
V
Brazilian Journal of Cardiovascular Surgery 

In the previous issues of the Brazilian Journal of Cardiovascular 
Surgery (BJCVS) we discussed, first, the fundamental concepts 
required for understanding biostatistics[1] and, then, how to 
evidence associations and assess risk[2]. In this third part of the 
editorial series entitled “Operating with Data - Statistics for 
the Cardiovascular Surgeon”, we will examine the methods for 
comparing groups. 

Comparing What?

Here, again, it is important to clarify what we define as “comparing 
groups”. One could state that, in our last editorial[2], we were also 
comparing groups. Indeed, we were comparing the occurrence of 
determined events among two or more groups. However, since both 
variables were qualitative (or categorical), we defined those cases as 
an analysis of association. Now, we are referring to the comparison of 
quantitative (or numerical) variables in two or more groups. In these 
cases, the object of analysis is not the frequency of the events, as 
before, but the central value of a quantitative variable. Scientifically 
speaking, the methods we will present in this editorial are valid for 
those cases in which the independent variable is qualitative i.e. groups 
and the independent variable is quantitative. 

Luckily, tests for comparing groups, as defined above, are 
probably the simplest statistical tests to understand, if you are not 
willing to go deep in the mathematical side of them, which is the 
case for us. In fact, the whole editorial could be summarized in 
three simple questions (Figure 1): 1) How many groups are being 
compared?; 2) Are the data normally distributed?;  and 3) Are the 
groups paired?. The concepts required to answer questions 2 and 
3 i.e. data distribution and pairing are fully explained in our first 
editorial[1]. Still, it is important to understand what is behind each 
of these different tests and, thus, comprehend why they are the 
choice for each of these different situations. 
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Comparison Tests for Two Groups

If you are working with only two groups, let’s say intervention 
and control, somehow you will be using a t-test. The t-distribution 
(and consequent t-test) was first proposed in 1908 by William 
Gosset[3], a chemist from Guinness brewery who could not 
publish his findings under his own name and, thus, did it under 
the pseudonym of “Student”,  reason why the most used t-test is 
named Student’s t-test. The idea of all the t-tests is the same: to 
answer if the observed difference is larger than we should expect 
from random inconstancy. 

For that, the t-test calculates the ratio of the difference 
between group means and the variance within the groups (Figure 
2) to define a t-value. Thus, if the difference between the means is 
small and the variance within the groups is large, the t-value is low 
(Figure 2A). Oppositely, if the difference is large and the variance is 
small, then the t-value is high (Figure 2B). The higher is the t-value, 
the most significant is the difference. Using this t-value and the 
degrees of freedom of the sample (which is related to the number 
of observations), the t-test calculates the P-value for that difference. 
In the case of paired data, you can use the paired version of the 
Student’s t-test. The details of the test’s mathematical formula do 
not belong to the scope of this editorial but can be easily found 
online. The Student’s t-test, however, is somehow limited because 
it assumes the data is normally distributed and the standard 
deviation is the same for both groups. When data is not normally 
distributed, however, other approaches are necessary to test the 
difference between the groups. 

Frank Wilcoxon, in 1945, proposed a modification to the 
Student’s t-test that allowed Gosset’s calculations to be used for 
non-normal distributions[4]. Briefly, the proposed approach was 
to put all the data from both groups together and organize it in 
an ascending manner, so that each value would, now, possess a 
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Fig. 1 - Decision flowchart for group comparison.

Fig. 2 -  Graphical representation of the rationale behind the Student’s t-test. A) Groups not significantly different. B) Groups significantly different.
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position within an ordered set of values. This position was called 
rank and this rank was used for calculating the t-test, instead of 
the actual value. This test was called Wilcoxon rank-sum test (do 
not confound with the Wilcoxon signed rank test).  To illustrate 
this concept, let’s imagine we have two groups of five patients, 
A and B, undergoing cardiopulmonary bypass (CPB). The time 
under CPB was registered and tabulated as in Figure 3A. These 
values were, then, brought together and reorganized in an ordered 
sequence, as in Figure 3B, so that for each value it was assigned a 
rank. The rank, then, substitutes the original value in the original 
table, originating a new table, as in Figure 3C. The values in Figure 
3C are the ones which will be used to calculate the Student’s 
t-test. Naturally, you do not need to perform all these steps when 
running a Wilcoxon rank-sum test, the statistics software does it 
all automatically, but it is interesting to understand how the test 
is performed so that you can better comprehend its applications. 
The Wilcoxon rank-sum test, however, also presented limitations, 

one of them being the fact that it could only be used for groups 
with equal numbers of subjects. In order to solve this issue, two 
statisticians, Mann and Whitney, proposed, in 1947, a modification 
to the formula of the Wilcoxon rank-sum test so that groups of 
different sizes could be evaluated[5], originating the Mann-Whitney 
U test, also referred as Mann–Whitney–Wilcoxon (MWW) test. 
Still, the whole concept behind this test is also the ranking of 
the original values and further calculations with the rank values. 

Still, none of the tests, neither the Wilcoxon rank-sum test 
nor the Mann-Whitney U test were designed to evaluate paired 
data. To do this, Wilcoxon proposed, in the same publication he 
proposed the rank-sum test, another test, specific for paired data[4]. 
This test is what is called the Wilcoxon signed rank test. Because 
the groups of paired data will always have the same size, this test 
did not require the modifications proposed by Mann and Whitney 
and thus continue to be the choice for the comparison of two 
paired groups with non-normal distribution.  

Fig. 3 -Statistics based on ranks.  A) Original data. B) Ranked data. C. Modified data.
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Comparison Tests For Three or More Groups

When working with three or more groups, like comparing 
treatments A, B, and C, another type of statistical test must be 
used, the so-called analysis of variance (ANOVA). Maybe some of 
the readers are asking themselves why not to perform multiple 
t-tests so to compare the multiple groups in separate analyses. 
The answer is actually very simple: by using this approach i.e. 
multiple t-tests, the researcher would be increasing the type I 
error. This means he or she would be rejecting the null hypothesis 
when it is, in fact, true or, putting it in simpler words, affirm there 
is a difference among the groups which actually does not exist. 
Suppose you have five different groups: A, B, C, D, and E. If you 
would use only t-tests, you would have to perform ten different 
t-tests (A vs. B; A vs. C; A vs. D; A vs. E; B vs. C; B vs. D; B vs. E; C vs. D; C 
vs. E; and D vs. E). In each of these tests, you assume an acceptable 
error of 5% i.e. P=0.05. Thus, after performing all the tests, your final 
error is up to 50%, meaning that if you find a difference between 
two of those five groups by running multiple t-tests, the possibility 
of that difference being due to chance is 50%! To solve this issue, 
the analysis of variance was created. 

To compare several groups at once keeping a fixed type I error, 
the analysis of variance calculates two types of variance i.e. the 
spread between numbers in a data set. The first is the variance 
within each group, what is done by calculating the variance 
between each observation in a group and this group mean. Then, 
it is calculated the variance between the groups, which, in turn, 
is done by calculating the variance between each group mean 
and the overall mean (the mean of all values in all groups). Finally, 
the ratio between the variance and the within variance (b/w) is 
calculated. If the ratio is large, it means the groups differ, if the 
ratio is low, it means the groups do not differ. Figure 4 illustrates 
very well this rationale. When the variance between groups is 
smaller than the variance within the group (Figure 4A), there is 
probably no difference among these groups. On the other hand, 

when the variance between groups is larger than the variance 
within the group (Figure 4B), there is probably a difference among 
them. To calculate if this ratio i.e. the difference among groups is 
statistically significant it is used the F-test. Similarly, to the t-test, 
several variables are used in this calculation and the mathematical 
details of this formula will not be covered by this editorial. Besides 
understanding the rationale behind the analysis of variance, it is 
also important to recognize that, although this test can inform if 
there is at least one group that differs from the others, it cannot 
state which is the different group and what is size or direction of 
this difference. For that, post-hoc tests are necessary, and we will 
discuss them later in this editorial.

The analysis of variance above described is what is traditionally 
called One-way ANOVA and is valid for normally distributed 
data and non-paired groups. Other types of analysis of variance, 
however, can also be performed in cases where data is not 
normally distributed and/or if the groups are paired. First, for the 
cases in which data is normally distributed, but paired, the test 
of choice will be the Repeated Measures (RM) One-way ANOVA. 
As any test for paired samples, RM One-way ANOVA will consider 
the variations within each subject when making the previously 
explained calculations. The second variation of the One-way 
ANOVA is the so-called Kruskal-Wallis test, also known as One-way 
ANOVA on Ranks, which was designed by these two statisticians, 
William Kruskal and W. Allen Wallis, for variables which are both not 
paired and not normally distributed[6]. The Kruskal-Wallis test is a 
derivation of the Mann-Whitney U test and, thus, does not assume 
a normal distribution of the data and uses its ranked values for 
calculations. Finally, the third variation of the One-way ANOVA is 
valid for variables which are paired but not normally distributed. 
This test was developed by the Nobel laureate Milton Friedman[7] 
and, for this reason, is called the Friedman test. To think this test in 
a simple way, it could be explained as a combination of the two 
previous tests i.e. it is a ranked test for repeated measures. 

Fig. 4 - Graphical representation of the rationale behind the analysis of variance (ANOVA). A) Groups not significantly different. B) Groups 
significantly different.
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Post-hoc tests

As commented above, all the previously described tests only 
inform if there is at least one group that differs from the others, 
but do not state which is the different group and what is size or 
direction of this difference. For dissecting these differences, a post-
hoc test is necessary. Post-hoc tests should only be performed after 
a statistically significant difference was found in the analysis of 
variance. These tests use different means to determine what is the 
different group among all others. In fact, the post-hoc test can be 
performed in three different ways: 1) comparing all groups against 
each other (all pairwise comparison); 2) comparing specific pairs 
of interest (specific pairwise comparison); or 3) comparing all 
treatment groups against one control group. Not all post-hoc tests 
can be used for any of these three situations. Also, not all post-hoc 
tests can be used after any parametric or non-parametric analysis 
of variance. Table 1 summarizes when each of the most used 
post-hoc tests should be used. Another important observation is 
that each post-hoc tests are more or less prone to type I or type II 
errors (for definitions, check our first editorial (1)) so that they are 
more liberal or more conservative in regard to accepting false-
positives in order to not risk false-negatives. Table 1 also list the 
limitations of each test, such as the type of error each test is more 
prone to incur and other statistical pitfalls. Other post-hoc tests 

not described in Table 1 exist, but this editorial does not intend 
to cover all of them. 

The Two-way ANOVA

Finally, it is important to point to the existence of a Two-way 
ANOVA. The Two-way ANOVA is a type of analysis of variance 
for when you have two independent variables being analyzed 
at the same time. One example could be the evaluation of 
cardiac function after 30, 120 and 180 days after patients were 
submitted to two different approaches, A and B, of myocardial 
revascularization. The first variable is the intervention, which could 
be A or B. The second variable is the time at evaluation, which 
could be 30, 120, or 180 days. Performing a Two-way ANOVA can 
lead to three different conclusions: 1) if there are differences due 
to the intervention group; 2) if there are differences due to the 
time point; and 3) if there are differences due to a combination 
of intervention group and timepoint. This combination is called 
interaction and, if significant, means that differences found in one 
of the independent variables could also be partially attributed to 
the other, making it difficult to determine what is, in fact, the main 
variable responsible for the observed effect. Two-way ANOVA can 
also be followed by post-hoc tests, many of which are the same 
used for One-way ANOVA.

Table 1. Post-hoc tests.

Test ANOVA Comparison Requirements and limitations

Fisher's LSD
Parametric (One-way ANOVA 
or RM One-way ANOVA)

All pairwise comparisons, specific 
pairwise comparisons and compare 
treatments with a control

Prone to type I error

Holm-Sidak
Parametric (One-way ANOVA 
or RM One-way ANOVA)

All pairwise comparisons, specific 
pairwise comparisons and compare 
treatments with a control

Prone to type II error and does 
not give confidence interval (only 
significance)

Bonferroni
Parametric (One-way ANOVA 
or RM One-way ANOVA)

All pairwise comparisons, specific 
pairwise comparisons and compare 
treatments with a control

Prone to type II error 

Tukey-Kramer 
Parametric (One-way ANOVA 
or RM One-way ANOVA)

Only for all pairwise comparisons
Prone to type I error (less than Fisher's 
LSD)

Newman-Keuls
Parametric (One-way ANOVA 
or RM One-way ANOVA)

Only for all pairwise comparisons

Require an equal number of subjects 
in all groups; prone to type II error; 
and does not give confidence interval 
(only significance)

Dunnet
Parametric (One-way ANOVA 
or RM One-way ANOVA)

Only when comparing treatments 
with a control

Prone to type II error 

Dunn's
Non-parametric (Kruskal-
Wallis or Friedman)

All pairwise comparisons, specific 
pairwise comparisons and compare 
treatments with a control

Prone to type II error and does 
not give confidence interval (only 
significance)
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