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ABSTRACT

Time series from weather stations in Brazil have several missing data, outliers and spurious zeroes. 
In order to use this dataset in risk and meteorological studies, one should take into account alternative 
methodologies to deal with these problems. This article describes the statistical imputation and 
quality control procedures applied to a database of daily precipitation from meteorological stations 
located in the State of Parana, Brazil. After imputation, the data went through a process of quality 
control to identify possible errors, such as: identical precipitation over seven consecutive days and 
precipitation values that differ significantly from the values in neighboring weather stations. Next, 
we used the extreme value theory to model agricultural drought, considering the maximum number 
of consecutive days with precipitation below 7 mm for the period between January and February, in 
the main soybean agricultural regions in the State of  Parana.
Keywords: Imputation, quality control, precipitation, risk

RESUMO: IMPUTAÇÃO DE DADOS FALTANTES E SUA APLICAÇÃO NA MODELAGEM 
DE EVENTOS EXTREMOS DE SECA AGRÍCOLA
Este artigo relata o procedimento utilizado na reconstrução de um banco de dados contínuo de 
precipitação diária de estações meteorológicas localizadas no Estado do Paraná, Brasil. Após a 
imputação, os dados passaram por um processo de controle de qualidade que teve como objetivo 
identificar possíveis erros como precipitação idêntica em sete dias consecutivos (não aplicados a 
dados de precipitação zero) e valores de precipitação que diferem significativamente dos valores em 
estações meteorológicas vizinhas. Com o banco de dados contínuo, o interesse foi utilizar a teoria 
de valores extremos para modelar a seca agrícola, considerada como sendo o número máximo de 
dias consecutivos com precipitação abaixo de 7 mm para o período entre janeiro e fevereiro, crítica 
para a fase de enchimento de grãos da soja nas principais regiões produtoras do Estado do Paraná.
Palavras-Chave: Imputação, controle de qualidade, precipitação, risco

1. INTRODUCTION

Drought is one the most serious environmental factors 
limiting crop yields worldwide with devastating economic and 
social consequences (Rivero et al., 2007). Accurate estimates 
of the risk of drought are important because of its importance 
in the decision making process for farmers in reference to the 
best season for planting and harvesting.   

The size of the crop loss depends on the period of their 
cycle and when they are exposed to extreme climatic conditions. 

Thus, studies of risk of extreme weather conditions should 
be taken into account and specific features of each weather 
condition. According to the Brazilian Agricultural Research 
Corporation (EMBRAPA, 2002),  in order to obtain maximum 
yield, the need for water in the soybean crop throughout its 
cycle, ranges from 450 to 800 mm depending on the weather 
conditions, crop management and the duration of the cycle. 

The soybean has two well-defined critical periods in 
relation to the lack of water: germination through to flowering 
and grain filling. During the flowering and grain filling stages, 
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the plant presents its higher water necessity (7-8mm/day), 
decreasing thereafter (EMBRAPA, 2002).

The critical precipitation period of the soybean occurs 
between January, 15 through February, 28 (needs of 7-8 mm 
in the stage of flowering and grain filling). To quantify the 
risk of extreme weather conditions and their consequences for 
the soybean crop, the probability of the occurrence of adverse 
meteorological phenomena in agriculture, especially drought, 
is of paramount importance to the rural sectors dealing with 
insurance, financing and the planning of farming activities.

Extreme drought in the series are analyzed by the 
maximum annual series adjusting the widespread distribution 
of extreme values and extreme value generalized distribution. 
These drought series are obtained by determining the maximum 
dry season each year from January through February, so that 
the length of the series is equal to the number of years that the 
data series is available.

However, the extreme values analysis requires continuous 
climate series that can generate reliable results in the decision 
making. In Brazil, climatic data are released from the National 
Institute of Meteorology (INMET), the Center for Weather 
Forecasting and Climate Studies (CPTEC/INPE) and the 
National Water Agency from the automatic and manual weather 
stations. In general, the series present serious problems of 
missing data and inconsistencies.

In order to overcome the problems of inconsistency, 
inaccuracy and measurement errors and to put together a solid 
database for analysis, a reconstruction process is required which 
involves a method of imputation and quality control of precipitation 
data (Feng and Qian, 2004; Vicente-Serrano et al. 2010).

The main goal of this study is to obtain a database of 
reconstructed rainfall for the State of Parana (Southern Region 
of Brazil). As a secondary goal, the generalized extreme value 
distribution was fitted to this reconstructed series to model the 

number of consecutive days with daily precipitation less than 7 
mm (critical water necessity) in the regions of Parana.The article 
is outlined as follows: Section 3 presents the study region and 
data. Section 2 introduces the methods of imputation, quality 
control of data and the theory of extreme values. Section 4 
presents results and Section 5 concludes the article.

2. THE DATASET

The State of Parana is located in the Southern of Brazil 
covering a total area of 199,314 km2, which corresponds to 2.3% 
total area of Brazil and has 399 municipalities divided into 10 
regions which several municipalities with similar economic 
and social situations. 

The data used in this study were obtained from the 
National Institute of Meteorology (INMET), the Center for 
Weather Forecasting and Climate Studies (CPTEC/INPE) and 
the National Water Agency (ANA). The observations refer to 
the daily precipitation in millimeters (mm) of 484 weather 
stations located in the State of Parana. Each series has 35 
years between January 1975 and December 2009. The spatial 
density is a station of 411.8 km2. The Figure 1 shows the spatial 
distribution of the stations.

3. METHODOLOGY

The imputation and quality control involves two basic 
steps described by Vicente-Serrano et al. (2010). The first step 
involves the imputation of missing data through methods that 
use auxiliary information from neighboring weather stations 
to obtain continuous data series. The second step evaluates the 
quality control of the series reconstructed to identify and replace 
unverified records in the database (negative precipitation, 
some zero values and the records that differ significantly from 

 1 
Figure 1 - Geographic distribution of the weather stations.
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the amounts recorded in the neighboring stations). After the 
imputation and quality control of the series, the next step consists 
in using the extreme value theory to model the drought period 
and its return period in the selected regions.

3.1 Imputation methodology

Several imputation methods have been proposed in the 
literature. The adequacy of each method depends on the missing 
data mechanism (Rubin, 1996; Schafer, 1997; Schneider, 2001; 
Junninena et al., 2004; Coulibaly, 2007; Göktürk, 2008; Ramos-
Calzado et al., 2008). In this study three methods are tested: the 
nearest neighbor method, the inverse distance weighting method 
and the linear regression method. 

The nearest neighbor method is widely used due 
to its conceptual simplicity that leads to a straightforward 
implementation. If  and   are two time series, then this method 
considers the smallest distance between station and station , 
in other words . Thus, the missing data are imputed directly in 
the observed data time series from the nearest weather station. 

The inverse distance weighting method has the advantage 
to be ease implement computationally. In order to predict the 
missing data from one station, this method uses the values 
measured in the neighbors of this station. In this method, the 
values measured in the nearest stations will have a greater 
influence on the forecast than those measured further away. The 
method can be defined as: 

where z(xj) is the expected predicted value of the station 
according to the weighted average of the observed stations z(x1), 
z(x2),..., z(xn) and   is the weighting factor, defined as the 
Euclidean distance between the observation z(xi) and the value 
to be estimated z(xj) and r a positive real number (usually r = 2). 

In the linear regression method the missing data are 
obtained using the most correlated series. Since there are no 
negative precipitation values, the line of regression is forced 
through the origin, providing a model with only the slope 
coefficient:

where Y is the series with missing data to be estimated, Xi  is the 
series most correlated with Yi, b is the slope parameter and ei is 
the error term, with E(ei) = 0 and Var(ei) = s2. The parameter  
b is estimated by ordinary least squares and is given by:

For the comparison of imputation methods, following 
the description of Vicente-Serrano et al. (2010), 1% of the 

observations were selected (excluding missing data) for each 
weather station. After the selection of these data, we assume 
that these observations were missing and the three methods 
were applied. We use the root mean square error (RMSE) as a 
criteria to choose the best method of imputation. The RMSE is 
used to measure forecast error and is found by calculating the 
square root of the sum of squared prediction errors divided by 
the number of observations:

where xi is the amount of precipitation observed,   is the 
expected predicted value of precipitation (in this case it is the 
imputed value of precipitation).

3.2 Quality control of the data

The objective of the quality control is to identify incorrect 
data or unverified records of the data. Due to the large amount 
of observation in our dataset, we use the approach adopted by 
Vicente-Serrano et al. (2010), which compares the rank of each 
data classification and the average rank of the data recorded in 
adjacent observatories.  

The rank of the original series of daily precipitation after 
clearing the zero values is converted into percentiles and each 
value of precipitation is replaced by its corresponding share 
according to the rank. After processing, the values zero were 
assigned a zero percentile. For each station we choose stations 
located within a radius of 55 km1 and a minimum of four stations 
as a condition for the test (at that distance, all stations have at 
least four neighbors). In the first phase, only observations above 
99th percentile were observed.  

According to Vicente-Serrano et al. (2010), the 
maximum difference allowed between an observation of 
the corresponding station and the average percentile of the 
neighboring stations is fixed at the 60 percentage units. If 
the difference is greater, the observation is replaced by the 
observation of the closest series.

In the second step, observations below the 99th percentile 
are compared with the average of neighboring stations. In 
this case, a difference of 70 percentile units are defined as the 
threshold for identifying unverified data, and the higher values 
are flagged and replaced with the data from the nearest station 
(Vicente-Serrano et al., 2010). The values zero coinciding with 
substantial precipitation in the nearby stations are also replaced 
1 In order to avoid problems with missing data in the neighboring 
stations we selected stations located within a radius of 55 km with 
an average correlation of 0.56. Otherwise, it would not be possible to 
have a reasonable quantity of stations to perform the imputation and 
the quality control of the series (in this study,, if we consider a distance 
of 15 km, the average number of neighbor stations is equal to one).
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with data from the closest station to the average percentage in 
the neighboring stations which is greater than 50. Following is 
checked at each occurrence series of identical values (excluding 
zero) in at least 7 consecutive days. 

These data are replaced by precipitation values from 
the nearest station. As Vicente-Serrano et al. (2010), this 
methodology can affect the probability of distribution of the 
most extreme observations in a time series. Thus, a test is 
applied using standard methods for analysis of extreme values. 
We calculated the coefficients of L-skewness and L-kurtosis 
of the data series before and after the quality control process. 
Series of partial length or numbers of peaks above a threshold 
was taken from each station in order to capture the extreme 
values. 

Given the number of precipitation in an weather station,   
X = (x1, x2,..., xn), where xn is the observation of a given day, 
the series of partial length  Y = (y1, y2,...,yj) is in excess of the 
original series along a predetermined threshold, x0 

Therefore, the size of the series depends on the threshold 
value, . For each series, the precipitation values corresponding 
to percentiles 90th and 95th, before and after the process of 
quality control, are used as limits for the construction of a series 
of partial length. The L-asymmetry coefficient L-coefficients 
of skewness (t3) and L-kurtosis coefficient L-coefficients of 
kutosis (t4) are calculated as follows:

where l2, l3  and l4  are the L-moments of the series of partial 
length (Y), given by:

where  bs (s= 1, 2, 3, 4) are estimated through the probability-
weighted moments calculated from the data of the series of 
partial length (Y) arranged in ascending order, given by:

where n is the sample size. If the relationship between t3 and 
t4 is approximately linear before and after the quality control 
process indicates that the process did not affect significantly the 
statistical characteristics of the observations.

Extreme Value Theory

The generalized extreme value distribution (GEV), developed 
by Jenkinson (1955), can be considered as a generalized 
distribution which includes the three possible types of 
asymptotic distributions of extreme weather conditions, known 
as the Gumbel (type I), Fréchet (type II ) and Weibull (type III). 
The cumulative distribution function of the GEV distribution 
is expressed by

set at −∞ <  <  −  ⁄  to  < 0, −∞ <  < +∞ to  → 0,  −  ⁄ <  < +∞ to  > 0  
−∞ <  <  −  ⁄  to  < 0, −∞ <  < +∞ to  → 0,  −  ⁄ <  < +∞ to  > 0 , in which m, s and x are the 

parameters of location, scale and form, respectively, with m 
∈ ℝ  and s > 0. Extreme values distributions Gumbel, Fréchet 
and Weibull correspond respectively to particular cases of the 
GEV distribution. Deriving Equation 9 with respect to x obtain 
the probability density function of GEV distribution, given by: 

The logarithm of the likelihood function for the GEV 
distribution given by Equation 10, for  x ≠  0, is given as follows

where n is the sample size.
For the particular case of the Gumbel distribution, in 

which x = 0, the cumulative distribution function is given by:

defined in −∞ <  < +∞,   that m and s are the location and scale 
parameters, respectively, with   ∈ ℝ e  > 0 .

Deriving from Equation 11 in relation to x obtaining the 
distribution of Gumbel probability,

defined in 
The function of the logarithm likelihood of Equation 

12 is given by:

According to Coles (2004), the maximum likelihood 
method can be used to obtain parameter estimates. Coles 
(2004) shows in detail the estimation using this method. 
One can test the null hypothesis that the extremes follow a 
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Gumbel distribution using the likelihood ratio test as described 
by Hosking (1984):

where n is the sample size and θ = , 	σ, ξ. .
Thus, to test the hypothesis H0: x = 0 versus HA: x ≠  

0, the value of the statistic Λ* should be compared with the 
tabulated value of chi-square distribution with one degree of 
freedom (χ1) and a predetermined level of significance α (5%). 
Is rejected if Λ* ≥. χ1,α.

The probability that there will be a drought period longer 
than a certain value x is given by:

The return period is calculated by τ = 1⁄((1 - F(x)), 
where τ is usually expressed in years. The level of return (xp), 
associated with the return period τ, is obtained from the solution:

The confidence intervals for levels of return are 
calculated using the Delta method. Rao and Toutenberg (1999) 
provide details of the method.

4. RESULTS AND DISCUSSION

The inverse distance weighting method provided better 
results, with an average RMSE of 7.195 mm (with a range 
between 2.164 mm to 15.189 mm) of all stations. The nearest 
neighbor method provided an average RMSE of 9.273 mm 
(range 2.368 mm to 22.294 mm) and the linear regression 
method achieved RMSE average of 7.834 mm (with an interval 
of 2.456 mm to 16.584 mm). Thus, the missing precipitation data 
from 484 weather stations were imputed by the inverse distance 
weighting method and the series are consistent continuous as 
there is no missing data. 

Once the imputation process is concluded, the next step 
consists in using the complete dataset to the control quality 
process.  The percentiles above the 99th and equal to zero, 
0.33% and 0.86% were replaced, respectively, while for the 
percentile between 0 and 99th, the replacement was 0.02%. On 
average, the proportion of the substituted data, using the criteria 
described in Section 3, was 1.21% in each weather station and 
the lowest proportion of substituted data was 0.094% and the 
highest was 5.257%. Only 21 stations had more than 3% of the 
data represented.

Most substitutions (70.93%) corresponded to zero 
values. For identical values (excluding zeros) in at least 7 

 >  = 1 −  = 1 − exp − 1 +   −  
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consecutive days the proportion of overwritten data was 
0.0025% (corresponding to 138 data). The L-coefficients 
of skewness and kurtosis of the data series before and after 
the process of quality were calculated and the relationship 
between the values τ3 and τ4 was approximately linear (Figure 
2). This provides evidence that the quality control process 
did not significantly affect the statistical characteristics of 
the extremes.

The period from January 15 to February 28 was 
chosen because it represents the period in which most of the 
soybean is in the stage of flowering-grain filling (as seen 
earlier, this is the critical period in which it needs from 7-8 
mm of precipitation) and considering that in the five regions, 
the planting of soybeans occur between late October and 
early November (EMBRAPA, 2002). More importantly, for 
a more detailed study, it is of interest to analyze separately 
each municipality, taking into consideration its climate and 
agricultural calendar. Comparing the statistic Λ*, presented in 
Table 1, with the tabulated value of χ1 = 3.84, we concluded 
that the Gumbel distribution is more appropriate to model the 
data under study, since Λ* < χ1,0.05. 

Table 1 shows the estimates of the Gumbel distribution 
parameters. Vicente-Serrano and Begues-Portuguese 
(2003) also obtained better results by adjusting the Gumbel 
distribution to the drought data in the Northeastern Region 
of Spain.

The probability of a drought period greater than 10, 20, 30 
and 40 can be seen in Table 2. It is noted that regions 2, 3 and 4 are the 
regions with the highest probability of occurrence of these values.

The payback return period for the drought period of 
45 consecutive days with precipitation below 7 mm occurs 
once every 60, 57, 53 and 124 years for regions 2, 3, 4 and 5, 
respectively, while for region 1, the highest recorded drought 
period (41 days) will occur once every 55 years. The levels of 
return for 5, 10, 15 and 20 years are shown in Table 3.

The results show that regions 2, 3 and 4 of the state 
have the greatest probability of occurrence of the maximum 
number of consecutive days with precipitation below 7 mm 
and longer drought periods are more likely to occur. The results 
show that these three regions have the highest agricultural risk 
in the state. In other words, year after year these regions would 
present a high prevalence of oscillation with drastic reductions 
in agricultural yield.

A metric commonly used by the market to check the 
relative risk of certain regions is the coefficient of variation 
(CV). The advantage of using the CV is based on the fact that 
this metric is dimensionless, allowing comparisons between 
different regions. On the other hand, its usefulness is reduced 
considerably when the mean value is close to zero. In this case, 
the CV becomes relatively sensitive to small changes in standard 

2

2

                                                                                                  .
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Region Λ*  

1 0.0025 18.34 5.68 

2 

3 

0.0037 

0.2576 

19.62 

20.03 

6.21 

6.20 

4 0.7679 20.36 6.21 

5 0.4439 18.72 5.46 

 

Table 1 - Λ* Statistics and estimates of location parameters (μ) and 
scale (σ) of the Gumbel distribution.

Region >10 >20 >30 >40 

1 0.9870 0.5260 0.1205 0.0218 

2 

3 

0.9910 

0.9935 

0.6096 

0.6339 

0.1714 

0.1815 

0.0369 

0.0391 

4 0.9950 0.6534 0.1908 0.0414 

5 0.9928 0.5466 0.1190 0.0201 

 

Table 2 - Probability of occurrence of the maximum number of 
consecutive days with precipitation below 7 mm.

 1 

Figure 2 - Relationship between L-coefficient of skewness and kurtosis for the series of partial length percentile 90th and 95th, before and after 
quality control.

deviation. This is not the case in this article. Figure 3 compares 
the risk of all regions.

It is worth noting that region 5 is the most risky and is 
ranked fourth in the probability of a prolonged drought. On the 
other hand region 3 has a lower relative risk and is ranked second 
in the probability of a long drought. Possibly this is because 
these two regions (5 and 3) have a large number of irrigated 
farms covering an extensive land area. In fact, analysing the data 
from the 2006 Agricultural Census Bureau, it shows that the two 
regions account for nearly 45% of all irrigated properties in the 
state, and almost 25% of the total irrigated area.

5. CONCLUSION

This article proposes an alternative way to investigate 
the consistence of precipitation data, traditionally problematic 
in Brazil. The imputation and quality control data have proven 
useful in obtaining a continuous daily series and since this 
procedure did not significantly affect the characteristics of 
extreme weather conditions. 

The generalized extreme value distribution with 
parameter ξ → 0 which corresponds to the distribution of type 
I or Gumbel, proved adequate in studying the behavior of the 
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drought periods of the five observed regions in Parana State. 
Taking this fact into account, farmers are able to use the results to 
control cash flow so as to adapt to potential losses when drought 
is expected. This enables producers to create a catastrophe fund 
to manage drought periods. In addition if farmers are aware of 
the risk of drought in a particular area they can consider pay 
a premium and receive an indemnity when drought occurs. In 
other words, farmers might be protected by using government 
crop insurance programs and to avoid great economic losses.
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Figure 3 -  Relative risk in each Region.

 Period of return (years) 

Region 5 years 10 years 15 years 20 years 
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