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Abstract
The use of technology and planning in agricultural production is essential in Northeastern Brazil, which is the region of
the country that most suffers from water shortage. For the best irrigation management, it is necessary to know the
potential evapotranspiration rate for water control in order to increase productivity. There are several direct and indirect
methods for estimating evapotranspiration, but the standard method recommended by the United Nations Agriculture
Organization (FAO) is the Penman-Monteith (PETpm) method because it has higher accuracy than other methods.
However, it is a difficult method to be used due to the need for a large number of meteorological elements. In this con-
text, the objective of this study was to estimate potential evapotranspiration by the Penman-Monteith method in the
micro-region of Baixo Parnaíba in Maranhão state using artificial neural networks. Agro-meteorological data were col-
lected daily over 34 years, from 1984 to 2017, and these data were obtained from the NASA/POWER website. Subse-
quently, liquid radiation and potential evapotranspiration were calculated by the Penman-Monteith standard method
(1998). To predict potential daily evapotranspiration, the Multi-Layer Perceptron (MLP) was chosen, which is a tradi-
tional Artificial Neural Network. The period that presented a higher evapotranspiration index was the same one that
showed precipitation with a lower volume and higher temperatures. The artificial neural network model that best adap-
ted to estimate PETpm was MLP 2-5-1. It is concluded that artificial neural networks estimate with accuracy and preci-
sion the Penman-Monteith daily potential evapotranspiration of the Lower Parnaiba in Maranhão, and potential
evapotranspiration can be estimated by the Penman-Monteith method using neural networks with inputs of air tempera-
tures.

Keywords: climatic elements, artificial intelligence, modeling.

Estimativa da evapotranspiração potencial no estado do Maranhão utilizando
redes neurais artificiais

Resumo
O uso de tecnologia e planejamento na produção agrícola é essencial, principalmente, no Nordeste do Brasil, que é a
região do país que mais sofre com a escassez hídrica. Para o melhor manejo da irrigação torna-se necessário o conhe-
cimento da taxa de evapotranspiração potencial para o controle e economia de água aumentando a produtividade. Existe
vários métodos diretos e indiretos para a estimativa de evapotranspiração, mas o método padrão recomendado pela Orga-
nização das Nações Unidas para Agricultura (FAO) é o método Penman-Monteith (ETPPM) por ter uma alta precisão em
relação aos demais métodos. Entretanto, é um método difícil de ser utilizado devido à necessidade de uma grande quanti-
dade de elementos meteorológicos. Diante desse contexto, objetivou-se estimar a ETPPM na microrregião do Baixo Par-
naíba maranhense utilizando redes neurais artificiais, visando facilitar a utilização deste método tão acurado. Os dados
agrometeorológicos coletados foram de 34 anos, a partir do ano de 1984 até o ano de 2017 em escala diária, obtidos do site
NASA/POWER. Posteriormente, foram calculadas a radiação liquida e a evapotranspiração potencial pelo método
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padrão Penman-Moteith (1998). Para prever a evapotranspiração potencial diária foi escolhida a Perceptron Multi-Layer
(MLP), que é uma Rede Neural Artificial tradicional. O período que apresentou ummaior índice de evapotranspiração foi
o mesmo que apontou precipitações com um menor volume e temperaturas elevadas. O modelo de rede neural artificial
que melhor se adequou para estimativa da ETPPM foi a MLP 2-5-1. Com isto, conclui-se que as redes neurais artificiais
podem ser utilizadas para a estimativa da ETPPM diária do Baixo Parnaíba maranhense. É possível estimar a evapo-
transpiração potencial por Penman-Monteith usando redes neurais com inputs de temperaturas do ar.

Palavras-chave: elementos climáticos, inteligência artigicial, modelagem.

1. Introduction
Water shortage in the Northeast region of Brazil is a

great problem compared to other regions of the country,
and for the expansion of the agricultural sector and the
rational use of water it is essential to apply technology and
planning for the most efficient irrigation to occur in this
region (Andrade Junior et al., 2018; Freitas et al., 2018).
Furthermore, increased temperature and reduced pre-
cipitation causes increased water demand for crops (Gava
et al., 2015) and damages agricultural production.

Establishing the water requirements of a crop in its
different stages of development is of fundamental impor-
tance for irrigation management to acheive good pro-
ductivity and rational water use (Costa et al., 2018). For
this to occur it is necessary to know the evapotranspiration
rate of the plant in order to irrigate with the correct
amount, with the goal of increasing production without
waste of water.

Evapotranspiration is the process in which water
from the earth's surface evaporates into the atmosphere
together with the transpiration of plants, being an impor-
tant part of the hydrological cycle (Alves et al., 2017). The
process of evapotranspiration occurs not only from surface
water, but also involves the loss of soil water and moist
vegetation in the form of water vapor and the loss of water
from animals (perspiration) and plants through transpira-
tion. Thus, the study of daily evapotranspiration rates is
very useful for establishing water requirements in agri-
culture (Martins and Rosa, 2019).

To estimate the amount of water required by a plant
it is necessary to calculate the potential evapotranspira-
tion, and this can be done by several empirical methods
(Andrade Junior et al., 2018). The Food and Agriculture
Organization (FAO) recommends Penman-Monteith as a
standard method, since it is considered a more accurate
model (Allen et al., 1998). What makes it difficult to use is
the need for various climatic elements, such as relative
humidity, solar radiation, air temperature, and wind speed.
This method requires a larger number of weather variables
and these elements are often not available due to the small
number of weather stations available in many regions, and
when these are present they may contain insufficient data
(Alves et al., 2017). In the literature there are other
empirical methods with fewer requirements for climatic
variables (Silva et al., 2018, Caporusso and Rolim, 2015),
such as Hargreaves-Samani, Solar Radiation, Blaney-

Criddle and Priestley-Taylor (Allen et al., 1998), but these
methods oftentimes have large deviations. One way to
accurately estimate PETpm is by using artificial intelli-
gence, such as through artificial neural networks (ANN).

In the last decade, intelligent computational models
have been developed as alternative methods to estimate
potential evapotranspiration (Yassin et al., 2016), and
ANN is one of the techniques that can be used. ANN are
mathematical models that simulate the neural structures of
the human brain and build computational intelligence
through learning and generalization (Di Domenico et al.,
2017). This method has a nonlinear structure that captures
the most complex characteristics of the data, which is dif-
ficult to achieve using other traditional statistical techni-
ques (Conti et al., 2016; Nunes, 2018).

In recent years, ANN applications have been used in
the estimation of PET and the results suggest that artificial
neural networks are more accurate than conventional
methods (Dai et al., 2009; Abdullahi et al., 2017). How-
ever, the use of empirical models of potential evapo-
transpiration that use only air temperature as input data is
relevant in regions with a shortage of climatic data, and in
the commercial market there are devices that can measure
this variable with low cost, such as thermo-hygrometers.

Water shortage and growing demand for food supply
increase the importance of developing improved methods
for estimating potential evapotranspiration (Patil and
Deka, 2016). In this context, the objective of the study was
to estimate potential evapotranspiration by the Penman-
Monteith method in the micro-region of Baixo Parnaíba in
the Maranhão state using artificial neural networks.

2. Material and Methods
The study area was in the Baixo Parnaíba micro-

region in the state of Maranhão, composed of 16 localities
(Fig. 1 and Table 1). This region has high potential for
farming due to great availability of soils and water resour-
ces.

The historical data series includes minimum, max-
imum, and mean air temperature (° C), global radiation
(MJ m2 day), precipitation (mm), wind speed (m s−1), and
relative humidity (%) from 34 years (1984 to 2017) of
daily measurements. Climatic data were collected from the
NASA/POWER website (Stackhouse et al., 2017). This
data platform has a spatial resolution of 0.5° latitude-lon-
gitude.
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We calculated the potential evapotranspiration using
the Penman-Monteith (Allen et al., 1998) method, accord-
ing to (Eqs. (1-8)).
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where PET - Potential Evapotranspiration, in mm day−1;
Rn - net radiation, in MJ m−2 day−1; G - soil heat flux, in
MJ m−2 day−1; T - mean daily air temperature, in °C; γ -
Psychometric constant (0.063 kPa °C−1); Δ - is the
humidity pressure curve decline at the air temperature, in
kPa °C−1; U2 - Average daily wind speed at 2 m, in m s−1;

Figure 1 - Location of the Baixo Parnaíba microregion in Maranhão state, Brazil.

Table 1 - Localities of the Baixo Parnaíba microregion with geographical
coordinates and altitude.

Localities (Maranhão) Latitude (°) Longitude (°) Altitude (m)

Água Doce do Maranhão 2°50' S 42° 7' W 16

Anapurus 3°28 S 43°12' W 91

Araioses 2°53' S 41°54' W 16

Belágua 3° 9' S 43°30' W 72

Brejo 3°39' S 42°47' W 61

Chapadinha 3°44' S 43°21' W 104

Magalhães de Almeida 3°23' S 42°12' W 38

Mata Roma 3°37' S 43° 6' W 77

Milagres do Maranhão 3°32' S 42°40' W 100

Santa Quitéria do Maranh 3°29' S 42°33' W 30

Santana do Maranhão 3° 6' S 42°24' W 37

São Benedito do Rio Preto 3°19' S 43°31' W 60

São Bernardo do Maranhão 3°22' S 42°25' W 54

Tutóia 2°58' S 42°23' W 48

Urbano Santos 3°12' S 43°23' W 68
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ea - humidity partial pressure, in kPa; es - humidity
saturation pressure, daily average, in kPa; Tmax - Max-
imum temperature (°C); Tmin - Minimum temperature
(°C); RH - relative humidity (%); BOC is the shortwave
radiation balance (MJ m−2 day−1) and BOL is the long-
wave radiation balance (MJ m−2 day−1); Rs is the incident
solar radiation (MJ m−2 day−1); α is the coefficient of
reflection of vegetation; Rso is the incident solar radiation
in the absence of clouds (MJ m−2 dia−1), and Ra = solar
radiation at the top of the atmosphere (MJm−2dia−1).

Daily minimum, mean, and maximum air tempera-
ture and potential evapotranspiration data were randomly
divided into two sets of data values, one for network train-
ing (139,000) and the other to evaluate the validation of
the trained network (59,613), with a ratio of about 70% of
the data for training and 30% for validation, respectively.

The definition of the architecture of networks is the
number of neurons per layer and number of layers, and is
optimized by the Intelligent Problem Solver tool (IPS) of
the Statistica 7 software (Statsoft, 2007). The training
itself and the verification of the network and validation of
the process were performed by IPS.

To predict daily PETpm, the Perceptron Multi-Layer
(MLP) was chosen, which is a traditional Artificial Neural
Network that has three stages: input, processing, and out-
put (Fig. 2). Numerous topologies and variations were tes-
ted between neurons in the intermediate and outer layers
until the most accurate ones were obtained. The ANN
input data were the maximum, mean, and minimum air
temperatures (°C).

A layered MLP, with H hidden neurons, and an out-
put neuron can be expressed by Eq. (9) in mathematical
language.

Y = SK
XH

h= 1
OhWhWo

� �
ð9Þ

where Y is the RNA output;

Oh is the output value of the Hth occult neuron, with
Oh given by (Eq. (10)):

Oh= S k
XH

h= 1
XWnhWoh

� �
ð10Þ

where Xn is the RNA output; WNh and Wh are the synap-
tic weights between hidden neurons and RNA outputs and
inputs, respectively, Xo is 1, and Wo and Woh are initial
values of RNA training algorithms.

The activation function is the logistic sigmoid given
by (Eq. (11)):

Sk xð Þ= 11þ e− x ð11Þ

where x is the sample mean that forms the training set.
The following statistical indices were used to assess

the performance of the RNA: 1) Pearson correlation (r); 2)
Coefficient of determination (R2); 3) Wilmott's agreement
(d); 4) Camargo and Sentelhas Confidence Index (C)
(1997); 5) Random error (Ea); 6) Systematic error (Es); 7)
Maximum absolute error (EAmax); 8) Middle square error
(MSE); 9) Middle root square error (RMSE); 10) Mean
absolute error (MAE); 11) Mean absolute percentage error
(MAPE) (Eqs. (12-22)).

r=
Pn

i= 1 YOBSi − YOBS
� �

× YESTi − YEST
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1 YOBSi − YOBS
� �2

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i= 1 YESTi − YEST
� �2

q

ð12Þ

R2 adjusted= 1−
1−R2ð Þx n− 1ð Þ

N − k− 1

� �

ð13Þ

d= 1−
PN

i= 1 YOBSi − YESTið Þ
2

PN
i= 1 jYESTi −Y j þ jYOBSi − Y j
� � ð14Þ

c= r× d ð15Þ

Ea=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i= r YESTi −Y
� �2

N

s

ð16Þ

Es=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i= 1 YOBSi − Y
� �2

N

s

ð17Þ

ME=max jYOBSi − YESTijð Þ
n
i= 1 ð18Þ

Figure 2 - Representation of a simplified Multilayer Perception (MLP)
neural network.
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where Yesti: Variable estimated by RNA; Yobsi: Variable
observed; N: Number of data; k: Number of independent
variables in the regression.

The criterion adopted to interpret performance by
the Camargo and Sentelhas confidence index (1997) can
be observed in Table 2.

3. Results and Discussion
The mean values of maximum, minimum and mean

air temperatures in the 16 localities in the period 1984-
2017 were 32 °C, 24 °C, and 28 °C (Fig. 3) respectively.
The mean maximum temperature of the region occassion-
ally reached almost 40 °C. In the spatial evaluation, the
lowest minimum air temperatures occurred in the South-
ern region, with values ranging from 22.69 °C to 22.99 °C.
However, the highest maximum air temperature was pre-
dominant in Araioses, 30.45 °C (Fig. 4).

The highest rainfall occurred in the period from
March to April and the lowest in the period from August
to November (Fig. 5). In March, the accumulated monthly
rainfall was 312 mm, while the month of September had
12 mm. The months that had a higher precipitation rate are
considered the rainy season and months with lower rain-
fall volumes are considered the dry season in the micro-
region. Passos et al. (2016), in a study of water balance
and climatic classification for the Chapadinha-MA region,
which is one of the cities of the micro-region observed in

the current study, described two well-defined seasons, the
rainy season from January to May, with 84% of total
annual precipitation in these months, and the dry season
from June to December which had 16% of total rainfall.

The increase in air temperature in the Baixo Par-
naíba region occurred in August. Between February and
July, the mean monthly air temperature was 26 °C. In the
period from April to October, there was an increase in
PET in the micro-region of Baixo Parnaíba (Fig. 6), and
the lowest PET of the region occurred in April. October
had the highest potential evapotranspiration value of the
region, and the period from August to October presented a
high PET index which coincided with a lower precipita-
tion volume. Freitas et al. (2018) observed that the months
that presented higher precipitation also had the lowest rate
of PET, and this was due to the occurrence of rain events
wherein air masses create a barrier that hinders the inci-
dence of solar radiation, and as a result evapotranspiration
rates are reduced.

The arrangement of the MLP artificial neural net-
work that best adapted to estimate PETpm was MLP 2-5-
1, that is, with two input variables, five neurons in the hid-
den layer and one output. Among the models presented,
MLP 2-5-1 was the one that was most able to express in a
simplified way all the variation of PETpm. This is because
this multi-layered RNA (MLP) method has a more com-
plex (non-linearly separable) solution than methods with
only one layer that have the ability to solve only linearly-
separable problems. Tabari and Talaee (2013) indicated
that the main difficulty in applying the PM equation is due
to the requirement for a wide variety of meteorological
data that must be used as input for the calculation of PET.
In addition, PET is non-linear, which would make it diffi-
cult to accurately affect changes in climatic parameters.
Therefore, the use of MLP neural network techniques may
have better performance, as these can solve separable non-
linear equations.

Table 2 - Confidence Index (C) established by Camargo and Sentelhas
(1997).

Value (C) Performance

> 0.85 Excellent

0.76 to 0.85 Very good

0.66 to 0.75 Good

0.61 to 0.65 Satisfactory

0.51 to 0.60 Poor

0.41 to 0.50 Bad

< 0.40 Very bad

Figure 3 - Boxplot with the maximum, minimum and mean daily air
temperature data of the Baixo Parnaíba micro-region in the period 1984-
2017. Tmax is maximum air temperature; Tmin is minimum air tempera-
ture and Tmed is mean air temperature.
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In the sensitivity analysis of the input variables of
the artificial neural network, the maximum and minimum
air temperatures were the highest sensitivities variables in
the estimate of PETpm, respectively (Table 3). The maxi-
mum air temperature was the one with higher sensitivity,
while the minimum air temperature was next in the sensi-
tivity analysis, and the mean temperature did not present
sensitivity in the model, probably because it was corre-
lated with these variables.

Statistical indices show that MLP can predict
PETpm with accuracy. Both in training and the MLP test,
MAPE was low and R2 was elevated (Table 4). For exam-
ple, Pearson's correlation between the actual PETpm data
and those estimated by the MLP was 0.955 and 0.959 for
training and testing, respectively. The accuracy of the
model was good because the value of the Root Mean
Squared Error (RMSE) was only 0.331mm and 0.327 mm
for training and testing, respectively.

In the training of the network, it was able to explain
91.2% of the variation of the data of the actual PETpm
using temperature data as input to the artificial neural net-
work (Fig. 7). The average sensitivity of Penman-Mon-
teith's daily PET estimated by the neural network was
0.8064 mm day−1. The training sensitivity of 0.8064 mm

Figure 4 - Spatial variability of maximum, minimum and mean tempera-
tures in the Baixo Parnaiba micro-region in the period 1984-2017. Tmax
is maximum temperature; Tmin is minimum air temperature and Tmed is
the mean air temperature.

Figure 5 - Mean monthly precipitation and air temperature values of the
Baixo Parnaíba micro-region in Maranhão state, Brazil.

Figure 6 - Mean values of Penman - Monteith Potential evapotranspira-
tion of the Baixo Parnaiba Maranhense Micro-region.

Table 3 - Sensitivity analysis for maximum, mean and minimium air
temperatures.

TMax TMin TMed

Ratio 1.510989 1.148545 −

Rating 1st. 2nd. −

680 Meneses et al.



day−1 with the mean daily PET per neural network of
1 mm represents an increase of 0.8064 mm for every
1.40 mm of Penman-Monteith daily PET. Assuming the
daily Penman-Monteith PET value of zero, the daily PET
by neural networks will be 0.1242 mm day−1. Training is
one of the important stages of neural networks because
adjustments are made to the weights so that the network
can correctly organize the inputs and that the result corres-
ponds with the desired value for each input vector.

In the validation of the PETpm data, the neural net-
work was able to explain 92% of the total variation of the
observed data. In general, there was an underestimation of
MLP in the estimation of PETpm in all periods (Fig. 8).
The results of the validation (generalization) of the model
were similar to those of training. Validation separates the
dataset into a training set that is used only to derive para-
meters that minimize the loss function and a validation set
that is used only to evaluate model performance (Jahn,

2018). After each interaction, the training session is inter-
rupted to verify the error.

4. Conclusions
Artificial neural networks can accurately estimate

the daily potential evapotranspiration by the Penman-
Monteith method for the Baixo Parnaíba region in Mara-
nhão. This study has shown that it is possible to estimate
potential evapotranspiration by the Penman-Monteith
method using neural networks with inputs of only air tem-
peratures. Additionally, the artificial neural network
underestimated potential evapotranspiration by the Pen-
man-Monteith method, both in training and in testing.
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