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ABSTRACT

Purpose: To analyze and compare the reactions at the interface between the composite, composed of 
fragmented heterologous mineralized bone matrix (MOMHF) and polymethylmethacrylate (PMMA), 
and the rabbit’s tibias, through macroscopic evaluation and scanning electron microscopy (SEM) in 
different periods. Methods: In this study, 12 New Zealand adult rabbits were used (E1: n = 3, E2: n = 3, 
E3: n = 3 and E4: n = 3). They had the right tibial defects filled with composite and were evaluated 
immediately after surgery and at 30, 60, 90, and 120 days. Results: The composites were incorporated 
and integrated into the recipient beds in 100% of the cases, defined by the MOMHF osseointegration and 
the PMMA fibrointegration, with no sign of infection, migration, or rejection. Conclusion: The behavior 
of the composites in the recipient beds demonstrates that these biomaterials have the potential to be 
used in bone defect repairs, offering, thus, better quality of life to the orthopedic patient.

Key words: Bone-Implant Interface. Polymethylmethacrylate. Bone Matrix. Bone Cements. 
Osseointegration. Tibia. Rabbits.

*Corresponding author: silviohfreitas@usp.br | (55 19)3565-6881
Received: Mar 13, 2021 | Review: May 15, 2021 | Accepted: Jun 11, 2021
Conflict of interest: Nothing to declare
Research performed at Veterinary Medicine Department (ZMV), Faculty of Animal Sciences and Food Engineering, 
Universidade de São Paulo (USP), Pirassununga (SP), Brazil.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR
https://doi.org/10.1590/ACB360704
https://orcid.org/0000-0001-7595-0367
https://orcid.org/0000-0002-4053-9161
https://orcid.org/0000-0002-9332-8026
https://orcid.org/0000-0002-6968-870X
https://orcid.org/0000-0002-4275-0358
https://orcid.org/0000-0001-8200-3341
https://orcid.org/0000-0002-8810-2815
https://orcid.org/0000-0001-7634-4975
https://orcid.org/0000-0002-2259-9910
https://orcid.org/0000-0002-8224-5022
mailto:silviohfreitas@usp.br


Integration of heterologous bone matrix associated with polymethylmethacrylate in induced tibial bone defects: an experimental study 
in rabbits

2 � Acta Cir Bras. 2021;36(7):e360704

Introduction
Orthopedic injuries play a prominent role not only 

in veterinary medicine, but also in human medicine. 
Therefore, it is not rare for orthopedists to come across 
bone disorders that require reconstitution. The best clinical 
option for treating bone defects is to use an autologous 
bone graft, as it accelerates bone healing. However, there 
is a drawback of increasing morbidity, pain, surgical and 
anesthetic time and the risk of injuring normal structures, 
in addition to limited availability, which may be insufficient 
for the repair of large bone defects. Because of these 
drawbacks, other types of bone substitutes, which fill 
or accelerate the bone tissue formation process, have 
been researched1,2. 

Natural bone implants can be originated from animals 
of the same or different species. Although biologically 
inferior to the autograft, they are used for orthopedic 
repair with good results. The advantage of this alternative 
is the establishment of a bone tissue bank, with a 
single donor providing a significant amount of tissue. 
Bone defects can also be completely and efficiently filled 
with biomaterials, from natural or synthetic biomimetic 
sources, such as calcium phosphate cement, hydroxyapatite, 
polymethylmethacrylate (PMMA) and more3-6.

The implants, both natural and synthetic, should 
promote osteoinduction, characterized by bone tissue 
formation from osteoprogenitor cells, osteoconduction, 
defined by bone growth by apposition of underlying tissue, 
furthermore being biocompatible, non-carcinogenic, non-
antigenic, and with a low inflammatory effect7-12.

The clinical option to repair the bone defects with 
natural and synthetic biomaterials is highlighted because 
of their osteoinductive and osteoconductive properties. 
Moreover, they can provide mechanical support, are easy 
to acquire, have low cost, do not require any specific tool 
for the preservation process, and can be produced to fill 
different sizes of bone defects. However, their manufacture 
and/or modeling are hard and, for extensive repairs, they 
need specialized resources and infrastructure1,2,6.

On the other hand, PMMA is almost a bioinert 
biomaterial, has low cost, easy moldability, high availability, 
excellent mechanical and physical properties with 
functional characteristics (gradient, porosity, permeability, 
impregnation) for in-situ use during the surgical act5,13,16,26. 

Studies using fragmented heterologous mineralized 
bone matrix (MOMHF) associated with PMMA to fill 
bone defects in rabbit tibias have already been carried 
out and shown quite satisfactory results2,5,9. In addition, 
during destructive mechanical tests, this composite has 
shown resistance similar to the one of bone tissue16. 

However, high-resolution morphological analysis of the 
interface between this biomaterial and the receiving 
bed is necessary to observe adaptations and properties 
of inorganic or organic tissues with different densities, 
which is a fundamental factor to understand the local 
bone biology15,16,20.

Introduced in 2002, the tibial tuberosity advancement 
(TTA) technique is used to treat cranial cruciate ligament 
insufficiency in dogs, with excellent outcomes. After tibial 
tuberosity osteotomy using an oscillating saw, a predefined 
size wedge-shaped titanium cage is placed in the bone 
defect and maintained with plate and screws to provide 
stability to the tibiofemoral joint28. Since the TTA technique 
development, some modifications were carried out 
regarding the cage format and composition and also its 
types of fixation, with good results compared to the original 
technique28,29. As the tibial tuberosity is under constant 
action of several forces, the biomaterial intended to fill 
the bone defect. In addition, it must be biocompatible and 
have mechanical resistance similar to the bone tissue16, 
so it will not collapse into the defect bone during the 
incorporation and integration period. 

It was proposed in this study to prepare a composite 
material for bone defect filling, composed of a MOMHF 
and PMMA, apply it to rabbits tibial defects, and analyze 
it for osseointegration by observing the reactions into the 
interface between the composite and the host bone bed.

Methods

This study was approved by the Ethical Committee on 
Animal Use of the Universidade de Cuiabá (CEUA/UNIC), 
number 015/2014, according to National Health Council 
Resolution no. 196/96.

Twelve New Zealand breed rabbits, white variety, 
males, 3 months old, weighing between 3 and 4 kg, were 
divided in four experimental groups: E1 (30 days, n = 3), E2 
(60 days, n = 3), E3 (90 days, n = 3) and E4 (120 days, n = 3).

MOMHF was collected aseptically from tibial diaphysis 
bone fragments of sound adult dogs that came to death 
due to traumas without signs of infectious-contagious 
diseases. After the periosteal soft tissue removal, the 
diaphyseal segment was collected. Following this, the bone 
tissue was washed in 0.9% saline solution and placed into 
a sterile glass vessel containing 98% glycerin for a period 
of not less than 30 days, at room temperature. For use, 
the preserved bone tissue was fragmented in particles 
between 1 and 2 mm (MOMHF), which were hydrated 
in 0.9% saline solution for 10 minutes and dehydrated at 
room temperature. Then, following the same proportion, 
PMMA polymer (powder) and PMMA monomer (liquid) 
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were added until reached the molding phase. After that, 
they were molded using a template (polyamide) of 6 mm 
of diameter by 15 mm of length. With a manual saw, 
1,5-mm thickness discs were obtained, placed into an 
aluminum container, packed in a paper-plastic pouch and 
then steam-sterilized at 121°C for 15 minutes following 
by 15-minute drying period.2,5,16,26

After the right medial tibia clipping, the rabbits were 
anesthetized with acepromazine (0.1 mg/kg) and tiletamine-
zolazepam (20 mg/kg) intramuscularly, followed by a local 
2% lidocaine (without vasoconstrictor) anesthetic block.

After antisepsis, a 3-cm skin incision was made using 
a scalpel, the subcutaneous tissue was dissected, and the 
biomaterial implantation site was exposed in the proximal 
medial tibial metaphysis. A 6-mm diameter trephine drill 
bit, coupled to a low-speed dental motor, was used to 
create the bone defect.

The tibial bone defects from animals of E1, E2, E3, and 
E4 groups were filled with the sterilized composite, the 
periosteum and subcutaneous tissue were approximated 
with a 4-0 polyglactin 910 suture, and the skin with a 4-0 
nylon suture.

In the postoperative period, each animal received 
five applications of enrofloxacin (10 mg/kg) and three 
applications of meloxicam (0.2 mg/kg), subcutaneously, 
once a day, six applications of tramadol hydrochloride 
(4 mg/kg), subcutaneously, twice a day, and dressing with 
rifamycin, for 10 days, changed every 24 hours.

The animals were housed individually in cages, fed 
with commercial rabbit food, water ad libitum, and the 
operated limb was daily evaluated.

The implanted site was then radiographed (50 mA, 
0.04 s, and 40 kV), on mediolateral projection, at the 
immediate postoperative period and at 30, 60, 90, and 
120 days after surgery.

At the end of each evaluation period, the animals were 
euthanized, using the anesthetic protocol described before, 
followed by cardiorespiratory arrest with propofol and 
10% potassium chloride intravenously via auricular vein. 

The implanted site on the right tibia was then collected 
and, after removal of surrounding soft tissues, fixed in 
10% buffered formalin for 48 hours. After that, a 10-mm2 
segment, including the composite and the bone defect, 
was dehydrated and embedded to PMMA acrylic resin, 
using a cylindrical silicone rubber mold (13 mm of diameter 
by 4 mm of length). After the polymerization process, the 
disc face containing the composite and the receiver bed 
(sagittal section) was gradually abraded/planned with 
metallographic sandpaper (no. 400 to 2,000) coupled to 
the polisher, under irrigation, until its surface became 

flat and smooth. Afterward, the surfaces of the samples 
were polished with a 20-mm polishing fabric, coupled to 
the polisher, and irrigated with alumina solution (0.3 μ)6.

The specimens were fixed with carbon conductive 
adhesive tape and analyzed by scanning electron 
microscopy (SEM), under a 15-kV acceleration voltage, low 
vacuum (model TM3000, Hitachi, Hitachi, Ibaraki, Japan), 
compositional mode. For energy dispersive spectroscopy 
(EDS) mapping, the images were captured, in tagged image 
file (TIF) format, by a software connected to the microscope.

As a control, the PMMA present in the composite was 
used, which, although biocompatible and biotolerable, 
does not integrate into the bone tissue of the rabbit tibial 
recipient bed5,13.

Results

Immediately after surgery, all patients supported the 
operated limbs, demonstrating that the surgical technique 
used to implant the composite did not compromise the 
physical structure of the rabbit’s tibia. 

The wounds healed within a period of 12 days, without 
any signs of reactions that would have suggested rejection 
or/and infection.

Radiographic evaluation

At the radiographic evaluation, the composites were 
in their recipient beds (E1, E2, E3, and E4), without any 
signs of proliferation or bone lysis.

Macroscopic evaluation
After removal of the adjacent soft tissues, it was noticed 

that all composites remained at their recipient beds (E1, 
E2, E3, and E4), and in the E30 group the recipient beds 
were fully covered by a thin layer of cicatricial tissue. 
In E60 and E90 groups, the recipient beds were involved 
by a much more resistant layer of tissue than those on 
E30 group. However, in group E120, the recipient beds 
had a thick layer similar to fibrous tissue, in addition to 
the cicatricial tissue layer.

Evaluation by scanning electron microscopy and 
energy-dispersive X-ray spectroscopy 

Using the compositional analysis by SEM, it was 
observed that the implanted composites in the rabbit’s 
tibia of groups E1, E2, E3, and E4 remained in place at their 
recipient bed (Table 1). It was also observed that the bone 
tissue of the recipient bed, the MOMHF, and the PMMA 
were preserved. Cracks occurred at the osseointegration 
area, as well as an increasing gap in all sample interfaces 
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(Figs. 1 to 4). In addition, the energy-dispersive X-ray 
spectroscopy (EDX) mapping analysis of calcium (Ca) and 
phosphorus (P), both present on the sample surfaces, 
was performed. Thirty days after surgery (E1 period), the 
SEM analysis showed, in the interface of the samples, 
border remodeling of the cortical bone tissue on the 
recipient bed, with immature bone tissue formation of 

light gray color (osteoconduction), the presence of non-
mineralized tissue, fibrous connective tissue (with fibers 
bundles parallel to the surface of the dark gray implant 
in the areas corresponding to the recipient bed), and 
different cortical bone structures at the PMMA of the 
composites (Fig. 1).

Table 1 - The composite behavior on rabbit’s tibial recipient bed.
Groups Subgroup Incorporation Contact with MOMHF Integration of MOMHF

E1 (30 days)
n.1 + No No
n.2 + No No
n.3 + No No

E2 (60 days)
n.1 + C I
n.2 + C I
n.3 + No No

E3 (90 days)
n.1 + C I
n.2 + C I
n.3 + C I

E4 (120 days)
n.1 + No No
n.2 + C I
n.3 + C I

+: incorporation of the composite to the receptor bed; C: contact of MOMHF to the receptor bed; I: integration of the MOMHF to the receptor bed; MOMHF: fragmented 
heterologous mineralized bone matrix.

MOMHF: fragmented heterologous mineralized bone matrix; PMMA: polymethylmethacrylate; SEM: scanning electron microscopy.

Figure 1 - Electromicrographs, obtained by SEM, of the composite in the rabbit’s right tibial recipient bed of the E1 group. 
(a-f) Cortical bone of the recipient bed and MOMHF, interface between composite and recipient bed (white asterisk), 
neoformed cortical bone (red asterisk and dotted circle), non-mineralized tissue: fibrous tissue with bundles of fibers 
(yellow arrow), PMMA and bone fissure (red arrow).

(a)

(d)

(b) (c)

(f)(e)
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MOMHF: fragmented heterologous mineralized bone matrix; PMMA: polymethylmethacrylate; SEM: scanning electron microscopy.

Figure 2 - Electromicrographs, obtained by SEM, of the composite in the rabbit’s right tibia recipient bed of the E2 group. 
(a-f) Cortical bone of the recipient bed and MOMHF, interface between composite and recipient bed (white asterisk), 
neoformed cortical bone (dotted red asterisk), integration of MOMHF with recipient bed (yellow asterisk), non-
mineralized tissue: fibrous tissue PMMA and bone fissure (red arrow).

MOMHF: fragmented heterologous mineralized bone matrix; PMMA: polymethylmethacrylate; SEM: scanning electron microscopy.

Figure 3 - Electromicrographs, obtained by SEM, of the composite in the rabbit’s right tibial recipient bed of the E3 group. 
(a-f) Cortical bone of the recipient bed and MOMHF, interface between composite and recipient bed (white asterisk), 
neoformed cortical bone (red asterisk and dotted circle), integration of MOMHF with recipient bed (yellow asterisk), 
non-mineralized tissue: tissue fibrous fibers (yellow arrow), PMMA and bone fissure (red arrow).
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By EDX line scan mapping, starting from the recipient 
bed towards the composite,  it was observed that the 
chemical elements Ca and P remained constant on 
the surface interface. From this point, there was a decrease 
concentration of Ca and P, which indicates the beginning 
of another structure (Fig. 5a-c).

Sixty days after surgery (E2 group), SEM analysis showed, 
at the sample interface, that the edge of the cortical bone 
of the recipient bed was remodeling with areas of cortical 
bone tissue (osteoconduction). It also showed integration in 
the contact regions of the recipient bed with the composite 
MOMHF (osseointegration), and the presence of non-
mineralized tissue with fibrous connective tissue, in the 
contact areas between the recipient bed and PMMA (Fig. 2). 
By EDS line scan mapping, beginning at the recipient bed 
towards the composite, it was observed that the chemical 
elements Ca and P remained constant, noticing a decrease 
over the crack region and then restoration (Fig. 5d-f).

Ninety days after surgery (E3 group), it was noticed, at 
the interface of all samples, that the edge of the cortical 
bone tissue at the recipient bed was remodeled, with its 

presence throughout the bone surface (osteoconduction). 
We also noted osseointegration between the cortical bone, 
the recipient bed, and the MOMHF contact area, with the 
presence of non-mineralized tissue and fibrous connective 
tissue in the areas between the recipient bed and the 
PMMA (Fig. 3). Using EDS line scan mapping, starting from 
the recipient bed towards the composite, it was observed 
that the Ca and P concentrations remained constant, with 
some reduce and increase points (Fig. 5 g-i).

A hundred and 20 days after surgery (E4 group), it was 
observed, at the interface of all samples, that the cortical 
bone surface of the recipient bed was remodeled, with the 
presence of cortical bone tissue towards the composite 
(osteoconduction). It was also observed the contact areas 
integration of the recipient bed and the MOMHF and 
the presence of non-mineralized and fibrous connective 
tissues at the contact areas between the recipient bed 
and the PMMA (Fig. 4). Using EDS line scan mapping, 
starting from the recipient bed towards the composite, it 
was observed that the Ca and P concentrations remained 
constant (Fig. 5j-l).

MOMHF: fragmented heterologous mineralized bone matrix; PMMA: polymethylmethacrylate; SEM: scanning electron microscopy.

Figure 4 - Electromicrographs, obtained by SEM, of the composite in the rabbit’s right tibial recipient bed of the E4 group. 
(a-f) Cortical bone of the recipient bed and MOMHF, interface between composite and recipient bed (white asterisk), 
neoformed cortical bone (red asterisk and dotted circle), integration of MOMHF with recipient bed (yellow asterisk), 
non-mineralized tissue: fibrous tissue with fibers bundles (yellow arrow), PMMA and bone fissure (red arrow).

(a)

(d)

(b)

(e)

(c)

(f)
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MOMHF: fragmented heterologous mineralized bone matrix; PMMA: polymethylmethacrylate; SEM: scanning electron microscopy; EDS: energy dispersive spectroscopy; 
Ca: calcium; P: phosphorus.

Figure 5 - (a, b, c, d) Electromicrographs, obtained by SEM, and EDS line scan (blue line) mapping the chemical elements 
Ca and P of rabbit’s right tibia recipient bed, neoformed bone tissue (red asterisk) and MOMHF (yellow asterisks) after 
30, 60, 90 and 120 days. (e, f, g, h, i, j, k, l) Note Ca and P concentrations on the region of newly formed bone tissue 
similar to the recipient bed and to the MOMHF (red asterisk).
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Discussion

The implanted composite will not be completely 
replaced by bone tissue, since the PMMA, a bioinert 
material, will be incorporated into the recipient bed, 
not integrated. Therefore, the analyses at different 
times were directed to the MOMHF in order to identify 
integration areas with the receiving bed, which could 
increase the composite local stability. At the interface, 
the performance of MOMHF was compared to the 
PMMA present in the composite, which, even in direct 
contact with the receiving bed, was not integrated. 
Thus, as the analyses of this study were restricted to 
the interface and on a micrometric scale, we concluded 
that a control group is not necessary, as the PMMA, 
which does not integrate to the receiving bed, would be 
sufficient to be compared to the behavior of MOMHF, 
without compromising the quality of the research and 
also following the ethical principle of the three Rs 
(replacement, refinement, and reduction). 

The best clinical option for bone defects repairs 
is autogenous bone tissue. It has cells that stimulate 
osteogenesis and induce osteoconduction and 
osseointegration, but it requires two surgical approaches, 
besides having high cost5,14. For that reason, we have chosen 
the composite made of MOMHF and PMMA as viable 
biomaterials, easy to obtain and pack, and demanding 
only a single surgical procedure for implantation. 

The medial proximal metaphysis of the rabbit’s tibia was 
chosen because of its easy access and thin subcutaneous 
tissue, reducing, this way, surgical time. In addition, this 
region has resorptive and osteogenic properties and is the 
most metabolically active site of this bone5,13. 

Although the literature does not recommend a minimum 
or a maximum time for the permanence of the 98% glycerin 
preserved composite, it was established in this work a 
period of not less than 30 days, as suggested by Moreira 
et al.5 and Freitas et al.13. Thus, the creation of a bone 
bank at veterinary surgical centers for use in orthopedic 
surgeries becomes a feasible procedure5.

At the time of rabbit evaluations, no signs of infection 
or dehiscence at the surgical site were noticed, occurring 
first intention healing at appropriate period13. Also, in 
the post-operatory period, the tibia resistance was not 
impaired by the ostectomy17. 

For making the composites, all the materials used 
directly to handle MOMHF and PMMA were sterilized. 
For use, in addition to prior care, the composites were 
steam-sterilized, being this an essential phase for the 
surgical procedure5,13,26.

The sterilization process probably did not destroy all 
the factors, such as bone morphogenetic proteins27, that 

stimulates bone regeneration and osseointegration, present 
in the MOMHF composite, which had integrated into the 
recipient bed. However, new studies that seek to identify 
the main factors related to the MOMHF integration into 
the rabbit’s tibia recipient bed are necessary.

According to Moreira et al.5 and Kang et al.21, the 
permanence of the composite at the recipient bed (Table 1) 
indicates no rejection, resulting from fibrointegration 
mediated by PMMA and by the osseointegration of 
MOMHF, suggesting the composite biocompatibility 
(Figs. 1 to 5).

Histological techniques are used to analyze the interface 
between the recipient bed and the biomaterial, and not 
only the detailed structural characterization of this area, 
when the material allows very thin slices (<10 μm), as well 
as the understanding of many cellular and molecular local 
phenomena19. However, for hard tissue sample analysis 
that does not allow the demineralization process, like the 
PMMA in our study, the SEM becomes a viable option20. 
For that reason, we chose this technique to evaluate 
the interface between the tibia recipient bed and the 
composite (Figs. 1 to 5).

The fibrointegration (i.e., indirect contact by the 
interposition of the fibrous tissue between the recipient 
bed and functional implant) has been observed by SEM 
analysis15,21. With this technique, indirect osseointegration 
between the recipient bed and the PMMA of all implanted 
tibia was observed (Figs. 1 to 4). Additionally, we have 
noticed direct osseointegration between the recipient 
bed and the MOMHF composite in the tibia of groups 
E1, E2, E3 and E4 (Figs. 2 to 4, Table 1). This event can 
also be observed by EDS line scan mapping of Ca and P 
present in the samples, in which it was observed that ions 
concentration of these surface elements in the neoformed 
tissue was very similar to the rabbit bone and to the 
MOMHF (Fig. 5), demonstrating that it is a mineralized 
tissue, i.e., bone tissue composed of 30% organic phase 
and 70% inorganic phase. In this tissue, Ca and P are in Ca 
phosphate crystals (hydroxyapatite) form and correspond 
to 95% of the mineralized phase22,23.

At the processing phase for the samples analysis by 
SEM and EDX line scan mapping, the external surface of 
both the composite and the recipient bed has been worn 
by successive sanding. Probably, during this procedure, the 
MOMHF present on the composite surface may have been 
removed. However, during the SEM analysis, the absence 
of contact between the composite and the recipient 
bed samples E1 (1, 2 and 3), E2 (3) and E4 (1) (Table 1) 
cannot be considered, once the analysis is punctual and, 
additionally, the osteoinduction and osteoconduction 
were present (Figs. 1 to 4).
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The fracture lines observed at the contact zones of the 
recipient bed and the MOMHF (osseointegration site) are 
due to tissue retraction during the dehydration phase at 
the sample preparation and by the action of the vacuum 
at the time of SEM analysis24,25 (Figs. 1 to 4).

MEV analysis was fundamental to evaluate the 
implanted composites interfaces in the tibial receiving 
beds. Twelve of the MOMHF and PMMA composites 
were entirely incorporated into the rabbit’s tibias, and 
seven were osseointegrated. As this is a punctual analysis, 
new sites of integration could probably be observed in 
different areas. 

The composite under analysis was satisfactorily 
incorporated and integrated into the recipient bed of rabbits’ 
tibia. In addition, it also presented similar mechanical 
resistance to the bone tissue, as also demonstrated by 
Catello et al.16, and may, therefore, be an additional 
biomaterial option to fill and stabilize bone gaps. Given 
the potential of this biomaterial, it is intended for future 
studies to produce wedge-shaped implants (cage) to be used 
as spacers in the modified tibial tuberosity advancement 
technique (mTTA) for dogs with cranial cruciate ligament 
disease. We observed in this research incorporation of the 
composite and integration of MOMHF as a heteroimplant 
(xenoimplant) in rabbits’ tibia. Probably, this biomaterial 
will have a better performance, as an alloimplant in dogs’ 
tibia, to fill and stabilize osteotomies in the mTTA technique. 
Furthermore, this alternative technique can also reduce 
the costs of the surgical procedure. 

Evaluations of the interfaces between composites 
of MOMHF and PMMA and recipient beds using 
microtomography, which allows analysis in different 
p lanes,  could  demonstrate  more informat ion 
regarding the interaction of this biomaterial with 
the implantation site.

The main observed limitations during the experiment 
were: the availability of a healthy bone tissue donor, 
because, unlike human medicine, which has bone tissue 
banks with strict control, veterinary medicine in Brazil 
does not have this kind of structure; the appropriate 
manipulation and production room for natural and biological 
biomaterials equipped with a safety cabin; the biomaterial 
implantation site standardization, which was, in this case, 
the rabbit’s medial proximal tibia; and the availability 
of appropriate orthopedic and surgical instruments to 
perform the bone failures. 

Conclusion

The composite constituted by MOMHF and PMMA was 
incorporated and integrated into the recipient bed in 100% 
of the cases, as evidenced by the MOMHF osseointegration 

and PMMA fibrointegration, with no signs of infection 
nor migration and/or rejection, demonstrating that it is 
biocompatible and can, therefore, be an additional option 
for bone defect repairs. 

For future studies, modern resources of tridimen-
sional image of the bone lesion and digital impression 
of the composite will be used, so a greater interac-
tion between the biomaterial and the recipient bed 
can be possible.
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