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Abstract
This work aimed to select semivariogram models to estimate trends in monthly precipitation in Paraiba State-Brazil
using ordinary kriging. The methodology involves the application of geostatistical interpolation of precipitation records
of 51 years from 69 rainfall stations across the state. Analysis of semivariograms showed that specific months had a
strong spatial dependence (Index of Spatial Dependence - IDE < 25%). The trends were subjected to the following
models: circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, K-Bessel and tetraspherical. The
best fit models were selected by cross-validation and Error Comparison Index (ECI). Each data set (month) had a parti-
cular spatial dependence structure, which made it necessary to define specific models of semivariogram in order to
enhance the adjustment of the experimental semivariogram. Besides, the monthly trend map was plotted to justify the
chosen models.
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Análise de Tendência da Precipitação Usando o Teste de Mann-Kendall: Um
Estudo de Caso na Paraíba, Brasil

Resumo
Este trabalho teve como objetivo selecionar modelos de semivariograma para estimar tendências de precipitação mensal
no Estado da Paraíba-Brasil usando krigagem comum. A metodologia envolve a aplicação de interpolação geoestatística
de registros de precipitação de 51 anos de 69 estações de chuva em todo o estado. A análise de semivariogramas mos-
trou que meses específicos apresentaram forte dependência espacial (Índice de Dependência Espacial - IDE <25%). As
tendências foram submetidas aos seguintes modelos: circular, esférico, pentassesférico, exponencial, gaussiano, qua-
drático racional, K - Bessel e tetrasspherical. Os melhores modelos de ajuste foram selecionados por validação cruzada
e Índice de Comparação de Erros (ICE). Cada conjunto de dados (mês) possuía uma estrutura de dependência espacial
específica, o que tornava necessário definir modelos específicos de semivariograma, a fim de aprimorar o ajuste do
semivariograma experimental. Além disso, o mapa mensal de tendências foi plotado para justificar os modelos escolhi-
dos.

Palavras-chave: precipitação, tendências, Paraíba, geoestatística.

1. Introduction
Northern South America distinguishes by being a

large and complex region where distinct weather systems

act. According to Andreoli et al. (2012), the Amazon
region, which represents one of the most intense con-
vective areas in the world, and northeast of Brazil, which
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is related to intense and prolonged droughts due to its
semi-arid climate, are inserted in northern South America.
The cooperation between different atmospheric phenom-
ena that appear in the whole region and local surface con-
ditions (like vegetation, topography, and land use), gen-
erates a non-homogenous rainfall distribution that exhibits
in a broad temporal and spatial range (Sierra et al., 2015).

Rainfall is a periodical spatiotemporal phenomenon
displaying significant spatial and temporal variability, and
rain gauge networks only collect point estimates. There-
fore, providing an estimate of spatial rainfall distribution
within an area from rain gauge data usually remains a bar-
rier of interpolation (Mirás-Avalos et al., 2007).

Rainfall data is an essential input for hydrological
systems; this type of information plays a fundamental role
in understanding the hydrological cycle. An accurate esti-
mation of precipitation is crucial. In developing countries,
the availability of rainfall data is obstructed by the scarcity
of precise, high-resolution precipitation. Since its incep-
tion, rainfall measurement principles have remained
unchanged; non-recording and recording rain gauges are
still the standard equipment for measuring ground-based
precipitation, notwithstanding that they only provide point
measurements. According to Ochoa et al. (2014), rainfall
amounts evaluated at different locations are usually extra-
polated to obtain areal-average rainfall estimates.

Understanding the variability of precipitation regime
over tropical South America is crucial because of the
strong dependence of water supply, hydro-energy, agri-
culture, and transportation. Brazilian agriculture is princi-
pally supported by natural irrigation. Hence, the impor-
tance of understanding the mechanism to produce water
through precipitation variability in tropical South America
has not only meteorological implications but also practical
applications for the society in the region.

As reported by Zhou and Lau (2001) and Takahashi
(2004), precipitation variability in South America has
been influenced by particular factors such as Atlantic Sea
Surface Temperature (SST), El Niño-Southern Oscillation
(ENSO), and Intertropical Convergence Zone (ITCZ).
Grimm (2011) also considered that the ENSO impact on
the characteristics of Brazil Northeast precipitation is rela-
ted to the position of ITCZ and Atlantic and Pacific SST
interaction.

Geostatistics based on the theory of regionalized
variables permits the analysis and interpretation of any
spatially (temporally) referenced data (Isah, 2009). It is
increasingly preferred because it capitalizes on the spatial
correlation between neighboring observations to predict
attribute values at unsampled locations (Goovaerts, 2000).
Several studies (Creutin and Obled, 1982; Tabios and
Salas, 1985; Lebel et al., 1987 and Goovaerts, 2000) have
demonstrated that the estimation of precipitation by ap-
propriate geostatistical tools permits more accurate results
than other forms of interpolation. The possibility of quan-

tifying uncertainty for an interpolated point or area is par-
ticularly useful, as it allows more meaningful comparison
with rainfall estimates generated by other means (e.g.,
radar, satellite, or numerical weather models). It also facil-
itates the investigation of the propagation of uncertainty in
downstream models (e.g., hydrological or agricultural
forecast models). However, interpretation of the kriging
variance as an estimate of error depends on the data obey-
ing the implicit statistical assumptions of kriging, but
some caution may be needed.

Hence, the evaluation of historical trends or future
projections on a regional or local scale is necessary. This
study is therefore intended to investigate trends in the
monthly precipitation series in the State of Paraíba, Brazil,
and to determine whether there have been any significant
changes in precipitation trends from 1962 to 2012. It was
used spatial clustering analysis to identify spatial explicit
and statistically significant rainfall stations. Such an inte-
grated spatiotemporal analysis facilitates a spatial quanti-
fication of potential precipitation vulnerability hot spots.

2. Material and Methods

2.1. Data
The study was carried out in Paraiba state, located in

the Brazilian Northeast, as shown in Fig. 1. The Brazil
Northeast has 1.5 x 106 km2 of the area ranging between
1-18 °S and 35-47 °W; different meteorological systems
influence the region with distinct characteristics (Filho et
al. 2014). As stated in Liebmann et al. (2011), Kouadio et
al. (2012), in Northeast extreme events, are related to defi-
cit precipitation (semiarid region) or excess precipitation

Figure 1 - Spatial distribution of 69 precipitation stations used in the
study.
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(capitals or Coast regions). Nevertheless, the amount of
precipitation in Paraiba is related to various meteorologi-
cal systems: Intertropical Convergence Zone (ITCZ),
High-Level Cyclone Vortex (HLCV), Jet Streams.
According to Macedo et al. (2010), Paraiba is one of the
Brazilian states which presents an evident water scarcity,
as it has a semi-arid climate in most of its territory. The
data required for calculation of trends were obtained for a
total of 69 precipitation stations having a typical period
from 1962 to 2012. The data were collected from Instituto
Nacional de Meteorologia (INMET) and acquired by Uni-
dade Acadêmica de Ciências Atmosféricas (UACA-
UFCG). According to De Amorim Borges et al. (2014), it
is crucial to have access to reliable data, which are free
from artificial trends or changes. The following are the
procedures for data quality control. The first step was
assembling available data and selecting the candidate sta-
tion series for trend analysis based on the series length and
data completeness. The second step was the visual checks
of data plots, which reveal outliers as well as a variety of
problems that cause changes in the variance of the data or
the seasonal cycle. Thereon, rainfall gauges presented a
homogeneous spatial distribution around the state and
included all micro-regions of Paraiba state. The spatial
locations of the stations chosen are shown in Fig. 1.

2.2. Methodology
2.2.1. Mann-Kendall Test

The Mann-Kendall test had been formulated by
Mann (1945) as a non-parametric test for trend detection,
and the statistical distribution of test had been given by
Kendal (1975) for evaluating non-linear trend and the
change point. The test has been extensively used to detect
trends and spatial variation in hydroclimatic series, that is,
meteorological, hydrological, and agro-meteorological
time series. Many authors (Dias et al., 2013 and Saye-
muzzaman and Jha, 2014) have used this test to evaluate
the presence of significant climate trends in different parts
of the world.

A factor that affects trend detection in a series is the
presence of positive or negative autocorrelation (Yue et al.
2003; Novotny and Stefan, 2007). A positive autocorrela-
tion does not guarantee a series of being detected as hav-
ing a trend. By contrast, for negative autocorrelation, this
is inverse, where the trend is not detected. ρk , the auto-
correlation coefficient of a discrete-time series for lag-k,
can be expressed as

ρk =
Pn− k

k = 1 xt − xtð Þ xtþ k − xtþ kð Þ
Pn− k

t= 1 xt − xtð Þ
2
�
Pt= 1

n− k xtþ k − xtþ kð Þ
2 ð1Þ

where, xt and Var xtð Þ are the sample mean and sample
variance of the first n− kð Þ terms, respectively, and xtþ k
and Var xtþ kð Þ are the sample mean and the sample va-

riance of the last n− kð Þ terms, respectively. Besides, the
hypothesis of serial independence is tested by the lag-1
autocorrelation coefficient as H0 : ρ1 = 0×H1 : jρ1j≠0
using the following statistic

t= jρj

ffiffiffiffiffiffiffiffiffiffiffiffi
n− 2
1− ρ2

s

ð2Þ

where the statistic of the test has a Student’s t-distribution
with n− 2ð Þ degrees of freedom. If occurs that jtj> tα

2
, so

the null hypothesis is rejected at the chosen significance
level α.

The computational method for the Mann-Kendall
test considers the time series for n data points Ri and Rj as
two subsets of data where i= 1; 2;…; n− 1 and
j= iþ 1; iþ 2;…; n. The data values are measured as an
ordered time series. Thus, each data value is compared
with all subsequent data values. If it occurs that a data
value from a later period is higher than a data value from
an earlier period, statistic S is incremented by 1. Further, if
the data value from a later period is lower than a data
value from a previous period, statistic S is decremented by
1. The net result of all such increments yields the final
value of S.

Given a time series X = x1;…; xn that is ranked from
Ri =R1;…;Rn the statistic S is calculated as

S =
X

i< j
sgn Rj −Ri
� �

ð3Þ

each data point xi is taken as a reference point which is
compared with the rest of the data points xj such as

Zi = sgn xj − xi
� �

=
þ 1; if xj> xi
0; if xj = xi

− 1; if xj< xi

8
<

:
ð4Þ

Mann (1945) reported that when n< 8 statistic S is
approximately normally distributed with E Sð Þ= 0. The
variance is given as

Var Sð Þ=
1
18

[n n− 1ð Þ 2nþ 5ð Þ

−
Pm

i= 1 ti ið Þ i− 1ð Þ 2iþ 5)ð �

ð5Þ

wherein ti is considered as the number of ties up of sample
i, and the summation is overall ties. The standardized nor-
mal test statistic is calculated as

Z nð Þ=
S

Var Sð Þ½ �
1=2 ð6Þ
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Test statistics Zc is computed as

Zc =

S − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p ; if S> 0

0; if S = 0
Sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p ; if S< 0

8
>>>>><

>>>>>:

ð7Þ

Zc has a standard normal distribution. A positive value of
Zc implies an ascendant value of trend and vice-versa. A
significant level α is also utilized for testing either an
ascendant or descendant monotone trend, that is, a two-
tailed test. If Zc> Zα

2
, where α states the significant level,

so the trend is considered as significant.

2.2.2. Geostatistical techniques

Geostatistics has been defined by Matheron (1963)
as “the application of probabilistic methods to regiona-
lized variables,” which designates any function displayed
in real space. Different from conventional statistics, wha-
tever the complexity and the irregularity of the real phe-
nomenon, geostatistics searches to exhibit a structure of
spatial correlation. Geostatistical methods use semivario-
grams as a core tool to characterize the spatial dependence
in the property of interest (Ly et al., 2011). Geostatistics
uses the concept of random functions to build a model for
physical reality, bringing up these two contradictory cha-
racteristics random and structured. As reported by Heuve-
link et al. (1997), its necessary apparatus is variogram
analysis, which contains the study of the variogram func-
tion of a specific physical variable value or a water quality
parameter under study.

2.2.2.1. Kriging

Kriging is the term used by geostatisticians for a fa-
mily of generalized least-squares regression methods that
use available data in a specific search neighborhood to
estimate the values at unsampled locations (Isaaks, 1989;
Goovaerts, 1997). As stated in Berke (1999), it is based on
a linear spatial model for the data which specify a para-
metric spatial mean function and spatial dependence
structure. As stated by Isaaks (1989), kriging uses a vario-
gram model to characterize spatial correlation. A vario-
gram describes concerning variance how spatial variabi-
lity changes as a function of distance and direction.
Kriging uses statistical models and allows a variety of map
outputs, including predictions, prediction standard errors,
probability, among others. Today, some variants of kriging
are in general use, such as Simple Kriging, Ordinary Kri-
ging, Block Kriging, Universal Kriging, Co-Kriging, and
Disjunctive Kriging. Amidst the various forms of kriging,
Ordinary Kriging has been used extensively as a reliable
estimation method (Yamamoto, 2000). In short, Ordinary
Kriging is the primary form of kriging. It has been widely

used with rainfall data. Ordinary Kriging prediction is a
linear combination of measured values.

2.2.2.2. Semivariogram

Semivariogram is a convenient tool for the analysis
of the spatial dependence structure (Cressie, 1993). If the
spatial dependence exists, its degree is quantified by com-
paring the models to the experimental semivariogram.
Using Eq. 8 to compute experimental semivariogram from
the data under study is the only guaranteed way to
describe how semivariance changes with distance, deter-
mine which semivariogram model should be used. By
changing, both in distance and direction, a set of the sam-
ple (or experimental) semivariograms for the data is
obtained (Burrough, 1986).

γ hð Þ=
1

2N hð Þ
=
XN hð Þ

i= 1
Z(Xi½ Þ− Z Xiþ hð Þ]2 ð8Þ

where γ hð Þ is the semivariance as well as N hð Þ is the num-
ber of Z Xið Þ and Z Xiþ hð Þ, separated by a h vector.

A variety of theoretical models can be utilized to
adjust from the experimental semivariogram to the theore-
tical semivariogram. Notwithstanding, Johnston et al.
(2001) showed 11 theoretical models, such as Spherical,
Exponential, Gaussian, Linear, Circular, Tetraspherical,
Pentaspherical, Rational Quadratic, Hole Effect, K-Bes-
sel, and J-Bessel.

Applying the algorithm of weighted least squares
(WLS), these models were adjusted to the experimental
semivariogram, and the subsequent model parameters
were defined: nugget effect σ2, sill τ2þ σ2, and range φ. In
order to verify the existence of spatial dependence, the
spatial dependence index (SDI), proposed by Cambardella
et al. (1994), was applied, which is the ratio representing
the percentage of data variability explained by spatial
dependence.

The SDI is estimated as follows: SDI= τ2=τ2þ σ2½ �

100 being classified as strong SDI≤ 25%ð Þ, medium (25 <
SDI < 75%), and low (SDI ≥ 75%).

2.2.2.3. Cross-validation

Goovaerts (1997) explains that cross-validation
allows comparing the impact of interpolators among the
real estimated values, in which the model with more accu-
rate prediction is chosen. Cross-validation allows the
determination of models that provide the best prediction
(Johnston et al., 2001). The semivariogram model was
selected in consonance with the cross-validation technique
(Webster and Oliver, 2007). Faraco et al. (2008) recog-
nized the cross-validation criterion as the most adequate
for choosing the best semivariogram adjustment. The
semivariogram models were verified for each parameter
data set. The quality of prediction performances is asses-
sed by cross-validation. Cross-validation was conducted to
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evaluate the accuracy of Ordinary Kriging through some
statistical measurements as follows:
i) Mean Prediction Errors,

ME=
Pn

i= 1

^Z(ti) −Z tið Þ

h i

n ð9Þ

ii) Mean Standardized Prediction Errors,

MS =
Pn

i= 1

^Z(ti) − Z tið Þ

h i

σ̂ti
n

ð10Þ

iii) Root Mean Square Error,

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i= 1

^Z(ti) −Z tið Þ

h i
2

n

s

ð11Þ

iv) Average Standardized Error,

AE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1σ̂ti
n

r

ð12Þ

v) Root Mean Square Standardized Error,

RMSSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i= 1

^Z(ti) −Z tið Þ

h i

σ̂ti
n

v
u
u
u
t

ð13Þ

According to Johnston et al. (2001), to evaluate a
model that provides accurate predictions, the standardized
average (MS) should be close to 0, the square root of stan-
dardized mean error (RMSSE) should be close to 1. The
average standard error (ASE) and the root mean square
error (RMSE) and should be as small as possible. In order
to verify the best choice among J different fitted models
and their MS values close to 0 and RMSSE values close to
1. Santos et al. (2012) suggested Error Comparison Index
(ECI), which can be calculated as follows:

ECIi =AiþBi ð14Þ

where,

Ai =
ABS MSð Þi

MAX ABS MSð Þð Þ
; when MAX ABS MSð Þð Þ> 0

1; when MAX ABS MSð Þð Þ= 0

8
<

:
ð15Þ

Bi =
ABS RMSS− 1ð Þi
MAX ABS MSð Þð Þ

; when MAX ABS RMSS − 1ð Þð Þ> 0

1; when MAX ABS RMSS − 1ð Þð Þ= 0

8
<

:
ð16Þ

The best-fitted model among J different models is one that
presents the lowest ECI value.

3. Results and Discussion
In this section, we present trend analysis results for

monthly precipitation. To choose the best-fitted model that
would predict the trend of precipitation in Paraiba, we used
cross-validation. The cross-validation that examines the
validity of fitted models and parameters of semivariograms
for precipitation parameters are given in Table 1. Data ana-
lysis and Mann-Kendall test, spatial trends, experimental
semivariograms, and geostatistical analysis were done by
using the R Development Core Team (Team, 2013).

According to Owolawi and Afullo (2007), Sana et
al. (2014), the RMS statistic is widely used to select a
semivariogram model or an implementation method.
Along with RMS, the ASE statistic is used to validate sta-
tistical models. Therefore, the knowledge of obtaining the
lowest ASE value and closest statistic RMS benefits in
choosing the best model. On the verification by RMSS,

MS, ASE and RMS statistics may generate a small dis-
traction; we used the Error Comparison Index (ECI) sug-
gested by Santos et al. (2012) because it helps compare the
statistics used in cross-validation process and chose the
best geostatistical model by the lowest ECI value. One can
note from Table 1 that the model selection, which presents
the best semivariogram fit, may include all errors of prog-
nosis in an integrated manner.

Before selecting the proper spatial model, it was
necessary to choose the purpose of it. Furthermore, the
characteristics of the rainfall phenomenon must be ana-
lyzed, and the assumptions of the technique. The rainfall
amounts over Paraíba are significantly influenced by sea-
sonality, geographical position, and topography. The
monthly rainfall maps illustrated that the spatial distribu-
tion of the rainfall is reasonably heterogenic over each
month analyzed. The different models chosen by each
month demonstrated the high spatiotemporal variability of
the rainfall in Paraíba. The variogram’s choice was due to
the statistical criterion described in the methodology and
presented in Table 1.
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As stated in Ly et al. (2013), the successful perfor-
mance of a method depends on various components, in
particular, temporal and spatial resolutions of data and
parameters of the model, such as the semi-variogram in
the case of kriging. Figure 2 shows the trend interpolation
map for January-April adjusted according to ECI results
shown in Table 1. Carvalho et al. (2004) emphasized the
influence of the South Atlantic Convergence Zone
(SCAZ) over the maximum values of precipitation in the

Northeast of Brazil. The intraseasonal anomalies in pre-
cipitation are related to anomalies of the Pacific Ocean.

In March, it is conceivable that there is a conside-
rable concentration of trends between Borborema and
Agreste and not so significant in the North of Mata. This is
related to the end of the rainy season between January and
February. In April, the interpolation map shows increasing
trends in the North and West of Sertão, as well as trends in
the North and South of Mata with significant influence

Table 1 - Values of ME, RMS, MS, RMSS, ASE, spatial dependence index (SDI), and error comparison index (ECI) for trends of precipitation between
January-December.

Month Model ME RMS MS RMSS ASE SDI ECI

Jan Spherical 0.0034 0.9410 0.0038 0.9991 0.950 41.29 0.1624

Circular � 0.0022 0.9369 � 0.0011 0.9990 0.946 42.79 0.005

R. Quadratic 0.0116 0.9530 0.0069 0.9813 0.980 39.95 0.4986

Feb Pentasph. � 0.0146 0.9536 � 0.0114 1.0250 0.920 34.08 0.6012

Spherical � 0.0148 0.9573 � 0.0093 1.0391 0.912 43.24 0.8033

Tetraspherical � 0.0184 0.9555 � 0.0143 1.0317 0.917 39.07 0.7599

Mar Gaussian � 0.0013 1.2012 0.0037 0.9998 1.199 53.49 0.1528

Spherical � 0.0075 1.1362 � 0.0003 0.9774 1.165 38.21 0.4617

Tetraspherical � 0.0076 1.1172 0.0001 0.9786 1.147 33.33 0.4284

Apr Gaussian � 0.0600 1.2102 � 0.0417 0.9903 1.228 48.03 1.0453

Spherical � 0.0491 1.2082 � 0.0344 0.9924 1.223 27.40 0.8578

Tetrasph. � 0.0327 1.2097 � 0.0227 0.9977 1.219 16.80 0.5380

May K-Bessel � 0.0159 0.9927 � 0.0086 1.0011 0.986 0 0.2343

J-Bessel � 0.0163 0.9995 � 0.0124 1.0066 1.005 0 0.4049

Tetraspherical � 0.0417 1.0229 � 0.0308 1.0445 0.979 2.727 1.3732

Jun Rat. Quadratic � 0.0082 2.0497 � 0.0042 1.0248 1.978 26.36 0.3872

K-Bessel 0.0025 2.0516 0.0014 1.1007 1.831 30.17 0.8972

Pentaspherical 0.0106 2.0539 0.0054 1.0550 1.921 22.30 0.6894

Jul Spherical � 0.0261 0.9658 � 0.0214 0.9832 0.988 52.34 0.8500

Circular � 0.0349 0.9628 � 0.0298 0.9889 0.978 52.33 1.0150

Pentasph. � 0.0186 0.9664 � 0.0144 0.9686 1.004 53.08 0.8411

Aug Gaussian � 0.0021 1.3396 � 0.0003 1.0479 1.275 60.01 0.6077

Exponential 0.0112 1.2936 0.0087 1.0437 1.236 31.59 1.2178

Spherical 0.0062 1.3228 0.0055 1.0558 1.250 50.11 1.1135

Sep J-Bessel 0.0043 1.1225 0.0037 1.0547 1.065 51.11 1.0730

Rat. Quadratic 0.0133 1.1327 0.0104 1.0763 1.053 36.05 1.9935

Tetrasph. � 0.0032 1.1208 � 0.0028 1.0407 1.078 39.34 0.8071

Oct Gaussian � 0.0241 1.4932 � 0.0143 1.0717 1.391 46.52 1.4122

Exponential � 0.0269 1.5077 � 0.0141 0.9919 1.524 67.31 0.6617

Spherical � 0.0283 1.5061 � 0.0158 1.0514 1.437 53.15 1.2344

Nov Exponential � 0.0054 1.0956 � 0.0040 1.0416 1.047 51.55 1.1176

Spherical 0.0004 1.0790 0.0024 1.0323 1.043 62.67 0.8031

Circular � 0.0049 1.0825 � 0.0023 1.0367 1.041 63.86 0.8792

Dec Circular 0.0311 1.1372 0.0206 1.0749 1.039 36.77 1.4780

Rat. Quadratic 0.0254 1.1339 0.0184 1.0071 1.110 55.33 0.7735

Hole Effect 0.0349 1.1146 0.0216 1.1086 0.996 41.18 1.8271
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over the coast. In the study of Rodrigues et al. (2011), it
was verified, regarding seasonal rainfall distribution, that
increasing trends take place during March, April and May
(autumn in South Hemisphere) caused by the influence of
El Niño and La Niña phenomena.

Figure 3 displays the trend interpolation map for
May-August for Paraíba. Rodrigues et al. (2011) observed
negative trend intensity during June, July and August, not
the periods of extreme events. In July, there was a con-
centration of an increasing trend almost in the entire
region further west of Sertão, and large displacement in
the southernmost of Borborema. Another movement of
trends can be visualized from the North of Agreste through

North and South of Mata addressing the coast. In August,
there was a considerable concentration of the increase of
trends in the South Central Borborema region with a sen-
sible movement to the Agreste region.

Figure 4 shows the trend interpolation map for Sep-
tember-December. In October, for the first time, there was
a predominance of increasing trends in the entire range of
Paraíba, that is, much of Sertão, Borborema, and North of
Agreste region. This predominance was also described by
Gomes et al. (2014), who detailed the displacement of
precipitation associated with various meteorological sys-
tem activities, such as ICTZ, cold fronts. As stated in Uvo
et al. (1998), when the ITCZ stays longer in the south,

Figure 2 - Spatial variation of monthly rainfall trends (mm/month) for
Paraiba from 1962 to 2012 (January-April).

Figure 3 - Spatial variation of monthly rainfall trends (mm/month) for
Paraiba from 1962 to 2012 (May-August).
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heavy rains occur in the northeast of Brazil, but when it
does not reach its most southern position (relatively to the
northeast) droughts appears in the northeast of Brazil. The
anomalies in the ITCZ shifts are mainly produced by var-
iations in the SST interhemispheric gradient in the Atlantic
Ocean.

The mixed existence of positive and negative trends,
along with the differences in the results referring to the
specifically observed time interval, does not allow conclu-
sions to be drawn of a general tendency for the investi-
gated large-scale area. The illustrated analysis describes
the observational evidence of potential dynamics in cumu-
lative, monthly precipitation, and they have been applied
at the point scale to each selected gauged site.

Boulanger et al. (2005) focused their study on the
understanding of the long-term trends of precipitation
through monthly data analyzing how ENSO has influ-
enced the region. The study showed that the trend is char-
acterized by spatial patterns that differ from month to
month. The trends presented a monthly dependence with
its spatial characteristics. According to Barros et al.
(2008), it was not possible to consider ENSO events sepa-
rately to calculate annual or seasonal trends directly.
Hence, the authors evaluated linear trends of precipitation
for every month of each ENSO event. The magnitude of
the trends was large, positive and statistically significant
over the studied area.

Liu et al. (2016) studied the magnitude and trends in
precipitation in response to global warming in order to
identify the primary controlling mechanisms of the trends.
The magnitude of the trends was displayed through regio-
nal maps of precipitation. The authors identified that the
increasing trend of one month is the key contributor to the
increasing trend of regional annual precipitation in the
study area. Wilby and Dawson (2013) showed that regio-
nal climate models are often required to understand the
climate information through water resources management
is of a spatial scale much finer than that provided by global
models.

4. Conclusions
In this paper, we analyze rainfall trends over the

entire Paraíba state, where significant changes in rainfall
trends have occurred during all months. It is noticeable
that rainfall trends vary across the state for many reasons
(e.g., topography, forest cover, ITCZ, distance from the
coast, among others) The impact of possible changes in
rainfall trend intensity adds complexity to the implications
of our results. Average rainfall trend levels may vary
slightly, but if rain falls only at one time in the seasonal
calendar or too late or too early in the agricultural cycle,
then everything which is related may suffer.

For a better understanding of trends, monthly rainfall
trend maps have been generated by following a methodol-
ogy that includes geostatistical techniques. Geostatistical
algorithms were applied to estimate rainfall trend patterns
from data recorded at 69 rainfall stations distributed across
the state. The analysis for all rainfall stations reveals
increasing (decreasing) trends that, associated with public
policies, facilitate an overview of the scarcity of resources
to understand the rainfall phenomenon and the low rainfall
level during the drought period, which affects most parts
of the State.

It is worthwhile emphasizing that the trend results
presented in this study were not sufficient to approve a cli-
matic change in Paraiba. Future studies are needed to
address the issue of trend attribution and to attempt to

Figure 4 - Spatial variation of monthly rainfall trends (mm/month) for
Paraiba from 1962 to 2012 (September-December).
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establish a linkage between climate change and observed
hydrologic trends.
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