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Abstract: Sulfated polysaccharides derived from seaweed have shown great 
potential for use in the development of new drugs. In this study, we observed that a 
low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, 
could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus 
terrifi cus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed 
a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. 
Size exclusion chromatography experiments suggested that CrSP formed a stable 
complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction 
between negatively charged CrSP and the positively charged basic amino acid residues 
of sPLA2, because this interaction induced signifi cant changes in sPLA2 enzymatic and 
pharmacological activities. CrSP caused a signifi cant increase in sPLA2 enzymatic and 
bactericidal activity and increased its edematogenic effect. A pharmacological assay 
showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity 
and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for 
use in humans and commercially raised animals.
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Introduction

 The natural products of seaweed and other 
marine organisms represent one of the new frontiers in 
the exploration for bioactive compounds. The sulfated 
polysaccharides (SP) found in marine seaweed are known 
to have many physiological and biological activities, 
including anticoagulant, anti-viral, anti-tumor, anti-
infl ammatory and antioxidant effects (Silva et al., 2011). 
Marine algae contain a high concentration of SP, which 
are heterogeneous and complex macromolecules that 
are important for algal physiology; these molecules 
perform ionic, mechanical and osmotic functions and are 
components of the extracellular matrix (Pomin & Mourão, 
2008). Due to their relative abundance in algae, these 
compounds have been investigated for their therapeutic 
potential (Rodrigues et al., 2012). Caulerpa racemosa (Cr), 
a large, edible green alga, is widely distributed in tropical 
and subtropical areas of Brazil and other countries (Ji et 
al., 2008). C. racemosa contains SP with anticoagulant 

and antiviral activity, and recently it has been shown that 
SP fractions from C. racemosa have signifi cant antitumor 
activity (Ji et al., 2008). However, additional biological 
activities have not been described for the SP that have been 
isolated from green algae of the genus Caulerpa.
 There is evidence that heparin that has been 
chemically treated can interact with phospholipase A2 
(PLA2). Dicciaani and colleagues (1991) showed that 
heparin binding to the N-terminal region of pancreatic 
PLA2 inhibits the interaction of the enzyme with a 
micellar substrate. Besides, the standard pharmaceutical 
dose of heparin might inhibit human class II secretory 
PLA2 (sPLA2) and regulate its biological effects (Dua 
& Cho, 1994). Heparin is also capable of modulating 
the pharmacological activity of venom-derived sPLA2 
(Kini, 2005), and this modulation appears to involve 
conformational changes in the secondary structure of sPLA2 
(Lin et al., 2000). Heparin is a complex polysaccharide that 
can be extracted from numerous animal sources, including 
pig intestines and cattle lungs. Extracted heparin contains 
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several contaminants, including a heterogeneous group of 
oversulfated glycosaminoglycans (OSGAG), which may 
mediate multiple pathophysiologic responses (Ramacciotti 
et al., 2011). In addition, OSGAG-contaminated heparin 
can produce anaphylaxis through contact system activation 
and can also increase the risk of HIT and HIT-associated 
anaphylactoic reactions (Warkentin & Greinacher, 2009). 
Thus, the therapeutic use of heparin is limited due to its 
side effects, such as anaphylaxis and the risk of hemorrhage 
(Mourão & Pereira, 1999; Nader et al., 2001).  
	 Algae-derived sulfated polysaccharides have 
been substituted for heparin for use as anticoagulants, 
although they are chemically distinct from heparin. Group 
II sPLA2 enzymes have been found at inflammatory sites 
in animal models, as well as in synovial fluid from patients 
with rheumatoid arthritis and other human inflammatory 
diseases, and a correlation has been observed between 
serum sPLA2 levels and disease state (Ramacciotti et 
al., 2011; Warkentin & Greinacher, 2009). Moreover, 
exogenous administration of PLA2, such as snake venom 
sPLA2, induces or exacerbates the inflammatory response 
in animals (Cirino, 1998; Fuentes et al., 2002). Structural 
analyses have revealed that snake venom sPLA2 has a 
similar molecular profile compared with human secretory 
PLA2, as well as a conserved catalytic site (Gil et al., 1997). 
The control and modulation of the structure and function 
of secretory phospholipase A2 are crucial for managing the 
pathophysiology of inflammatory disease. Due to the role 
of PLA2 in the inflammatory process, there is interest in 
identifying PLA2 inhibitors for therapeutic use. Sulfated 
polysaccharides from seaweeds, which have been used 
to control inflammation, are one such potential inhibitor. 
Our focus on SP from green algae distinguishes our work 
from that on the better-studied red and brown seaweeds. 
Because venom-derived sPLA2 has been characterized as 
a proinflammatory agent and is very similar to the human 
sPLA2, we investigated the effect of a highly purified 
sulfated polysaccharide fraction isolated from the green 
algae Caulerpa racemosa on the edematogenic activity 
of sPLA2 from Crotalus durissus terrificus venom. Ours 
is the first study to evaluate this and other biological and 
pharmacological activities induced by the interaction of 
this SP with the sPLA2 protein (Câmara et al., 2003; Lee 
et al., 1999).

Materials and Methods

Venom, animal use, and general reagents

	 Venom from Crotalus durissus terrificus was 
kindly donated by the Institute of Butantan (São Paulo, 
Brazil). Solvents, chemicals and reagents used in protein 
purification and characterization were of HPLC grade or 
higher and were acquired from Sigma-Aldrich Chemicals, 
Merck (USA), and Bio-Rad (USA). The female Swiss 

mice (22 g) used in the pharmacological assays were 
obtained from the Multidisciplinary Center of Biological 
Investigations (CEMIB-UNICAMP). All animal 
experiments were approved by the State University of 
Campinas Ethics Committee (São Paulo, Brazil) and the 
number is 2898-1. The seaweeds used to extraction was 
collected at Fortaleza city and the exsiccate is located in 
the Phycology Herbarium from Labomar - Ocean Sciense 
Institute at Ceará Federal University and the number is 
2385.

Purification of sPLA2 from Crotalus durissus terrificus 
venom

	 Whole venom was fractionated as previously 
described by Oliveira and colleagues (2003). Dried 
venom (10 mg) was dissolved in Tris-HCL buffer (1 M, 
pH 7.0) and clarified by centrifugation (4,500 g, 1 min). 
The supernatant was injected onto a molecular exclusion 
HPLC column (Superdex 75, 1 × 60 cm, Pharmacia), and 
the chromatographic run was performed with a 0.2 mL/min 
flow rate for fraction elution. Absorbance was monitored 
at λ 280 nm. The separated crotoxin-like fraction was 
immediately lyophilized. The crotoxin-like fraction was 
then subjected to reversed-phase chromatography using a 
μ-Bondapak C18 column (0.39 × 30 cm) with a 1 mL/min 
flow rate for fraction elution. The chromatography was 
monitored at λ 280 nm. sPLA2 was eluted using a non-
linear gradient with buffer A (0.1% trifluoroacetic acid in 
Milli-Q water) and buffer B (66% acetonitrile in buffer 
A). 

Purification of sulfated polysaccharides from the green 
seaweed Caulerpa racemosa (CrSP)

	 For the purification and isolation of sulfated 
polysaccharides from Caulerpa racemosa, we followed the 
method and protocol described by Farias and colleagues 
(2000) and modified by Lehnhardt Pires and colleagues 
(2013). Five grams of dry seaweed was triturated and 
hydrated in 250 mL of 0.1 M sodium acetate at pH 5.0, 5 
mM cysteine and 5 mM EDTA. Immediately afterward, 17 
mL of crude papain solution (30 mg/mL) was added, and 
the mixture was incubated in a water bath at 60 °C for 24 
h. The material was then filtered and centrifuged (14,000 
g, 30 min, 4 °C). After this step, 16 mL cetylpyridinium 
chloride (CPC) was added to a final concentration of 10%, 
and the solution was incubated at room temperature for 
24 h to allow the precipitation of polysaccharides. The SP 
were washed with 500 mL CPC, dissolved in 174 mL of 
2 M NaCl:ethanol (100:15, v:v) in a water bath at 60 °C, 
and precipitated again by the addition of 305 mL absolute 
ethanol and incubation for 24 h at 4°C. The material was 
centrifuged again and washed successively with 500 mL 
absolute ethanol and 300 mL 80% ethanol. The SPs were 
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dried in an oven at 60 °C for 24 h to obtain the SP-rich 
fraction. The crude extracts were purified on a DEAE-
cellulose resin equilibrated in 0.1 M sodium acetate at pH 
5.0, 5 mM cysteine, and 5 mM EDTA. The polysaccharides 
adsorbed on the ion exchange resin were eluted with 1.5 M 
NaCl using gel equilibration buffer. The quantification of 
the SP was performed using the metachromatic reaction 
using a spectrophotometer at 525 nm. 
	 After ion exchange chromatography, we 
performed a final purification step on an SEC HPLC. We 
used high-performance liquid chromatography equipment 
from Jasco (pump Model PU-2080; a Chronav system 
controller; a Rheodyne injector equipped with a 20 µL loop; 
an FP-2020 fluorescence detector; an MD-2015/2018 diode 
arrangement detector; and an ELC-2041 evaporative light 
scattering detector). Samples from the first chromatographic 
step were dissolved in a Tris - HCl (1M, pH 7.8), and the 
resulting solution was clarified by centrifugation at 4,500 
x g for 5 min. The resulting supernatant was applied to the 
TSKgel G3000SWXL silica base SEC column (0.78 x 30 
cm), which was previously equilibrated with the sample 
dilution buffer. The elution was performed at a flow rate 
of 1 mL/min. SEC coupled with “on-line” laser light 
scattering (LS), and ultraviolet (UV) detection provides an 
elegant approach to determining the molecular weights of 
proteins and their complexes in solution. We used a protein 
marker blue dextran (BD, 2000 kDa), β-amylases (BA, 
225 kDa), bovine serum albumin (BSA, Sigma, 66 kDa) 
that form a natural dimmer of 120 kDa, Ovalbumin (OVA, 
43 kDa), Carbonic anhydrase (CA, 29 kDa), Ribonuclease 
(RA, 14 kda). This columns TSK gel can be used for 
characterization of protein and other molecules such as 
polysaccharides, carbohydrates and oligosscharides. The 
estimation of the molecular mass of SP was done using the 
BD, BA, BSA, OVA, CA, RA. All samples were subjected 
analysis under same chromatographic condition of 
buffer, flow rate and columns. For monitoring the protein 
elution, we used λ 280nm and the monitoring the sulfated 
polysaccharides was used a fluorescence detection. The 
elution was performed at a flow rate of 1 mL/min, and 
highly purified SP were detected using the ELC-2041 
evaporative light scattering detector (Jasco).  

Incubation of sPLA2 with CrSP 

	 The incubation of CrSP with sPLA2 was 
conducted as described by Toyama (2010). CrSP was 
dissolved in saline solution. Purified sPLA2 (1.0 mg, 80 
nmol/mL) was dissolved in 1 mL of water. After complete 
homogenization, 500 μL of CrSP solution (4 mg/mL, 160 
nmol) was added and incubated for 60 min in a water 
bath at 37 °C. Samples (200 μL) were loaded onto silica-
based GFC columns (TSKgel G3000SW) to separate the 
modified sPLA2 (sPLA2:CrSp) from native sPLA2 and 
CrSP. Samples were eluted using a continuous gradient of 

buffer (Tris-HCl 1 M, pH 7.8) at a constant flow rate of 1.0 
mL/min. The chromatographic run was monitored at λ 280 
nm.

Measurement of sPLA2 activity

	 sPLA2 activity was measured, following 
protocols described by Rigden (2003) and modified 
by Toyama (2003), in 96-well plates, using 4-nitro-3-
octanoyloxybenzoic acid (4N3OBA, BIOMOL, USA) as a 
substrate. Enzyme activity, expressed as the initial velocity 
of the reaction (Vo), was calculated based on the increase 
in absorbance after 20 min. All assays were performed with 
absorbance at λ 425 nm using a SpectraMax 340 multiwell 
plate reader (Molecular Devices, Sunnyvale, CA). After 
the addition of native sPLA2, sulfated polysaccharides, 
or sPLA2 pre-incubated with sulfated polysaccharides (20 
μg), the reaction mixture was incubated for up to 40 min at 
37 °C, and absorbance was read at 10 min intervals.

Mouse paw edema assay

	 The paw edema assay was performed using the 
protocol described in Cotrim (2011). Female Swiss mice 
(22 g) were anesthetized with halothane by inhalation. 
Posterior paw edema was induced by a single subplantar 
injection of one of the following: 0.9% sterile saline (control 
group), native sPLA2, CrSP and sPLA2 pre-incubated with 
CrSP. We inject a total volume of 25 μL in all treatments. 
However, to sPLA2 the 1:1 proportion was maintained by 
addition 12.5 μL saline solution at PLA2 solution. The same 
procedure was followed by a treatment which received 
only CrSP. Paw volume was measured before the injection 
and at selected time points thereafter (15, 30, 60, 120, 180, 
and 360 min) using a hydro-plethysmometer (model 7150, 
Ugo Basile, Italy). All samples were dissolved in a 0.9% 
sterile saline solution. The results were expressed as an 
increase in paw volume (mL) calculated by subtracting the 
initial volume. The area under the curve was calculated 
using the trapezoidal rule, and the results were expressed 
as total edema volume (mL per paw).

Myotoxic activity

	 The presence of creatine kinase (CK) was 
assayed using the CK-NAc kit (Laborlab). Native sPLA2, 
sPLA2:CrSp, 0.9% sterile saline (control group) and CrSP 
(15 μg/μL in 50 μL) was injected into the left gastrocnemius 
muscle of female Swiss mice (22 g, n=5). After 3 h, the 
mice were anesthetized, and blood was collected from 
the abdominal vena cava into tubes containing heparin 
as an anticoagulant. The plasma was stored at 4 °C for 
a maximum of 12 h before assaying. The amount of CK 
was then determined using 4 μL of plasma, which was 
incubated for 3 min at 37 °C with 1.0 mL of the reagent 
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according to the kit protocol. Activity was expressed in 
U/L.

Antibacterial activity

	 The antibacterial activity of sPLA2, CrSP and 
sPLA2:CrSP was assayed as described by Cotrim (2011). 
Clavibacter michiganensis michiganensis cells were 
harvested from fresh agar plates and suspended in sterile 
distilled water (A600 nm = 3 ×108 CFU/mL). Aliquots of 
bacterial suspension were diluted to 103 colony-forming 
units/mL (CFU/mL) and incubated with sPLA2, CrSP and 
sPLA2:CrSP samples (75 µg/mL) for 60 min at 28 ºC. 
Survival was assayed on nutrient agar (Difco) plates (n=5). 
For antibacterial assays, electron microscopic assessments 
of morphologic alterations were performed in the presence 
of 0.9% sterile saline (negative control), sPLA2, and 
sPLA2 pre-incubated with sulfated polysaccharides.

Statistical analysis

	 The results are expressed as the means±SD. The 
data were analyzed using Student’s t test. The level of 
significance was set at p<0.05.

Results and Discussion

	 In this study, we present the purification of a 
low-molecular-weight sulfated polysaccharide that is 
soluble in aqueous solution, termed CrSP, which has 
a molecular mass of approximately 15 kDa. CrSP was 
obtained after two chromatographic steps using an ion 
exchange (DEAE-cellulose resin column) followed by a 
molecular size exclusion column (HPLC SEC) (Figure 1). 
Sulfated polysaccharides of high molecular weight from 
Caulerpa racemosa have previously been isolated and 
characterized by other groups. Using DEAE-ion exchange 
column chromatography followed by molecular exclusion 
chromatography on Sepharose 4B columns, Ji and 
colleagues (2008) identified four major groups of sulfated 
polysaccharides with molecular masses between 100 and 
1395 kDa from samples of Caulerpa racemosa collected 
on the coast of China. Chattopadhyay and colleagues 
(2007) isolated another group of sulfated polysaccharides 
with an apparent molecular mass of 80 kDa from Caulerpa 
racemosa collected on the coast of India. This work also 
used two chromatographic steps: ion exchange and size 
exclusion chromatography on S-300 Sephacryl. Work by 
Rodrigues and colleagues (2011) suggests that sulfated 
polysaccharides from Caulerpa racemosa can exhibit a 
large molecular mass range, from 10 to 216 kDa; the SP 
obtained from the DEAE-cellulose column were high-
molecular-weight macromolecules or macromolecular 
aggregates. This finding agrees with Melo (2002). Thus, the 
CrSP found in this study is the first low-molecular-weight 

sulfated polysaccharide isolated from Caulerpa racemosa 
and may be present as part of a larger aggregate.

 

Figure 1. Fractionation profile for SP extract obtained by size-
exclusion high-performance liquid chromatography (SEC 
HPLC), monitored by UV and detected by evaporative light 
scattering.  

	 The curve for enzymatic activity of sPLA2 
showed that CrSP induced an increase in phospholipase 
A2 activity. The concentration of CrSP that induced a 
50% increase in activity was estimated to be 0.25 mg/
mL (Figure 2a). In Figure 2b, we show that sPLA2 pre-
incubated with CrSP possessed increased catalytic activity 
and capacity, and had a modified saturation point for 
catalytic sites. Most SP isolated from algae are capable 
of inhibiting the enzymes and factors involved in the 
coagulation cascade (Pereira et al., 2005; Jiao et al., 2011). 
These results show that CrSP was able to enhance the 
enzymatic activity of sPLA2. sPLA2 is known to possess 
antibacterial activity against Gram-positive and Gram-
negative bacteria. Its high concentration in inflammatory 
fluids and human tears is consistent with the notion that 
this activity is a major function of this protein (Buckland 
& Wilton, 2000). In addition, Group IIA sPLA2 is the most 
potent among mammalian secreted PLA2 against Gram-
positive bacteria, but additional antibacterial compounds, 
for example, the bactericidal/permeability-increasing 
protein, are needed to kill Gram-negative bacteria. The 
mechanisms of sPLA2 binding to the bacterial surface and 
its bactericidal activities are based on the positive charge 
of the PLA2 protein and its phospholipolytic enzymatic 
activity, respectively (Nevalainen et al., 2008). The results 
in Figure 3 show that the antibacterial activity of sPLA2 
pre-incubated with CrSP was twofold higher than that of 
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native sPLA2. Thus, the increased antibacterial activity 
of sPLA2 was due to the enhanced enzymatic activity 
induced by CrSP.

 

Figure 2. a. Enzymatic activity of sPLA2 from Crotalus 
durissus terrificus in the presence of different concentrations 
of CrSP, ranging from 0.01 to 4 mg/mL. Each point represents 
the mean±SD of six experiments, and asterisks indicate 
p≤0.05 compared with their respective control values. b. 
We show the effect of a specific concentration of CrSP on 
the enzymatic velocity of sPLA2. Each point represents the 
mean±SD of twelve experiments.  

 

Figure 3. CrSP increased the bactericidal effect of sPLA2 
against Clavibacter michiganensis michiganensis. Each point 
represents the mean±SD of twelve experiments, and asterisks 
indicate p≤0.05 compared with their respective control 
values.

	 The phospholipase A2 extraction and purification 
was performed by two chromatography steps, using SEC 
and ion exchange, respectively. However, we used SEC 
coupled with “on-line” detectors as this column provides 
an elegant approach for determining the molecular weights 
of proteins and their complexes in solution. Because 
light scattering provides the weight-average molecular 
weight (MW) of all species in solution, SEC serves a 
critical size-fractionation function (Folta-Stogniew & 
Williams, 1999). Chromatographic analysis of CrSP, 
sPLA2 and sPLA2:CrSP was performed under the same 
chromatographic conditions (Figure 4). The sPLA2 and 
sPLA2:CrSP chromatographic runs was monitored at λ 280 
nm, and the CrSP chromatographic run was monitored using 
relative fluorescence. The analysis of the chromatographic 
profile of CrSP showed the presence of one main peak that 
eluted at 15.25 min, whereas native sPLA2 eluted at 16.2 
min. These results suggest that CrSP has an approximate 
molecular mass of 15 kDa, but the experiments were 
conducted with molecular marks. The molecular mass of 
sPLA2 was determined to be approximately 14 kDa, and 
the molecular mass of sPLA2:CrSP was estimated to be 32 
kDa.
	 There is evidence that sulfated polysaccharides 
are capable of binding proteins through several different 
mechanisms. As highly acidic macromolecules, they can 
bind non-specifically to any basic region on a protein 
surface at low ionic strength, and such interactions are 
not likely to be physiologically significant (Mulloy, 
2005). The molecular interaction of algae-derived sulfated 
polysaccharides with sPLA2 is not well studied, but it is 
known that sPLA2 has several basic amino acid residues at 
the N-terminus, at the C-terminus and on the outside of the 
α-helical structure of sPLA2 (Oliveira et al., 2002). Our 
chromatography results showed that there is an interaction 
between sPLA2 and CrSP as the mass from the incubed 
proteins increased. This finds may indicated a possible 
interaction in the surface of sPLA2 basic region with a 
highly acidic group in CrSP. 
	 Our study of mouse paw edema shows that 
CrSP:sPLA2 increased sPLA2-induced edema (Figure 5). 
The native sPLA2 induced a swelling of 0.26±0.03 mL in 
the first 15 min of the experiment, and, the sPLA2:CrSP 
sample was able to induce edema up to 0.317±0.02 
mL (Figure 5a). CrSP did not significantly change the 
maximum edema induced by native sPLA2. These initial 
results suggest that once the initial edema was induced by 
sPLA2:CrSP, only sPLA2 appears to have interacted with 
the target cells. The edema induced by sPLA2 depends 
not only on the enzymatic activity of sPLA2 but also on 
regions of sPLA2 near the calcium-binding loop (Oliveira 
et al., 2008; Toyama et al., 2011). It has been established 
that the N-terminal region of PLA2 enzymes is essential 
for enzymatic activity and is involved in cell membrane 
phospholipid recognition (Ali et al., 1999). Because CrSP 
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was able to increase the enzymatic activity of sPLA2, 
CrSP could also be involved in modulating the interaction 
of sPLA2 with target cells. The increased enzymatic 
activity of sPLA2 induced by CrSP could be involved in 
the extended paw edema observed over the time period of 
60 to 360 minutes (Figure 5b).

Figure 4. All samples were applied onto the TSKgel 
G3000SWXL silica base SEC column (0.78 x 30 cm), which was 
previously equilibrated with sample dilution buffer (ammonium 
bicarbonate, 50 mM, pH 7.8). The chromatographic profile 
of CrSP was monitored using an evaporative light scattering 
detector. Native sPLA2 and sPLA2:CrSP was monitored using 
λ280 nm. All chromatographic profiles were obtained under the 
same chromatographic conditions at a flow rate of 1.0 mL/ min.

 	 The effect of myotoxic Lys49 proteins is exerted 
locally at the site of injection, in contrast to the systemic 
action of other types of myotoxins, such as PLA2 or PLA2 
complexes from elapids and some viperids. The myotoxic 
effect induced by snake venom-derived sPLA2 involves 
the presence of highly basic amino acid residues that cause 
muscle cell destabilization and myonecrosis (Rigden et 
al., 2003; dos Santos et al., 2008). The results observed 
from the SEC showed that sPLA2 is able to establish a 
heterodimeric complex with CrSP, which is stabilized 
by the interaction between the acid groups of CrSP and 
the basic residues of sPLA2. The results shown in Figure 
5b confirm the results shown in Figure 4: impairment of 

basic residues by CrSP binding prevents the induction 
of a myotoxic effect. Despite of myotoxic inhibition by 
complex sPLA2:CrSP be independent of the enzymatic 
activity of PLA2, this shows another type of association 
between these two components, which still favors 
interesting pharmacological effects attributed to sulfated 
polysaccharide from green algae Caulerpa racemosa.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. a. The effect of sPLA2:CrSP on the development of 
mouse paw edema. The edema is defined as the increase in volume 
(mL) of the injected paw compared with its initial volume. The 
vertical bars represent the mean±SD of four experiments, and 
asterisks indicate p≤0.05 compared with their respective control 
values. b. The effect of native sPLA2 and sPLA:CrSP on the 
release of CK. The control group is labeled “saline.”

	 Ophidian accidents represent a great public 
health problem in developing countries. Snake bites are 
often dangerous accidents that require immediate medical 
treatment to neutralize the venon toxic effects (Andrade 
et al., 2013). There are reports in the literature which 
show that the efficiency of antivenom is limited to the 
time it takes to make the administration of the antibody 
solution. However, in Brazil, hospital care and effective 
antivenom administration happen after first hour after 
snake bit (Offerman et al., 2002; Gutiérrez et al., 2009). A 
feared complication of South America and North America 
viper snake bites is extended myonecrosis destruction, 
for example, large amount of muscle tissue, which can 
lead to amputation of the bitten limb and permanent 
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basic residues by CrSP binding prevents the induction 
of a myotoxic effect. Despite of myotoxic inhibition by 
complex sPLA2:CrSP be independent of the enzymatic 
activity of PLA2, this shows another type of association 
between these two components, which still favors 
interesting pharmacological effects attributed to sulfated 
polysaccharide from green algae Caulerpa racemosa.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. a. The effect of sPLA2:CrSP on the development of 
mouse paw edema. The edema is defined as the increase in volume 
(mL) of the injected paw compared with its initial volume. The 
vertical bars represent the mean±SD of four experiments, and 
asterisks indicate p≤0.05 compared with their respective control 
values. b. The effect of native sPLA2 and sPLA:CrSP on the 
release of CK. The control group is labeled “saline.”

	 Ophidian accidents represent a great public 
health problem in developing countries. Snake bites are 
often dangerous accidents that require immediate medical 
treatment to neutralize the venon toxic effects (Andrade 
et al., 2013). There are reports in the literature which 
show that the efficiency of antivenom is limited to the 
time it takes to make the administration of the antibody 
solution. However, in Brazil, hospital care and effective 
antivenom administration happen after first hour after 
snake bit (Offerman et al., 2002; Gutiérrez et al., 2009). A 
feared complication of South America and North America 
viper snake bites is extended myonecrosis destruction, 
for example, large amount of muscle tissue, which can 
lead to amputation of the bitten limb and permanent 

disability. In the case of myonecrosis induced by Bothrops 
sp., the sPLA2 is the main factor involved in pathology. 
Although currently available antiserum can neutralize 
the toxic effect of snake venom, the venom myotoxic 
effects is not completely neutralized (Nuchpraryoon 
& Garner, 2000; Marsh & Williams, 2007). Thus the 
sulfated polysaccharide of this alga do not decrease the 
edema frame, the drug was capable of virtually abolish 
myonecrosis, suggesting its potential therapeutic use as 
an adjuvant in antiserum, and the purpose of being able 
to increase the neutralizing capacity the antiserum. The 
conventional serum therapy has some problems involving 
the reaction of the immune system of patients injected 
with antibodies, such as hypersensitivity, especially in 
children. As the polysaccharide tested in this work within 
our tests showed no capability either edematogenic effect 
or myonecrosis, this may indicate a potential therapeutic 
use against the action of phospholipase A2 activity with 
myotoxins.

Conclusion

	 Our study showed that the sulfated 
polysaccharide extracted from the green macroalgae 
Caulerpa racemosa led the increase of the edematogenic 
effect, but inhibited the myotoxic activity. We believe 
that there is an interaction between sPLA2 and CrSP 
as the mass from the incubed proteins increased and 
this interaction may be related with some active 
site responsible for myotoxic activity, but activated 
the PLA2 site responsible for edematogenic effect 
which potentiated inflammatory effect. Despite of 
myotoxic activity be independent of the enzymatic 
activity of PLA2, this region was inhibited showing 
the association with this compounds which have 
important pharmacological effects attributed to sulfated 
polysaccharide from Caulerpa racemosa.
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