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ABSTRACT

Purpose:  To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. 
Methods: We constructed a mouse sepsis model through cecal ligation and puncture. These mice 
were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. 
Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson’s staining. 
We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry 
for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung 
tissue were measured via enzyme-linked immunosorbent assay (ELISA). Results: Atr III-H did not only 
reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory 
factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased 
the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein 
O1 (FoxO1) expression. Conclusion: Atr III alleviates sepsis-mediated lung injury via inhibition of 
FoxO1 and VNN1 protein. 
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Introduction

Sepsis, a kind of systemic inflammatory response 
syndrome (SIRS), arises from infection1-3. Sepsis can 
cause lots of damage to the lung tissue, and pulmonary 
dysfunction induced by sepsis can aggravate other organs 
dysfunction4-6. Inflammatory cytokines, endotoxin, and 
oxygen free radicals in the blood can induce apoptosis of 
pulmonary epithelial and pulmonary vascular endothelial 
cells, which in turn promotes the infiltration of edema 
including rich protein into the interstitium, ultimately 
leading to acute lung injury (ALI) or acute respiratory 
distress syndrome (ARDS)7-9. However, nowadays no 
complete theoretical system can explain the complex 
pathogenesis of ALI. 

When SIRS occurs,  excessive activation and 
recruitment of macrophages and neutrophils in the 
lung, caused by systemic inflammatory mediators, 
can promote the uncontrolled release of various 
proinflammatory cytokines in the lung, leading to 
ARDS. Excessive activation of immune cells in the lung 
is seen as an essential aspect in the development of 
ARDS10–12. Therefore, new methods are needed to reduce 
the pulmonary inflammatory response in the future 
treatment of sepsis-induced lung injury.

As we know, Atractylenolide (Atr) III, as a kind of 
sesquiterpenoid, is isolated from atractylodis. Atr III has 
been reported to possess extensive biological activities, 
containing anti-inflammatory, antioxidant, and anti-cancer 
activities, and neuroprotective effects13–16. Studies have 
shown that Atr III was able to attenuate pulmonary fibrosis 
and oxidative stress level17-19. 

Nevertheless, there are still no studies about the effects 
of Atr III on sepsis-mediated lung injury. Besides, the 
molecular mechanism was blurry. Forkhead box protein 
O1 (FoxO1), as a momentous regulator of endothelial 
cell proliferation, is able to accelerate cell apoptosis. 
Evidence suggested that FoxO1 was memorably raised in 
skeletal muscle of sepsis. Vanin-1 (VNN1) is a glycosylated 
phosphatidylinositol-anchored ubiquinase, which is 
located on chromosome 6q23-q24 and highly expressed 
in the lung20,21.

Considering this, the purpose of this study was to 
probe the role of Atr III on sepsis-mediated lung injury via 
adjusting FoxO1 and VNN1 in mice, to supply substantial 
evidence for Atr III as a promising drug to preventive 
treatment sepsis-mediated lung injury.

Methods

Atr III was purchased from Shanghai Bohu Biotechnology 
Co. IL-6, TNF-α, and IL-1β kits were provided from Shanghai 

Kanglang Biotechnology Co. Hematoxylin-eosin (HE) kit was 
purchased from Beijing Kulaibo Technology Co. Masson kit 
was provided from Nanjing Senbeijia Biotechnology Co. 

All assays carried out during the research were 
consistent with the United States National Institutes of 
Health guidelines for the use of experimental animals. 
We purchased male 7-week-old BALB/c mice from 
the institution of Shanghai SLAC Laboratory Animal. 
We stochastically allocated the mice to the normal, 
sepsis, Atr III-L (2 mg/kg) and Atr III-H (8 mg/kg) 
groups, with 10 mice in each group. The mice were 
fed at 20-22°C and under standard conditions (12:12 h 
light/dark cycle). 

Model preparation

Our crew built cecal ligation and puncture via previous 
researcher’s operation. Briefly, mice were conducted 
anesthesia with pentobarbital sodium. A sterile abdominal 
incision was followed. After the cecum was exposed, the 
middle part of the cecum was ligated. Next, the cecum 
was punctured with 18 needles. Ultimately, the abdominal 
cavity is closed. The normal group was carried out the same 
procedure via without ligation or puncture. After surgery, 
the mice were managed normally.

HE and Masson’s staining

After 24 h of the last administration, the rats were 
killed, and the lung tissue was instantly removed. 
Lung tissue was cut into 5-mm thin sections. Then, thin 
sections were immersed in paraformaldehyde for 10 min. 
The slices were dried in 45º incubator and further stained 
with HE and Masson. The slices were decolorized with 
ethanol, dehydrated with xylene, and sealed with neutral 
glue. The histological structure and pathological changes 
of heart were observed under microscope, with the 
specific criterion predominantly formed according to 
previous studies.

Lung function detection

After 24-h management, the mice were placed in 
instruments. Furthermore, the lung function of mice 
was further tested via whole-body flow-through 
plethysmography (Beijing AMCA Shenwu Technology Co.). 
Our crew determined the ventilation, airway resistance, 
as well as lung volume in levels to assess lung function. 

ELISA detection

After the last treatment, the blood was collected from 
the eyeballs of mice. Serum was separated by centrifugation 
at 12,000 r/min for 10 min and then kept at -80°C until use. 
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The levels of inflammatory factors, including TNF-α, IL-6, 
as well as IL-1β (Shanghai Jingkang Bioengineering Co.) 
in serum, were tested via enzyme-linked immunosorbent 
assay (ELISA) kit (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, China).

Calculation of lung wet-dry weight ratio

After the sacrifice of animals, the left lung of rats 
was taken, and the surface water and blood were 
sucked dry. The pulmonary wet-dry (W/D) weight ratio 
was measured to perform the evaluation of pulmonary 
edema. The fresh upper right lung tissue was cleaned 
and weighed to acquire the W, and then dried in an 
oven at 180°C lasting at least 24 h for examining the D. 
The ratio of W/D is used to express the water content 
of lung tissue. Lung W/D weight ratio is used as an 
indicator of lung injury.

TUNEL assay

Apoptosis was detected by terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) assay in each 
group. After rehydrating the cells, 20 mg/mL proteinase K 
for treatment lasting 8-10 min under room temperature 
condition, phosphate buffered saline (PBS) for washing, 
as well as 4% paraformaldehyde for refixation, were used. 
DNA fragments from apoptotic cells were marked with 
nucleotide mixture and rTdT enzyme (DeadEnd TUNEL 
System, Promega) for 60 min at 37°C, followed by 15-min 
incubation in 2SSC to stop the reaction. After rinsing with 
deionized water, the slide was overlapped by another 
one. Then, relevant images were finally captured, with 
the use of fluorescence microscope. The proportion of 
apoptotic cells was measured by TUNEL-positive cells/all 
cells in 10 high magnification field of view.

Flow cytometry analysis

Twenty-four hours after the last administration, the 
lung tissue was removed. The 1:9 homogeneous slurry was 
fleetly prepared with 4°C normal saline. Homogenate was 
separated by centrifugation at 10,000 r/min for 20 min. 
Next, the supernatant was absorbed, 5-μL annexin-v-1FITC 
was added, and 5-μL PI was incubated in a dark room for 
15 min. Then, the apoptosis was determined through 
flow cytometry:
Apoptosis rate =	(early apoptotic cells + late apoptotic 

cells) / all cells × 100%.

2.9 qRT-PCR

One hundred mg of tissue or 1 × 106 cells were used 
to lyse the cells and extract total RNA with Trizol reagent 

(Invitrogen). The purity and concentration of RNA were 
determined using a 96-well plate micro-spectrophotometer, 
and RNA purity was considered high as the D260/D/280 
value was between 1.8 and 2. After adjusting the RNA 
concentration to 300~500 ng/μL, its reverse transcription 
was developed with the RNA Reverse Transcription Kit 
(Invitrogen, California, United States), to produce cDNA, 
which was the first strand. 

Under the instructions of SYBR Green fluorescence 
quantitative kit, the reaction system was configured, 
in which three repeat wells were set for each system. 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
and U6 were seen as standardized internal references, 
and the results were calculated employing the 2−ΔΔCT 
method. Each experiment was carried out repeatedly 
for three times. The specific primer sequences were: 
FoxO1 F: 5′-GCC GTG CTA CTC GTT TGC-3′, R: 5′-CTT GGG 
TCA GGC GGT TC-3′; VNN1 F: 5′-ATA CTC CCG CCA TGC 
GAC TG-3′, R: 5′-CTG TCA CAA CCT CAC TGT CAT-3′; Bax 
F: 5′-CCG GGA GAT CGT GAT GAA GT-3′, R: 5′-ATC CCA 
GCC TCC GTT ATC CT-3′; Bcl-2 F: 5′-CCG GGA GAT CGT 
GAT GAA GT-3′, R: 5′-ATC CCA GCC TCC GTT ATC CT-3′; 
caspase-3 F: 5′- TGG AAC AAA TGG ACC TGT TGA CC-3′, 
R: 5′-AGG ACT CAA ATT CTG TTG CCA CC-3′;GAPDHF:5′-
GGA GCG AGA TCC CTC CAA AAT-3′,R:5′-GGC TGT TGT 
CAT ACT TCT CAT GG-3′.

Western blotting

Immunoprecipitation (RIPA) plus protease inhibitor 
cocktail (Roche) was used to collect cells. Forty μg of 
protein lysate was first solubilized with 12% SDS-PAGE, 
and then its transfer to nitrocellulose membranes 
was completed. Subsequently, the membranes were 
blocked applying 5% non-fat milk lasting 1 h under 
room temperature condition, conducted incubation 
employing primary antibodies (1:1,000) overnight at 
4°C, then washed adopting phosphate buffered saline-
Tween (PBST) the next day, and finally incubated with 
secondary antibodies (1:5,000) lasting 1 h under room 
temperature environment. Eventually, the target protein 
was detected utilizing SuperSignal West Pico PLUS 
chemiluminescence kit. FoxO1, Bax, VNN1, caspase-3, 
Bcl-2, as well as GAPDH (SantaCruz), were the antibodies 
used in the experiments.

Statistical analysis

We displayed data in the form of mean ± standard 
deviation (SD). Statistical assessment was done with t-test 
for inter-group comparison or one-way variance analysis 
(ANOVA) for multi-group comparisons, adopting GraphPad 
Prism 5 software and P < 0.05.
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Results
Atr III ameliorated sepsis-mediated lung injury

Lung function was determined. These indexes of lung 
function, including the ventilation, airway resistance, as well 
as lung volume in levels, were memorably abated in sepsis 
group. In sepsis group, ventilation, airway resistance, as 
well as lung volume in levels, were dramatically lessened. 
Interestingly, Atr III ameliorated lung function, which was 
modified in a dose-dependent manner (P < 0.01, Fig. 1a). 
Compared with the normal group, sepsis raised the lung W/D 
specific gravity value, while Atr III treatment decreased the 
lung W/D weight ratio at 12 or 24 h after sepsis-mediated 
in contrast with the normal group (P < 0.05, Fig. 1b). Atr III 
performed best. HE staining was utilized for observation 
of the impact on Atr III on lung damage 24 h after sepsis-
mediated. As it can be seen in Fig. 1c, the inflammatory 

cell infiltration, along with necrosis, developed in sepsis 
group. However, no obvious difference was revealed in 
lung histomorphology between the normal group, as well 
as Atr III one. The results suggested that Atr III relieved 
sepsis-induced lung injury. Figure 1d displayed that in Atr 
III group the myocardial fibers were relieved, and the cells 
were stained uniformly. Atr III-H effect was better than 
Atr III-L. It can be inferred that Atr III may be a protective 
agent in sepsis-mediated lung injury.

Impact of Atr III on inflammatory cytokine release

For evaluating the inflammatory response caused 
by sepsis-induced pulmonary damage, the release of 
IL-1β, TNF-α, as well as IL-6, in the supernatant of lung 
homogenates was monitored via ELISA. The expression 
of these inflammatory factors was lower in the normal 
group. According to Fig. 2, sepsis can induce the expression 
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of lung inflammatory factors. After sepsis, the secretions 
of IL-6, TNF-α, as well as IL-1β in sepsis group, were 
substantially enhanced (P < 0.01). After Atr III treatment, 
the numbers of these inflammatory factors were further 
lessened. In addition, Atr III-H represented the best 
effect. The findings implicated that Atr III may inhibit the 
inflammatory response induced by septic lung injury via 
modulating the secretion of inflammatory cytokines.

Effects of Atr III on apoptosis induced by sepsis-
mediated lung damage

For evaluating the impact of Atr III on apoptosis caused 
by sepsis-mediated lung injury, sepsis-induced apoptosis 
in lung tissue via TUNEL staining was examined. Figure 3a 
manifested that sepsis treatment could memorably boost 
apoptosis. Even more impressively, Atr III could dramatically 
lessen the apoptosis rate. More importantly, Atr III-H 
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displayed the best effect. Figure 3b displayed the same 
trend. Contrasted to sham operation group, the apoptosis 
rate of sepsis group was memorably raised. Contrasted to 
sepsis group, Atr III was able to lessen apoptosis proportion. 
The mentioned results indicated that ATR III was able to 
restrain sepsis mediated apoptosis of lung cells.

qRT-PCR determined the expression of 
relation gene

Real-time quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) was applied to measure gene 
expression in sepsis-mediated lung injury. Figure 4 
demonstrated that sepsis group was able to reduce 
Bcl-2 mRNA expression and promote Bax, caspase-3, 
VNN1, as well as FoxO1 mRNA expression. By contrast, Atr 
III could enhance Bcl-2 mRNA expression (P < 0.05/0.01). 

Concurrently, Atr III was able to restrain Bax, caspase-3, 
VNN1, as well as FoxO1 mRNA expression, in sepsis-
mediated lung injury (P < 0.05/0.01). Furthermore, Atr 
III-H effects were the most remarkable.

Western blot measured protein expression

Just like the qRT-PCR results, western blot displayed 
that sepsis group could reduce Bcl-2 expression and 
enhance Bax, caspase-3, VNN1, as well as FoxO1 
expression. By contrary, Atr III could enhance Bcl-2 
protein expression in sepsis-mediated lung injury (P < 
0.05/0.01). On the other side, Atr III further restrained 
Bax, caspase-3, VNN1, as well as FoxO1 protein expression 
(P < 0.05/0.01). More than that, Atr III-H effects were 
noticeably superior to Atr III-L, which was consistent 
with the qRT-PCR outcome (P < 0.05, Fig. 5).
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Discussion

Lung damage, a prevalent complication of sepsis, 
gives rise in multiple organ dysfunction syndrome, as 
well as death of those who suffer from it22. The perfect 
target for treating sepsis-mediated lung damage is to 
inhibit inflammatory response, prevent apoptosis, and 
maintain lung function23-25. Nevertheless, the causative 
role of sepsis-mediated lung damage is still distinct, which 
immensely impedes the screening of diagnostic markers 
of sepsis-mediated lung injury. 

Substantive research has stressed that Atr III displayed 
anti-inflammatory, antioxidant and anti-cancer activities and 
neuroprotective effects. Nevertheless, the physiological role 
of Atr III in sepsis, together with its underlying molecular 
mechanism, has not been reported. Therefore, this work 
probed into the impact of Atr III on sepsis-induced lung 
injury in mouse with sepsis. At the start, it was indicated 
that Atr III exerted a protective effect on ameliorating 
sepsis-mediated lung injury via raising pulmonary function 

and debasing lung W/D weight ratio. More importantly, 
Atr III did not only relieve inflammatory cell infiltration 
and along with necrosis, but also renewed myocardial 
fiber relaxation, which hinting Atr III may be a protective 
agent in sepsis-mediated lung injury. 

In the inflammatory response to sepsis, the expression of 
the key cytokine TNF-α is rapidly increased and peaks at an 
early stage, which induces the production of inflammatory 
factors like IL-6. These inflammatory cytokines trigger a 
series of inflammatory cascades through related signal 
transduction pathways, resulting in damage to capillary 
endothelial and alveolar epithelial cells. Increased 
vascular permeability and alveolar surfactant release 
lead to the thickening of the alveolar wall, capillary 
and alveolar hemorrhage, and pulmonary capillary and 
alveolar hemorrhage. The mentioned pathological changes 
further cause severe pulmonary edema, ventilation/blood 
flow imbalance, refractory hypoxemia, and ultimately 
ALI/ARDS26. 
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Zhang’s study on ALI during lipopolysaccharide-induced 
sepsis showed that TNF-α levels were sharply increased 
in the bronchoalveolar lavage fluid of septic animals27. 
Animal experiments and clinical studies have confirmed 
that plasma TNF-α levels are positively correlated with 
the development and prognostic severity of ALI in patients 
with sepsis28. IL-6-mediated neutrophil activation and 
accumulation promote the massive release of elastase 
and oxygen free radicals, causing damage to alveolar 
epithelial cells and extravascular matrix. The main cause of 
ARDS is pulmonary interstitial edema caused by pulmonary 
vascular hyperpermeability29. 

Therefore, it is important to investigate the mechanism 
of abnormal secretion of inflammatory factors for 
preventing and treating sepsis-mediated lung injury. 
The study discovered that Atr III was able to restrain 
release of inflammatory factors via adjusting IL-6, TNF-α 
and IL-1β levels.

Studies have indicated that many apoptotic cells 
are involved in lung injury, thereby inducing a series 
of proteolytic reactions of caspase, such as caspase-3 
protein30-32. In the present study, same with the results 
previously reported, Bax and caspase-3 were enhanced, 
and Bcl-2 was declined in sepsis group. Nevertheless, Atr 
III completely reversed this trend, indicating that Atr III 
could boost apoptosis of lung cells. The results found here 
show that Atr III could induce apoptosis of lung cancer 
cells in a dose-dependent manner.

It has been concluded in the literature that VNN1 
is implicated in sepsis and involved in the systemic 
inflammatory response33,34. FoxO protein is a large class 
of transcription factors, which can directly participate 
in gene transcription and expression35,36. FoxO1 exerts a 
momentous role in the regulation of apoptosis, oxidative 
stress, and inflammatory diseases37-39. At present, FoxO1 
is known to improve the inflammatory response of 
sepsis via regulating early inflammatory factors (NF -κB, 
TNF - α)40. The results presented here show that Atr 
III could restrain VNN1 and FoxO1 protein expression, 
suggesting that Atr III may reduce tissue damage in 
sepsis-induced lung injury by controlling VNN1 and 
FoxO1 expression.

Conclusions

This study firstly demonstrated that Atr III could 
alleviate sepsis-mediated lung injury via inhibition of 
FoxO1 and VNN1 protein, and the mechanism might be 
related to down-regulation of pro-inflammatory cytokines 
and protection of lung function. Atr III can be developed 
as an effective and safe agent for treating sepsis-induced 
lung injury in the future.
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