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Abstract: Rhodoliths are the free-living forms of a number of nongeniculate coralline 
algae. Rhodolith beds are a common feature of subtidal environments and have been 
recognized as important carbonate producers and paleoenvironmental indicators, as 
well as recognized as habitat-forming species. The rhodolith structure provides a hard 
three-dimensional substrate serving as microhabitat for a wide range of biodiversity, 
including commercially importance species. The largest known latitudinal occurrence 
range of rhodolith beds ais on the Brazilian coastal shelf from 2°N to 25°S. Despite 
their importance for the Brazilian benthic communities, only in the last decade sampling 
efforts allowed a more comprehensive understanding of the beds’ distribution, their 
structure and associated communities, as well as data concerning the infl uence of 
environmental factors on rhodolith bed structure and dynamics. In this work, we review 
the available information on the biodiversity associated with the recently described 
Brazilian rhodolith beds of the continental shelf and oceanic islands, focusing on the 
associated organisms with potential for bioprospection research.
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Introduction

 Rhodolith (maërl) beds, communities dominated 
by free living, calcareous, non-geniculate coralline 
algae, are a common feature of subtidal environments 
worldwide. Rhodoliths are the free-living forms of a 
number of nongeniculate coralline algal genera of the 
Cora llinales and Sporolithales and have been recognized 
as foundation species (Amado-Filho et al., 2007; Foster 
et al., 2007; Steller et al., 2007). Well preserved as 
fossils, they have long been recognized as important 
carbonate producers and paleoenvironmental indicators 
(Foster et al., in press). Rhodoliths often occur at high 
concentrations over large areas, forming rhodolith beds 
that are among the “Big Four” benthic communities 
dominated by marine macrophytes, ranking with kelp 
forests, seagrass meadows and coralline reefs (Foster 
2001; Foster et al., in press).
 Living rhodolith commonly occur on sediment, 
often of biogenic origin. The structure of the rhodolith 
has a large effect on the associated organisms, causing 
an increase in diversity over that of a purely soft benthic 
habitat (Steller & Foster, 1995). The rhodolith structure 
provides a hard, three-dimensional substrate, serving 
as a microhabitat for a wide diversity of invertebrates, 
associated algae and fi shes, many of whom are of 
signifi cant commercial importance (Foster et al., 1997; 
Steller et al., 2003; Littler & Littler, 2008). Thus, 

rhodoliths are widely recognized as habitat- forming 
species (e.g., Amado-Filho et al., 2007; Foster et al., 
2007; Steller et al., 2007).
 Foster (2001) pointed out that current reports 
indicate that rhodolith beds are especially abundant in 
the Mediterranean, Gulf of California, the Atlantic coasts 
of Norway, Ireland, Scotland, northeastern Canada, and 
the eastern Caribbean, as well as the coasts of southern 
Japan and western Australia. However, the largest 
know latitudinal occurrence of rhodolith beds is on the 
Brazilian continental shelf from 2°N to 25°S, covering 
an extension of 4.000 km from Pará down to Rio de 
Janeiro states (Kempf, 1970; Milliman, 1977) with a 
small bed occurring on the southern coast off Arvoredo 
Island (Gherardi, 2004). In the 1970´s, many studies of 
rhodoliths in Brazil derived from investigations of the 
sedimentary character of the Brazilian shelf, together 
with the prospects for commercial exploitation (Kempf, 
1970; Mabessone et al., 1972; Milliman & Amaral, 1974; 
Milliman, 1977; Vicalvi & Milliman, 1977). These studies 
estimated that the rhodolith beds represent a storage of 
calcium carbonate (CaCO3) of 2x1011 tons.
 Calcium carbonate production by marine 
organisms is an essential process in the global budget of 
CO3

2− (Milliman, 1993; Vecsei, 2004) and this process is 
largely determined by variations in the pH of seawater 
(Doney et al., 2009). Ocean acidifi cation is a predictable 
consequence of rising atmospheric carbon dioxide (CO2) 
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levels. The levels of atmospheric CO2 have increased 
around 40% in the past 250 years (Solomon et al., 
2007) and a third of the anthropogenic carbon added to 
the atmosphere has been tempered by oceanic uptake 
(Sabine & Feely, 2007), representing a decrease in pH of 
approximately 0.1 units, from pH 8.21 to pH 8.10 (Royal 
Society, 2005). According to the Intergovernmental 
Panel on Climate Change (IPCC), the projected end-of-
century concentration of atmospheric CO2 is 800 ppmv, 
representing more than twice the current value (Doney 
et al., 2009). If the atmospheric concentrations reaches 
this value, a further decrease of 0.3-0.4 pH units of 
seawater could be expected (Orr et al., 2005), reducing 
the structural integrity of carbonate-based structures 
(Doney et al., 2009). Changes in carbonate dissolution 
represent losses of habitat and, consequently, losses of 
biodiversity.
	 The Earth’s biodiversity is richer and more 
varied nowadays than ever before. Around 15,000 to 
20,000 new species have been described and, even for 
relatively well-known areas such as the United States of 
America, the rate of discovery suggests that only a third 
of the species of organisms have been discovered so far 
(Dirzo & Raven, 2003). Some of the new discoveries 
are of evident economic importance, such as a species 
of maize, Zea diploperennis, from western Mexico that 
was discovered only 32 years ago (Iltis et al., 1979). 
Despite the high expected values of the Earth`s diversity, 
the consequences of the major extinction episode of the 
Phanerozoic Era can be recognized in current days (May 
et al., 1995). Habitat loss due to anthropogenic causes 
is at present a principal driver of extinction (Dirzo & 
Raven, 2003).
	 For coralline reefs, the most profound impacts 
caused by anthropogenic causes occur at depths shallower 
than 20 m, while reefs in the mesophotic zone (deeper than 
30 m) have been reported to be free from the majority of 
these impacts (Bak et al., 2005; Lesser et al., 2009; Kahng 
et al., 2010). For many decades, the mesophotic zone was 
understudied because of technological limitations and the 
excessive costs of accessing these areas (Hinderstein et 
al., 2010). A few new phyla and classes of eukaryotic 
organisms are being found each decade. Most of them are 
from marine habitats (Dirzo & Raven, 2003), probably 
because marine ecosystems have been more neglected 
for decades than terrestrial ones. Current advances in 
technical diving methods and instrumentation, such as 
mixed gas diving, remotely operated vehicles (ROV), 
rebreathers and autonomous underwater vehicles (AUV), 
together with image analysis techniques, are facilitating 
the sampling of the mesophotic zone (Hinderstein et al., 
2010). The mesophotic coralline reefs consist mainly of 
species of corals, sponge and algae (Bak et al., 2005; 
Kahng et al., 2010). We present here a review of the largest 
coralline reefs of Brazil: the rhodolith beds. In addition, 

we highlight their importance to marine biodiversity and 
their potential for harboring many species of importance 
to bioprospection.

Rhodolith beds in Brazil

	 Until the second half of the 1990´s, the principal 
interest in rhodolith studies was the sedimentary character 
of the Brazilian shelf and the potential of the rhodolith 
beds for commercial exploitation of carbonates (Kempf 
et al., 1970; Mabessone et al., 1972; Milliman & Amaral, 
1974; Milliman, 1977; Vicalvi & Milliman, 1977). In the 
mid-90´s, several studies approached the rhodolith beds 
from a biological point of view, providing consistent 
information on rhodolith bed structure and mapping 
a limited area of the northeastern Brazilian coast (e.g., 
Testa, 1997; Testa & Bosence, 1999; Testa et al., 1997).
	 Only in the last decade extensive sampling 
efforts allowed a more comprehensive understanding 
of the rhodolith bed distribution along the Brazilian 
coast, of their structure and associated communities and 
of the influence of environmental factors on rhodolith 
bed habitats. These recent studies have reported several 
important new finds related to marine algae: one new 
species (Lithophyllum depressum) (Villas-Boas et al., 
2009), three new occurrences for the Atlantic Ocean 
(Scinaia aborealis, Sporolithon ptychoides, Hydrolithon 
rupestris) (Amado Filho et al., 2010; Bahia et al., 2011; 
Pereira-Filho et al., 2012), two new occurrences for 
the western Atlantic Ocean (Mesophyllum engelhartii, 
Reticulocaulis mucosissimus) (Amado Filho et al., 2010; 
Guimarães & Amado Filho, 2009), five new occurrences 
for the Southwestern Atlantic Ocean (Acrosymphyton 
caribaeum, Dudresnaya crassa, Naccaria corymbosa, 
Platoma sp. and Predaea feldmannii) (Guimarães & 
Amado Filho, 2008) and four new occurrences for the 
Brazilian coast (Dasya ramosissima, Halymenia elongate, 
Udotea abbottiorum, Lithothamnion muelleri) (Riul et 
al., 2009; Amado Filho et al., 2010).
	 At present, the fauna associated with rhodoliths 
seems to be the greatest gap in our knowledge. Santos et al. 
(2011) described a new species of Polychaeta associated 
with rhodolith beds (Sabellaria corallinea) and reported, 
for the first time, the occurrence of Sabellaria pectinata 
in the western Atlantic Ocean. The diversity of other 
groups such as Sponges, Echionoderms and Tunicates 
that can be found associated with rhodoliths still remains 
unknown. Because large areas of the Brazilian shelf are 
covered by rhodolith beds (Foster et al., in press), an 
increase in the number of new occurrences is expected as 
more areas are better sampled for the associated fauna.
Recent advances in mixed-gas diving techniques (Figure 
1A), complemented by ROV observations and high-
resolution, multibeam, bathymetric mapping systems, 
have allowed us to determine extent, structure and 
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dynamics of rhodolith beds much better. These tools 
are now being used to investigate extensive areas of 
the mesophotic zone of the continental shelf (e.g., the 
Abrolhos Bank) (Amado Filho et al., 2012), the tops of 
seamounts (Vitoria-Trindade Ridge) (Pereira-Filho et al., 
2012) and around oceanic islands (e.g., Trindade Island 
and Fernando de Noronha Island) (Pereira-Filho et al., 
2011).

Rhodoliths and bioprospection

	 In the last forty years, drug discovery efforts 
have changed their focus from terrestrial plants and 
microorganisms to marine environments, where 
invertebrates (e.g. Sponges, Corals and Tunicates) and 
benthic algae have been the subject of screening programs 
(Tabares et al., 2011). Marine benthic algae contain 
minerals, polysaccharides, amino acid derivatives, 
carotenoids and phenolic compounds that are often of 
economic interest. Extracts obtained from different 
species have shown important pharmacological effects 
in vivo, including hypolipidemic (Ara et al., 2002), 
antioxidant (Yuan & Walsh, 2006), immunological (Saker 
et al., 2004), antitumoral (Lee & Sung, 2003), antiviral 
(Rinehart et al., 1983) and antibacterial activities (Lima-
Filho et al., 2002).
	 The number of algal species associated with 
rhodolith beds in Brazil varies between 56 and 190 species 
and their amount varies from 1.88 g.m-2 to 225.8 g.m-2 (Riul 
et al., 2009; Amado Filho et al., 2010; Bahia et al., 2010). 
The biomass of the algae associated with rhodolith beds is 
influenced by the season, depth, latitudinal gradient and 
distance from the continent (Bahia et al., 2010). Amansia 
multifida, Bryothamnion seaforthii, Halymenia floridana, 
and Plocamium brasiliense, as well as brown algae 
members of the family Dictyotaceae (e.g., Lobophora 
variegata, Stypopodium zonale, Dictyopteris jolyana 
(Figure 1B), Dictyopteris plagiogramma, Dictyopteris 
jamaicensis, and Dictyota mertensii), have been reported 
as the dominant species associated with rhodolith beds in 
Brazil (Riul et al., 2009; Amado Filho et al., 2010; Bahia 
et al., 2010).
	 Lima-Filho et al. (2002) found that extracts 
of A. multifida showed activity against enteric Gram-
negative bacteria. In addition, Neves et al. (2007) 
reported that A. multifida was the source of a lectin with 
antinociceptive properties. Teixeira et al. (2007) found 
that lectins extracted from B. seaforthii that inhibited 
the adherence of streptococci to teeth could play an 
important role in preventing caries in the early stages. 
Ferreira et al. (2010) reported a high reduction in the 
infectivity of the virus HSV-1 in the presence of a crude 
extract of P. brasiliense. Dictyotaceae are well known 
to be a rich source of sesquiterpenes with a great range 
of bioactivities: antifungal, antitumoral, antibiotic, anti-

inflamatory, insecticidal, anti-bacterial and others (see 
Paula et al., 2011).
	 One of the most interesting features of the 
Brazilian rhodolith beds in the mesophotic zone, recently 
investigated using technical diving (Figure 1C), are the 
associated populations of the endemic deep-water kelp 
Laminaria abyssalis (Figures 1D and E) (Marins et al., 
2012). Besides the known importance of Laminaria 
in the food industry and for alginate extraction, 
polysaccharides from Laminaria japonica have been 
observed to have antithrombotic potential (Xie et al., 
2011). Species of Laminaria may also be an important 
biomass for biofuels (Adams et al., 2011). Laminaria 
abyssalis occurs on the continental shelf at latitudes of 
19º-23ºS and depths of 45-120 m, where the bottom can 
be completely covered by rhodoliths (Amado Filho et al., 
2007). Kelp populations are closely associated with the 
rhodoliths, the L. abyssalis holdfasts being attached to 
one or more rhodoliths (Figures 1D and E). Graham et 
al. (2007) suggested that such deep-water kelp refugia 
are potential hotspots for tropical marine diversity and 
productivity. This suggestion has been confirmed in the 
Brazilian deep-water rhodolith-kelp beds, where endemic 
species of different taxonomic groups have been found in 
this area.
	 In rhodolith beds where the rhodoliths are dense 
and large enough to decrease their rate of turnover, 
sponges often seem to be associated with them (Pereira-
Filho et al., 2012). Sponges are often associated with a 
large amount of a phylogenetically diverse microbial 
composition, which can account for around half of 
the animal`s biomass (Taylor et al., 2007). The Order 
Actinomycetes (Phylum Actinobacteria) has been 
identified in sponges and are of particular interest due to 
their unmatched capacity to produce novel and bioactive 
secondary metabolities with anticancer and antitumoral 
activities (Fenical et al., 2009; Kwon et al., 2006; Tabares 
et al., 2011).
	 More than 50 secondary metabolites have been 
isolated from Tunicates and many of them are bioactive 
peptides (Vo et al., 2011). Eudistomins and didemnins, 
isolated from Tunicates, displayed high antiviral 
activity against Herpex simplex viruses (Rinehart et 
al., 1983). Other groups of invertebrates with expected 
potential for bioprospection such as Echinoderms, 
Mollusks and Bryozoa (Vo et al., 2011) are also 
associated with rhodolith beds. However, except for 
Polychaeta (Santos et al., 2011; Berlandi et al., 2012), 
there are no published data on invertebrates associated 
with Brazilian rhodolith beds.

Conclusion

	 Given the large areas covered by rhodolith 
beds in the Brazilian Exclusive Economic Zone (EEZ) 
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Figure 1. Brazilian rhodolith beds and their associated communities. A-Diver preparing to lift to the surface rhodolith samples 
collected on the south of the Abrolhos Bank. (Photo RL Moura). B-A typical sample collected from the north region of the 
Abrolhos Bank, showing the association between rhodoliths and Dictyopetris jolyana (Photo RL Moura). C-Technical diving 
equipment being used to take video images at 60 m on Fernando de Noronha Archipelago (Photo: Z. Matheus). D-Natural habitat 
of Laminaria abyssalis in the south of Espírito Santo State and the clear association between kelp and the rhodolith (Photo GM 
Amado Filho). E-L. abyssalis attached to a rhodolith, showing holdfast, stipe and blade (Photo GM Amado Filho).
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(Amado-Filho et al., 2007; Riul et al., 2009; Amado Filho 
et al., 2010; Pereira-Filho et al., 2012; Amado Filho et 
al., 2012), their vulnerability to global changes (Feely et 
al., 2004; Doney et al., 2009) and the high diversity of 
organisms with recognized potential for bioprospection 
associated with them, research programs and public 
policies to conserve their biodiversity and to maintain the 
sovereignty of these areas are urgently needed.
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