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Abstract: HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the 
treatment of HIV-positive individuals or those already showing AIDS symptoms. In this 
perspective, the identifi cation of new inhibitors for this enzyme is of great importance 
in view of the growing viral resistance to the existing treatments. This resistance has 
compromised the quality of life of those infected with multidrug-resistant strains, 
whose treatment options are already limited, putting at risk these individuals lives. 
The literature has recognized marine organisms and their products as natural sources 
for the identifi cation of new therapeutic options for different pathologies. In this brief 
review, we consider the structure of HIV-1 RT and its most common inhibitors, as well 
as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the 
identifi cation and development of new marine antiviral prototypes.

Keywords:
brown algae

diterpenes
 HIV

 inhibitor
 natural products

 reverse transcriptase

Introduction

 Acquired immune defi ciency syndrome (AIDS) 
is a pandemic disease offi cially recognized in 1981, which 
still continues to spread (Girard et al., 2011). So far, AIDS 
has killed more than 25 million people and. according to 
the annual survey of the World Health Organization (WHO) 
in 2010, the number of infected people is stabilizing at 
around 33.5 million (WHO, 2010). Despite the discovery 
of antiviral treatment, the epidemic has reached 2.6 million 
people, of whom 370000 are children under fi fteen years 
(WHO, 2010). This alarming statistic refl ects a major 
problem in global health due not only to the fi nancial 
aspect but also to the costs in human lives.
 AIDS is caused by the Human Immunodefi ciency 
Virus (HIV), a RNA-composed retrovirus of the 
Retroviridae family (Mulky & Kappes, 2005) (Figure 
1) (CDC, 2008; Balzarini, 2004). There are two types of 
virus, HIV-1 and HIV-2, HIV-2 being the least widespread 
(e.g., West African countries) with lower rates of mutation, 
virulence, transmissibility and pathogenicity than HIV-1 
(Silva et al., 2008).
 HIV infection is characterized by a deep 
suppression of the immune system of the infected 
individual due to a progressive depletion of immune cells 
in the host peripheral blood such as macrophages and, in 

particular, T lymphocytes. This process makes patients 
susceptible to opportunistic infections that become fatal 
due to this immunesuppression (Mosam et al., 2005; De 
Clercq, 2004).

Figure 1. Three-dimensional structure of HIV-1 Reverse 
Transcriptase. The right-hand conformation representing the 
fi ngers subdomain (blue), palm (light red), thumb (green), the 
active site (red) and a reverse transcriptase inhibitor (yellow) in 
the binding site.

 The Food and Drug Administration (FDA) 
approved 25 anti-HIV drugs that belong to seven different 
classes of drugs: nucleoside reverse transcriptase 
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inhibitors (NRTI), nucleotide reverse transcriptase 
inhibitors (NtRTI), non-nucleoside reverse transcriptase 
inhibitors (NNRTI), protease inhibitors (PI), fusion 
inhibitors (FI), co-receptor inhibitors (CRI), and integrase 
inhibitors (INI) (Mehellou & De Clercq, 2010).
	 HIV-1 has a replicative cycle that depends on 
different macromolecules, including viral receptors and 
enzymes (e.g., HIV-Reverse Transcriptase, HIV-Protease, 
HIV-Integrase). These enzymes are current targets for the 
antivirals clinically in use, whereas molecular recognition 
receptors on host CD4 cells (glycoprotein gp120, gp41 
linked glycoprotein) are being explored for their potential 
(Debnath, 2005; Teixeira et al., 2011; Castro et al., 2011; 
Blanco et al., 2011; Pendri et al., 2011). 

HIV-1 Reverse Transcriptase (HIV-1 RT) - still an 
effective therapeutical target

	 HIV-1 RT is a heterodimeric enzyme composed 
of two subunits of 66 kDa and 51 kDa, (p66 and p51, 
respectively). The p66 subunit (560 amino acids) contains 
the polymerase and RNase-H active sites, both encoded 
by the same gene. The p51 subunit contains the first 440 
amino acids of p66 and is derived from HIV-1 protease-
mediated cleavage of the p66 subunit RNase H domain 
(Castro et al., 2006; Balzarini, 2004; Singh et al., 2010). 
The three-dimensional structure of the p66 subunit is 
compared with a right hand, containing four subdomains: 
fingers (residues 1-85 and 118-155), palm (86-117 and 
156-236), thumb (237-318) and connection (319-426) 
(Kohlstaedt et al., 1992; Rodgers et al., 1995) (Figure 
1).
	 HIV-1 Reverse Transcriptase catalyzes the 
synthesis of a double-stranded proviral DNA using the 
viral genomic RNA. The synthesis of the complementary 
strand DNA occurs by elongation of the primer tRNA, 
which is associated with the viral genome. The synthesis 
of the DNA first strand is initiated from the region of 
polypurine from the genomic RNA that is resistant to 
RNase-H and that remains on the new negative strand 
of DNA (-). All other reverse transcription steps include 
elongation of the primer DNA (Brautigam & Steitz, 1998; 
Sarafianos et al., 2009).
	 HIV-1 RT has the ability to interact with 
substrates of different conformational structures (double-
stranded DNA and single stranded RNA), but with low 
fidelity or processing capacity. Interestingly, this HIV-1 
RT catalytic feature leads to the emergence of mutations 
at a frequency of about 104 per cycle (Arts & Le Grice, 
1998; Patel et al., 1995; Ehteshami & Goette, 2008). 
Importantly, this high rate of mutation significantly 
conserves the biological activities of HIV-1 RT, while 
simultaneously conferring a multidrug-resistant profile to 
the virus (Das et al., 2004; Martinez-Picado & Martínez, 
2008).

	 The literature describes three main HIV-1 RT 
inhibitor types, divided by the mechanism of action 
including: inhibitors of HIV-1 RT polymeric activity; 
competitive inhibitors subdivided into the class of 
nucleosides (NRTI) and nucleotide (NtRTI) inhibitors; 
and non-competitive non-nucleoside inhibitors (NNRTI) 
(Caffrey 2011, Hatse et al., 1999; Menéndez-Arias, 
2002).
	 Currently, in the most used treatment regimens 
including Highly Active Antiretroviral Therapy 
(HAART) (Menéndez-Árias et al., 2011), the use of 
at least one inhibitor of reverse transcriptase is highly 
recommended, including NRTI such as Zidovudine 
(AZT), lamivudine, didanosine, zalcitabine, stavudine, 
abacavir, emtricitabine and Adefovir, or NNRTIs such 
as delavirdine, Efavirenz and nevirapine (Table 1) 
(Pretorius et al., 2011). Monotherapy is avoided as well 
because treatment with only competitive inhibitors 
slowed the progression of AIDS, but the drug resistance 
arose quickly (Rao et al., 2004; Martin et al., 2010). 
Besides the viral resistance issue, these drugs cause 
different side effects (Table 1) that become extremely 
toxic in long term use (Temesgen et al., 2006; Sweeney 
& Klumpp, 2008; Cihlar & Ray, 2010).

Seaweed natural products: a brief presentation of 
promising molecules

	 According to Faulkner, the first reported use of 
marine organisms as a source of chemicals dates to 1600 
BC, when the Phoenicians used the secretion of shellfish 
to produce a dye for cloth (Faulkner, 1992). 
	 Seaweeds are marine organisms that present a 
great diversity worldwide. In some countries in Asia and 
Africa where the population daily consumes Spirulina 
(=Arthrospira), a blue alga, a low incidence of infection 
with HIV-1 (AIDS) has been noticed (Ayehunie et al., 
1998). These studies also showed that these algae have 
the property of stimulating the immune response (Teas et 
al., 2004). 
	 Algae are primarily aquatic organisms that, 
despite their apparent simplicity present several complex 
biological systems, including defense, that are found in 
higher plants (Harper et al., 2001;Vidotti & Rollemberg, 
2004). These biological pathways involve different 
molecules that can be promising for treating certain 
pathologies, including HIV-infection (Alakurtti et al., 
2006; Vo & Kim, 2010; Kim & Karadeniz, 2011).
	 The marine environment provides a rich source 
of chemical diversity for the screening and identification 
of new compounds with desirable antiviral properties. 
The use of marine natural products as anti-HIV 
agents has been described in the literature, promising 
molecules including the phlorotannins from brown 
algae (Phaeophyceae), sulfated polysaccharides from 
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Chlorophyceae (green algae), Rhodophyceae (red algae) 
and Phaeophyceae (brown algae) and lectins such as 
Griffithsin from Griffithsia sp. (red algae) (Alakurtti et 
al., 2006; Vo & Kim, 2010; Kim & Karadeniz, 2011).

Terpenes as NNRTI models: looking at future anti-HIV 
treatment options? 

	 NNRTI usually manifest side effects milder than 
those resulting from treatment with nucleosides since they 
are not analogues of natural compounds and involve no 
host cell biochemical machinery. Although the therapeutic 
potential of NNRTI has been compromised by the rapid 
development of resistance, they have been useful in 
combination therapy with nucleoside RT and protease 

inhibitors (Barreca et al, 2004). Thus, research exploring 
novel classes of safe and effective agents with low risk of 
cross-resistance with other antiretroviral drugs is currently 
in urgent need (WHO, 2011).
	 Many marine organisms are major producers 
of secondary metabolites derived from isoprene units, 
including the monoterpenes (C10), sesquiterpenes (C15), 
diterpenes (C20), triterpenes (C30) and tetraterpenes 
(C40). Among them, seaweeds are one of the main 
producers of these substances (Blunt et al., 2006). Of 
the 15,000 secondary metabolites of marine origin, 
approximately 55% are derived from terpenoids. This 
proportion can be much higher in some phyla, representing 
up to 90% of the metabolites isolated. 

Table 1. Side effects of the most used NRTI (up) and NNRTI (below) of HIV-1 Reverse Transcriptase. 

Antiviral Structure Collateral/ 
side effects Antiviral Structure Collateral/ 

side effects

Zidovud  ine (AZT)

O

HO

N3

N

NH

O

O

Myelosuppression with 
neutropenia and anemia, 

Nausea and vomiting. 
Asthenia, malaise, 

headache, insomnia, Skin 
hyperpigmentation, nail and 
mucous membranes. Rare: 
lactic acidosis with hepatic 
steatosis (fatal if severe).

Stavudine 
(d4T)

O

HO
N

NH

O

O

Peripheral neuropathy, 
pancreatitis, asymptomatic 

acidemia, lipoatrophy. 
Rare: lactic acidosis with 
hepatic steatosis (fatal if 

severe).

Didanosine (ddI)

O

HO
N

N

N

NH

O
Gastrointestinal intolerance 

(nausea and diarrhea), 
peripheral neuropathy, 

pancreatitis, asymptomatic 
acidemia, lipoatrophy. Rare: 
lactic acidosis with hepatic 
steatosis (fatal if severe).

Lamivudine 
(3TC)

N N

O
S

O

H2N

HO

lactic acidosis with 
hepatic steatosis

Zalcitabine (ddC)

O

HO
N

N

NH2

O

Peripheral neuropathy, 
stomatitis, esophageal 

ulcerations. Rare acidosis 
lactate with hepatic steatosis 

(fatal if severe).

Abacavir 
(ABC)

HN

N N

N

HN

H2N

HO

Reaction of 
systemic respiratory 

hypersensitivity and / or 
gastrointestinal, usually 
with fever and without 
mucosal involvement.

Nevirapine
N
H

NN
N

O

Rash, Stevens-Johnson 
Syndrome, Elevated 
transaminases blood 

level, hepatitis, severe 
hypersensitivity reaction.

Delavirdine
N
H

H
N N

O

N
N

HN

S
O

O Rash, headache, elevation 
of transaminases

Efavirenz

N
H

O

F3C

O

Cl

Rash, Stevens-Johnson 
Syndrome. Neuropsychiatric 
symptoms: sleep disturbances 

(restless sleep, insomnia, 
drowsiness, nightmares, 

bizarre dreams), dizziness, 
vertigo, irritability, agitation, 

depression, euphoria, difficulty 
concentrating, amnesia, 

hallucinations. Elevation of 
transaminases. Dyslipidemia.

Etravirine

N

N OHN

NH2
Br

CNCN

Rash, Stevens-Johnson 
syndrome, toxic epidermal 

necrosis and multiform 
erythema, as well as 

hypersensitivity reactions, 
hepatic failure
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 Marine algae are among the main producers of 
diterpenes showing antibacterial, antiviral, antifungal, 
and other biological activities (Harper et al., 2001). The 
literature describes diterpenes isolated from the Dictyota 
alga species with potential antiviral activity (DePaula et 
al., 2011). The main diterpene compounds isolated from 
Dictyota menstrualis (Hoyt) Schnetter, Hörning & Weber-
Peukert, identifi ed as 6-hydroxydichotoma-3,14-dien-1,17-
dial (1) and its acetate derivative 6-acetoxydichotoma-
3,14-dieno-1,17-dial (2) (Figure 2), exhibit inhibitory 
activities against HIV-1 replication affecting HIV-1 reverse 
transcriptase (RT) activity in a dose-dependent form 
(Pereira et al. 2004, 2005). A similar antiviral profi le was 
observed in a dollabelane diterpene isolated from Dictyota 
pfaffi i Schnetter (3-5) (Figure 2). Apparently these marine 
products act as NNRTI.

 
Figure 2. Antiviral diterpenes isolated from the brown algae D. 
menstrualis (1-2) and D. pfaffi i (3-5).

 The NNRTI were fi rst described when TIBO and 
nevirapine derivatives were discovered during research 
on HIV-1 RT inhibition (Pauwels et al., 1990, Shih et 
al., 1991). NNRTI are chemically diverse, with one class 
being considerably different from another in terms of 
chemical composition and size. This is analogous to the 
complexity of marine natural products, with a great variety 
of structures with different degrees of biological activity 
(De Clercq, 1998). NNRTI have in common the affi nity 
for the extremely fl exible hydrophobic p66 chain located 
near the active site (approximately 10 Å away) and located 

between the β-sheet-6-9-β-β and β-10-12-13-β-β-14 from 
the palm domain, called the "non-nucleoside inhibitor 
binding pocket" (NNIBP) (Boyer et al., 1994a, 1994b; 
Sluis-Cremer et al., 2004; Martin et al., 2010; Zhan et al., 
2011). The inhibition mechanism is due to the expansion 
of the region of NNBIP, since this hydrophobic "pocket" 
is closed during the active period of TR. The opening of 
this region involves a large displacement of the aromatic 
side chains of Tyr181, Tyr188 and Trp229 and a rotation 
of the leaves β-β-12-13-β-14, resulting in a breakdown of 
the primer grip in the direction that the complex primer-
template moves during the subsequent incorporation of 
nucleotides (Das et al., 2004) (Figure 3).

 
Figure 3. Three-dimensional structure of the NNRTI binding 
site. In green, the inhibitor TIBO.

 Our group showed that the diterpene 8,10,18-
trihydroxy-2,6-dolabelladiene (THD, 5), obtained from the 
extract of Dictyota pfaffi  or by reducing 10,18-diacetoxy-
8-hydroxy-2,6-dolabelladiene (3), showed signifi cant 
antiviral activity, up to 3 times higher with this chemical 
modifi cation (Barbosa et al., 2003; Barbosa et al., 2004; 
Cirne-Santos et al., 2006). Our experimental study 
confi rmed a dose-dependent anti-HIV-1 TR activity, with 
an IC50 of 16.5 µM, inhibition levels ranging from 27% 
(3 μM) to 95% (100 μM), and 85% viability of peripheral 
blood mononuclear cells (PBMC) at concentrations of 200 
μM (Barbosa et al. 2003; Cirne-Santos et al., 2006).
 Importantly, dolabelladienetriol blocked 
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the synthesis and integration of HIV-1 provirus and 
completely abrogated viral replication in primary cells. 
Studies of the kinetic mode of action revealed that 
dolabelladienetriol is a nonnucleoside RT inhibitor 
(NNRTI), acting as a noncompetitive inhibitor, with a Ki 
value equal to 7.2 µM. 
	 Interestingly, dolabelladienetriol provided an 
additive effect with the nucleoside RT inhibitor AZT, 
and a synergistic effect with the protease inhibitor 
atazanavir sulphate. There was no increment of the anti-
HIV-1 effect resulting from the combination between 
dolabelladienetriol and the NNRTI nevirapine. Using a 
large panel of HIV-1 isolates harboring NNRTI resistance 
mutations, we found no cross-resistance between 
dolabelladienetriol and clinically available NNRTIs 
(Cirne-Santos et al., 2008).
	 Our group also described two other diterpene 
skeleton dichotomanes with anti-HIV-1 RT antiviral 
action, (6R)-6-hydroxydichotoma-3,14-diene-1,17-
dial (HDD, 1) and its acetate derivative (6R)-6-
acetoxydichotoma-3,14-diene-1,17-dial (DDA, 2) 
extracted from the brown algae Dictyota menstrualis 
(Pereira et al., 2004; Pereira et al., 2005). While HDD 
showed a value of inhibition of HIV-RT of IC50 10 μM, 
the value for DDA was 35 μM (Pereira et al., 2004; 
Pereira et al., 2005). None of these diterpenes affected 
the DNA-dependent DNA-polymerase (DDDP) activity 
of HIV-1 RT. The RNA-DDP activities of AMV-RT 
and MMLV-RT enzymes were also inhibited by HDD 
and DDA. In contrast to the HIV-1 enzyme, the DDDP 
activities of AMV-RT and MMLV-RT enzymes were 
significantly reduced. Taken together, our results 
demonstrate that HDD is a more effective inhibitor of 
the viral reverse transcriptases from HIV-1, AMV and 
MMLV than DDA. 
	 The kinetic analyses of the HIV-1 RT 
demonstrate that both diterpenes have similar 
mechanisms of inhibition of RDDP activity (Pereira 
et al., 2005). The mechanism of inhibition of HIV-
RT by terpenes was evaluated and apparently occurs 
by forming a "butterfly-like" structure, as observed 
for NNRTIs inhibitors (Castro et al., 2006, De Clercq, 
2004). 
	 More recently, four diterpenes from other 
Dictyotaceae, Canistrocarpus cervicornis (Kützing), 
three dolastanes and a secodolastane diterpene were 
also described with anti HSV-1 (Vallim et al. 2010) and 
anti-HIV-1-RT profiles including (4R,9R,14S)-4,9,14-
trihydroxy-dolast-1(15),7-diene (6), the isolinearol (7), 
(4R,7R,14S)-4,7,14-trihydroxydolast-1(15),8-diene (8) 
and (4R,7R,14S)-4α ,7-diacetoxy-14-hydroxydolast-
1(15),8-diene (9). Although these natural products were 
known since the 80's from Dictyota cervicornis (Teixeira 
et al, 1986a, 1986b; Kelecom & Teixeira 1988), the 
antiviral activity was only identified in 2010. The results 

of anti-HIV-1 RT led to the registration of a patent 
application in 2010 (Paixão et al., 2010).
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 Conclusion

	 Far from pointing out terpenes as the only 
marine products able to inhibit HIV-RT, this brief review 
reinforces the biotechnological potential and the need to 
explore marine resources as thoroughly as reasonably 
possible in order to find new treatments not only for HIV, 
but also for other infectious diseases such as herpes.
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