 molecules 
with pIC50≤5,35 µmol/L). 
	 The three dimensional structures were drawn 

and molecular modeling computations were performed 
on SPARTAN for Windows v. 4.0 software (Wavefunction 
Inc, 2010). Initially, the mechanic molecular method 
MMFF94 was applied. Molecular mechanics describes 

Table 1. Compounds, their biological activities (pIC50=-log IC50), activity and set classification for the self-organizing maps, 
chemical structure set.

id pIC50a Activity Set R3 R5 R6 R7 R8 R2’ R3’ R4’ R5’
Reference 

NMR

1 7.52 A Training OCH3 OH OCH3 OH OH OH a, b

2 7.49 A Training OCH3 OCH3 OCH3 OCH3 OH OH c

3 7.47 A Test OCH3 OH OCH3 OCH3 OH OH d

4 7.47 A Training OH OCH3 OH CH2Ph OH OH d

5 7.41 A Training OH OCH3 OCH3 OCH3 OH OH d

6 7.35 A Test OCH3 OCH3 OCH3 OH OH d

7 7.24 A Training OCH3 OH OH OH OH OH d

8 7.19 A Training OH OH OCH3 OCH3 OH OH c

9 7.13 A Test OCH3 OH OCH3 OH OH d

10 7.11 A Training OH OCH3 OCH3 OH OH d

11 7.04 A Training OCH3 OCH3 OCH3 OH OH d

12 6.92 A Training OH OH OH OCH3 OH OH d

13 6.85 A Test OCH3 OH OCH3 OH OH d

14 6.79 A Training OCH3 OCH3 OCH3 OCH3 OH d

15 6.79 A Training OCH3 OCH3 OH OH OH d

16 6.77 A Training OCH3 OCH3 OCH3 OCH3 OH OH d

17 6.69 A Training OH OH OH OH OH d

18 6.66 A Test OH OCH3 OCH3 OH OH e

19 6.64 A Training OH OCH3 OH OH OH c

20 6.62 A Training OCH3 OH OH OCH3 OH OH d

21 6.6 A Training OCH3 OH OCH3 OCH3 OH c

22 6.57 A Training OCH3 OCH3 OCH3 OH OH c

23 6.55 A Test OH OH OCH3 OH OH d

24 6.55 A Training OCH3 OCH3 OH OCH3 OH OH c

25 6.52 A Training OCOCH3 OCOCH3 OCOCH3 OCH3 OCOCH3 OCOCH3 d

26 6.52 A Test OH OH OCH3 OH OH d

27 6.52 A Training OCH3 OCH3 OH OCH3 OH OH c

28 6.46 A Training OCH3 OH OCH3 OCH3 OH OH f

29 6.39 A Training OH OCH3 OH OCH3 OH g

30 6.27 A Test OH OCH3 OCH3 OCH3 OH h

31 6.09 A Training OCH3 OH OH OCH3 OH OH c

32 6.09 A Training OH OH OH OH OH d

33 6.07 A Training OH OH OCH3 OCH3 OH c

34 5.92 A Test OH OH OH OCH3 OH d

O

R3

R3'
R2'

R5'

R4'

OR5

R6

R7

R8
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35 5.92 A Training OH OH OH OCH3 OCH3 OH d

36 5.85 A Training OH OCH3 OCH3 OH i

37 5.69 A Training O-Rh OH OH OH OH d

38 5.35 I Training OH OCH3 OH OCH3 OCH3 OH d

39 5.2 I Training OCH3 OH OCH3 OCH3 OCH3 OH c

40 5.17 I Training OH OCH3 OCH3 OCH3 OH d

41 5.14 I Training OH OCH3 OH OCH3 OCH3 c

42 5.09 I Test OH OH OH OCH3 j

43 5.08 I Training OH OH OCH3 OCH3 c

44 5.05 I Training COCH3 OCH3 OCH3 OCH3 OH OH k

45 5.02 I Training OH OCH3 OCH3 OH O-Glc j

46 4.92 I Test OH d

47 4.88 I Training OH OCH3 OCH3 OCH3 O-Glc j

48 4.79 I Training OH OCH3 OCH3 O-Glc a

49 4.78 I Test O-Glc OH OH OH OH d

50 4.74 I Training OH OCH3 OH OCH3 OCH3 O-Glc a

51 4.73 I Training OCH3 OCH3 OCH3 OCH3 OCH3 OH c

52 4.68 I Training OH O-Glc OCH3 OCH3 OCH3 OH d

53 4.67 I Test Ph OCH3 OH e

54 4.53 I Training OH OCH3 OH OCH3 OCH3 OCH3 d

55 4.48 I Training Ph OH d

56 4.48 I Training OH OCH3 d

57 4.48 I Test CN e

58 4.42 I Training COOH d

59 4.34 I Training OH OCH3 OCH3 OCH3 OCH3 OH d

60 4.34 I Training OH d

61 4.25 I Training COOH OCH3 COOH d

62 4.15 I Test OCH3 OCH3 OH d

63 4.15 I Training OCH3 CH3 d

64 4 I Training OH OH OH OCH3 OH d

65 4 I Test CH3 d

66 4 I Training CH3 OH d

67 3.96 I Training OH OH OCH3 OCH3 OCH3 OH d

68 3.54 I Training OCH3 OH OCH3 OCH3 d

69 3.5 I Test OH OCH3
OCH3 OCH3 OH d

70 3 I Training OCH3 OH d

71 3 I Training OH OCH3
OCH3 OH OCH3 d

a Al-Yahya et al., 1988;  b Flamini et al., 2001; c ACD/HNMR, 2003; d Agrawal, 1989; e Maldonado & Ortega, 1997; f Brown et al., 2003; g Greenham 
et al., 2001; h Jahaniani et al., 2005; i Youssef et al., 1995; j Horie et al., 1998; k Nagao et al., 2002.

Table 1. Continuation

molecules in terms of bonded atoms which have been 
distorted from some idealized geometry due non-bonded 
van der Waals and Coulombic interactions. Molecular 
mechanics methods differ in the number and nature 
of terms which they incorporate, as well details of 
parameterization. The MMFF94, developed at Merck 
Pharmaceuticals, is is limited in scope to organic systems 
and biopolymers. The molecules were subjected to 
geometry optimization and conformational analysis 

(systematic analysis with dihedral angle rotationed at 
each 30°). 
	 The semi-empirical quantum chemical method 
used was AM1 (Austin Model 1) (Dewar et al., 1985; 
Dewar et al., 1990). Semi-empiric models follow directly 
Hartree-Fock models, but the size of the problem is 
reduced by restricting treatment to valence electrons 
only. AM1 was designed to eliminate problems of 
overestimate repulsions between atoms separated by 
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distances equal to the sum of their van der Waals radii. 
The termination condition and minimization method 
used were the patterns of SPARTAN. For both molecular 
mechanics and for semi-empirical method it was used 
the energy minimization method known as “conjugate 
gradient Polak-Ribière” (Leach, 2001). 

VolSurf approach

	 Molecules with their energies minimized 
were saved as Sybyl MOL2 Files for multivariate 
characterization based on their interaction energy with 
chemical probes. GRID program (Kastenholz et al., 
2000; Molecular Discovery, 2010) was used in VolSurf 
4.1.4.3 for Linux (Cruciani et al., 2000a; Molecular 
Discovery, 2010), included in Sybyl program v. 6.9.1 
(Tripos Inc, 2010), to calculate molecular interaction 
fields, which may be viewed as 3D matrixes, whereas 
elements (called grid nodes) are the attractive and 
repulsive forces between an interacting partner (the 
probe) and a target (the molecule or macromolecule), 
computed at sample positions (the grid points). VolSurf 
is specifically designed to produce descriptors related 
to pharmacokinetic properties (Cruciani, 2000a,b,c; 
Crivori, 2000). In this first evaluation of the dataset using 
PCA presented in this article, only water (OH2) and DRY 
probes were employed because they are the most suitable 
to describe lipophilicity and hydrogen interactions. 
Water (OH2) probe was used to simulate solvation-
desolvation processes, while DRY probe (hydrophobic) 
was used to simulate drug-membrane interactions. Thus, 
together, these probes are able to simulate absorption 
and distribution processes of drugs, which are primarily 
regulated by their hydrophobicity, since it is necessary 
that they dissolve and pass through biological membranes 
which form the tissues and the multicompartimental 
systems, until they reach their respective action sites 
(Cruciani, 2000c). 
	 Principal Component Analysis (PCA) is a 
chemometric tool for extracting and rationalizing the 
information from any multivariate description of a 
biological system. PCA condenses the overall information 
into two smaller matrixes, namely the scores plot, which 
shows the pattern of compounds, and the loadings plot, 
which shows the pattern of descriptors. PCA provides 
information about the relationships between samples 
in a data set but also gives us insight into relationships 
between variables. The utility of PCA for dimension 
reduction lies in the fact that the PCs are generated so that 
they explain maximal amounts of variance. The loadings 
plot is composed of a few vectors (Principal Components, 
PCs) which are obtained as lineal combinations of the 
original X-variables. In turn, each object in the scores 
plot is described in terms of its projections onto the PCs, 
instead of the original variables (Wold et al., 1987). 

This step was also performed automatically by VolSurf 
program. The autoscaling and centering procedures were 
applied to the PCA analysis.

Self-organizing maps approach

	 For the analysis correlating the 13C NMR data 
(table in supplementary material) and the flavonoid 
inhibitory activities, the former were obtained from the 
literature (Al-Yahya et al., 1988; Flamini et al., 2001; 
Agrawal, 1989; Maldonado & Ortega, 1997; Greenham 
et al., 2001; Jahaniani et al., 2005; Youssef & Frahm, 
1995; Horie et al., 1998; Nagao, 2002) and, for some 
structures, they were extracted using ACDlabs software 
(ACD/HNMR, 2003), since flavonoids are plane aromatic 
compounds, and so, the aditivity model can be applied 
satisfactorily to predict 13C NMR data. To validate the 
method employed in the 13C NMR data prediction, the 
chemical shifts of some flavonoids were predicted and 
compared to the literature data (table in supplementary 
material), showing errors smaller than 3ppm. To 
standardize the 13C NMR analysis, since not all structures 
have glycosil and methyl groups, the 13C NMR data used 
were only the chemical shifts pertaining to the flavonoid 
skeleton. 
	 The correlation between the 13C NMR data 
and biological activity was performed using the SOM 
Toolbox version 2.0 for Matlab version 6.5 computing 
environment by MathWorks, Inc (Mathworks, 2004; 
Vesanto, 2005). The training was conducted through the 
Batch-training algorithm, in which the whole dataset is 
presented to the network before any adjustment is made. 
The compounds were first randomly divided into two 
subsets: one training set composed of 54 structures and 
one external test set composed of seventeen compounds, 
suitable to analyze the predictive performance. In each 
training step, the dataset was partitioned according to the 
regions of the map weight vectors. Each sample is a 15-
dimensional vector. SOMs were generated with the same 
topology: for the local lattice structure, the rectangular 
grid was used, while sheet was used to indicate the global 
map shape, using Gaussian neighborhood function. The 
literature shows that the determination of the size of the 
SOMs is an empiric process (Kohonen, 2001). Initially a 
heuristic formula of m=5.(n)0.5 is used for total number of 
map units, where n is the number of samples. The ratio of 
side lengths is based on the two biggest eigenvalues of the 
covariance matrix of the given data. Some different maps 
sizes were prepared, based on the initial map, generated 
as described before.

Results and Discussion

VolSurf approach 
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	 VolSurf descriptors have been presented and 
explained in detail elsewhere (Crivori et al., 2000; Cruciani 
et al., 2000; Molecular discovery, 2010). In Figure 1, 
PC1 explained 40.5% and PC2 explained 12.5% of the 
total variance, accounting for approximately 53% of the 
total variance of the matrix. The second PC discriminates 
more clearly between the active and inactive compounds. 
A more detailed inspection of the scores plot in Figure 
1 indicates that in the upper quadrant, 77.3% of the 
compounds are active and in the lower quadrant, 88.9% 
of the compounds are inactive. Ten inactive (structures 
39, 40, 51, 53, 54, 55, 62, 67, 71 and 79) and three active 
(structures 25, 32 and 37) compounds were misclassified, 
so 92% of active molecules were grouped together, while 
for the inactive ones the percentage was 70.5%.
	 By analyzing the scores and loadings plots 
(Figures 1 and 2) together it is possible to observe that the 
DRY probe descriptors are predominantly associated to 
the active structures region. High values of the descriptors 
Emin1-3DRY, D13DRY, BV12DRY and BV32DRY 
are associated to active structures, while high values of 
the hydrophilic descriptors Iw7-8OH2 and all the Cwx 
are associated to the inactive ones. Local Interaction 
Energy minima descriptors (Emin1 - Emin3) represent 
the energies of interaction in kcal/mol, for the interaction 
between the OH2 and DRY probes and the target molecule. 

Hydrophobic regions (D1 - D8) are defined when a DRY 
probe is interacting with a target molecule. Best Volumes 
(BV11 BV21 BV31 BV12 BV22 BV32) are six new 
descriptors which represent the best three hydrophilic 
generated by a water molecule when interacting with the 
target. Integy moments descriptors (Iw1-Iw8) measure 
the unbalance between the center of mass of a molecule 
and the position of the hydrophilic regions around it. 
Capacity factors (Cw1 - Cw8) represent the ratio between 
the hydrophilic regions and the molecular surface, i.e. the 
amount of hydrophilic regions per surface unit (Crivori al., 
2000; Cruciani et al., 2000; Molecular discovery, 2010). 
It should be noted that in the active structures region 
there is a hydrophilic contribution of descriptors such as 
D12OH2, D13OH2 and D23OH2, indicating that there 
must be an ideal hydrophilic-hydrophobic balance for 
the structures to behave as active. This balance becomes 
clearer when the inactive structures outside the "core" 
of active ones (structures 53 and 55) are analysed. Such 
compounds have been heavily influenced by the DRY 
probe descriptors, showing that a hydrophobic character 
in excess, which can be represented by a phenyl group, 
reduces the inhibitory activity value. 
	 A more detailed analysis of the scores plot 
reveals that there is a group of active (structures 25 and 
37) and inactive (structures 45, 47, 48, 49, 50 and 52) 

Figure 1. PCA scores plot for the compounds in Table 1. Ids in white colors represent the active flavonoids and the red ones represent 
the inactive.
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compounds at the far right of the plot, being clearly 
separated from the other compounds. Except id25, all 
these compounds are glycosylated flavonoids with high 
hydrophilic character, what does not contribute to the 
hydrophobic-hydrophilic balance necessary for their 
interaction with the receptor. The glycosilation causes 
a great solvation around the structures, what turns them 
unavailable for interations due to the water molecules 
shielding. The structure 25 is the sole tetraacetylated, 
also possessing high hydrophilic character because of the 
great number of hydroxyl and carbonyl groups. So, it is 
expected that this molecule is strongly influenced by the 
hydrophilic descriptors of capacity factors (CW1-8) and 
descriptors of hydrophilic regions (W1-8) that abound 
in this region. The inactive compounds located in the 
lower right quadrant (structures 41, 42, 43, 46 53, 56, 57, 
60, 63, 65, 66, 68, 69 and 70) have fewer free hydroxyl 
groups and do not have substituents at positions C2' and 
C3'. When both are hydroxylated, it is known to lead to a 
good inhibitory activity (Klopman & Buyukbingol, 1998). 
These compounds are influenced by Iw7-8 descriptors, 
which describe the polar core concentration. In these 
structures, the polarity is concentrated in one ring, that 
is, an unbalanced distribution of polarity in the molecule 
seems to be unfavorable for the inhibitory activity.
	 The inactive structures 44, 58 and 61 in the 
lower right quadrant have carbonyl (44) and carboxyl (58 
and 61) groups, and the latter are the sole structures of the 

series owning an acidic group. As mentioned before, with 
such polar groups, it is expected that the structures are 
highly solvated, what makes it difficult to interact with 
the receptor and to pass through membranes, reducing 
its biological activity. Most of the inactive structures 
clustered near the active ones in the upper quadrant 
have structural features like the latter, especially the 
hydroxylation at C3' or C4', but these compounds present 
poor activity because they do not have these two positions 
hydroxylated. 
	 All the active structures, except 30 and 34, have 
hydroxylations at positions C3' and C4', reiterating the 
importance of this substitution pattern for the active 
structures. In addition, all have hydroxyl or methoxy 
groups at positions C5 and C7, what is especially important 
because these positions seem to interact with specific 
amino acids in the enzime inhibitory site (Carbone et al., 
2009). Although the structures 30 and 34 do not possess 
a hydroxyl group at position C3', they have this group 
at C5, which contributes to the inhibitory activity. The 
descriptors influencing such active structures, as already 
stated before, are mainly the probe DRY descriptors as 
EminxDRY and DxDRY and some descriptors of the 
OH2 probe as DxOH2. Such structures are in a mixed 
descriptors region, indicating that they can be neither 
very hydrophobic nor very hydrophilic, so high values 
of the Eminx, which represent the interaction energies 
in kcal/mol between the probes (OH2 and DRY) and the 

Figure 2. PCA loadings plot for the flavonoids in Table 1. Blue color represents water probe descriptors. Green color represents 
DRY probe descriptors. HL1, HL2, A, CP evaluate the lipo-hydrophilic equilibrium and appear when these two probes are 
used together and POL, MW, Elon, EEFR, DIFF, LogP are not related to a specific probe.
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target molecule descriptor, lead to active structures.
	 Summarizing, the active structures are 
associated to DRY probe descriptors, while high values 
of the hydrophilic descriptors Iw7-8OH2 and all the 
Cwx are associated to the inactive ones. There must 
be an ideal hydrophilic-hydrophobic balance for the 
structures to behave as active. Some structures, such 
as the phenyl group, reduce the inhibitory activity by 
contributing to a hydrophobic character in excess. 
Glycosylated and tetraacetylated flavonoids and those 
possessing acidic groups present a high hydrophilic 
character, what does not contribute to the hydrophobic-
hydrophilic balance necessary for their activity. On the 
other hand, hydroxylations at positions C3' and C4' or C5 
and hydroxyl or methoxy groups at positions C5 and C7 
increase the activity.

Self-organizing maps approach 

	 Figure 3 shows the Kohonen map obtained after 
the completion of the training.

Figure 3. Kohonen map obtained after the training phase of 
set 1 using 13C NMR descriptors. The grey color represents the 
active substances, while the black represents the inactive ones.

	 By examining Table 2, it is possible to observe a 
significant success rate with a high percentage of correct 
relations for both groups (85%). By analyzing the groups 
separately, the highest number of hits occurred among the 
active compounds (89%), what can be explained by these 
compounds substitution pattern which influences the 
electromagnetic vicinity in the same way. This substitution 
pattern could be the polyhydroxylation, especially at C5, 
C7, C3 and C4'. Thus, the neural network recognized this 
structural pattern and succeded in classificating almost 
all active compounds (25 flavonoids). Table 3 confirms 
the success of the model by showing a significant hit for 
both groups (88%). The great hit of 100% for the active 
group and the good accuracy of 75% for the inactive 
group support the validation of the study.
	 However, some compounds were mispredicted 
in both sets. In the training set, compounds 5 and 8 share 
a replacement pattern with the inactive ones, which is an 
oxygen atom attached to C5 and C6 and a methoxy group 
at C7 and C8. Compound 35 has a hydroxyl group at C4' 

and a methoxy group attached at C3'. This substitution is 
also characteristic of inactive compounds. Thus, active 
compounds that possess such patterns were classified as 
inactive by the ANN. The inactive molecules 47 and 48 
were misclassified because of the glycosyl group attached 
to C4', which gives a chemical shift with a similar value 
to the free hydroxyl group at C4'. Thus, these molecules 
resemble active molecules for the ANN, but it is already 
known thar the glycosylation at C4' usually diminishes 
or even overrides the biological activity of flavonoids 
(Molineux, 2004).

Table 2. Summary of the training match results (%).
Training Set % Match % Match

Active 28 52 25 89
Inactive 26 48 21 81

Total 54 100 46 85

Table 3. Summary of the test match results (%).
Training Set % Match % Match

Active 9 53 9 100
Inactive 8 47 6 75

Total 17 100 15 88

	 For the test set, the mismatches occured among 
the inactive compounds possessing molecular structures 
similar to the active compounds. For instance, compound 
42, which has NMR values very similar to compounds 9 
and 34 and compound 49, which has a hydroxyl group 
attached to C3 'and C4', a pattern of the test set active 
molecules. 
	 A detailed look at Figure 4 shows a clear 
discrimination between the groups. The active compounds 
correspond to the gray squares and the inactive, to the 
black ones. Each square in the map illustrates a neuronal 
region and this illustrates an artificial brain. If the study is 
successful, neurons with similar patterns would stimulate 
their surroundings, and so, a distinction between the 
areas of the map containing neurons with similar patterns 
clustered near each other could be observed. There 
is a predominance of inactive compounds in the left 
portion of the map. The central and right parts show a 
strong tendency in clustering active compounds. This 
distribution shows a satisfactory separation between the 
groups, which is a consequence of a satisfatory Kohonen 
study.
	 Both methodologies applied aiming to establish 
a lead compound capable of inhibiting the AR enzyme 
proved to be satisfactory, since they had great hit 
rates and significant results. The study of the physico-
chemical characteristics by the PCA method showed that 
some structural patterns are important to the inhibitory 
activity, such as the hydrophobic-hydrophilic balance in 
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the molecule and hydroxylations at C5, C7, C3 'and C4', 
being the two latter essential for a high activity. However, 
compounds with polar groups in excess, for instance 
sugars and acids, or nonpolar, such as the phenyl group, 
disadvantage the inhibitory activity. Through the 13C 
NMR data the ANN achieve a significant result, sorting 
the active and inactive molecules with minimal errors (< 
25%). This supports the idea that 13C NMR data can be 
used to perform classification of flavonoids taking into 
account the biological activity, making clear that radical 
scavenging activity is highly correlated with the chemical 
environment.
	 All these results are confirmed by a recent 
crystallography study of the enzyme inhibitory site 
with a classic flavonoid, quercetin (Carbone et al., 
2009). In this study, the researchers showed that the 
hydroxyl group at positions C3 'and C4' make stable 
hydrogen bonds with the threonine residue 113, the 
hydroxyl at C7 form hydrogen bonds with Histidine 
110 and Tyrosine 48 and C3 hydroxyl makes hydrogen 
bond with Asparagine 83. In addition, the flavonoid 
performs a number of other stabilizing interactions with 
the hydrophobic residues Trp20, Val47, Trp79, Phe115, 
Phe122, Leu300 and Tyr309, confirming the necessity of 
the hydrophobic character for a good activity. Therefore, 
it is possible to predict that a flavonoid lead compound 
would posses hydroxylations in C3, C5, C7, C3 'and C4', 
few methoxylation or glicosilations mainly at C7, C3 'or 
C4 ' positions and the absence of very polar or nonpolar 
groups.Such a molecule model would be a good starting 
point to develop studies of rational drug design in the 
search for new therapeutic arsenals capable of alleviating 
the pathological complications of diabetes. 
	  Some structural features of flavonoids, as 
hydroxylations in C7, C3 'and C4' are the same as clarified 
on previous studies (Matsuda et al., 2002; Prabhakar 
et al., 2006; Mercader et al., 2008). These findings 
are important because they were achieved using non-
supervised methods and empirical data from 13C NMR. 
Besides, VolSurf was suitable to show the importance 
of some molecules regions and the type of interactions 
between the substances and the target by means of 
physico-chemical interpretations. When SOM was used, 
the search for a linear correlation was not necessary and 
the interpretation of the results was easier whith simpler 
descriptors, such as those in VolSurf. 
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