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ABSTRACT

Purpose: Stroke is an acute cerebrovascular disease. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus 
membranaceus with an established therapeutic effect on central nervous system diseases. This study examined the neuroprotective 
properties and possible mechanisms of AS-IV in stroke-triggered early brain injury (EBI) in a rat transient middle cerebral artery 
occlusion (MCAO) model. Methods: The neurological scores and brain water content were analyzed. 2,3,5-triphenyl tetrazolium 
chloride (TTC) staining was utilized to determine the infarct volume, neuroinflammatory cytokine levels, and ferroptosis-related genes 
and proteins, and neuronal damage and molecular mechanisms were evaluated by terminal deoxynucleotidyl transferase dutp nick-
end labeling (TUNEL) staining, western blotting, and real-time polymerase chain reaction. Results: AS-IV administration decreased the 
infarct volume, brain edema, neurological deficits, and inflammatory cytokines TNF-α, interleukin-1β (IL-1β), IL-6, and NF-κB, increased 
the levels of SLC7A11 and glutathione peroxidase 4 (GPX4), decreased lipid reactive oxygen species (ROS) levels, and prevented 
neuronal ferroptosis. Meanwhile, AS-IV triggered the Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of 
stroke. Conclusion: Hence, the findings of this research illustrate that AS-IV administration can improve delayed ischemic neurological 
deficits and decrease neuronal death by modulating nuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway.
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Introduction

Ischemic stroke is a kind of acute cerebrovascular illness that is a major contributing factor to long-term impairment in 
industrialized nations and one of the major contributors to death around the globe1. The GBD 2019 Stroke Collaborators 
reported that there were 101 million prevalent strokes, 12.2 million incident stroke attacks, 143 million disability-adjusted 
life years attributed to stroke, and 6.55 million deaths from stroke in 2019, a higher incidence and the first leading cause 
of death in China2,3. The early intervention approach to cerebral ischemia focuses on the restoration of cerebral blood 
flow and reoxygenation, which is used for salvaging cells in the penumbra region and reducing the infarct volume as soon 
as possible4,5. However, an increasing number of studies have shown that the accumulation of oxidative free radicals can 
result from reperfusion injury after cerebral blood reperfusion and the restoration of oxygen-rich blood, which is ischemia-
reperfusion (I/R) injury6–10.

The pathophysiology of cerebral I/R injury is quite complex and is characterized by the overproduction of reactive oxygen 
species (ROS), dramatically increased release of extracellular excitatory amino acids and glutamate levels, and activation of 
autophagy, apoptosis, ferroptosis, necrosis, endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation4,6–14. 
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In particular, ROS and neuroinflammation perform instrumental functions in cerebral I/R injury6,13–15. ROS overproduction 
and excessive accumulation of inflammatory factors lead to neuronal apoptosis and ferroptosis11,15–17. According to previous 
studies17–21, inhibition of ferroptosis and neuroinflammation can improve neurological deficits and alleviate cerebral edema 
after cerebral I/R injury in animals. Therefore, therapeutic strategies to inhibit ferroptosis, decrease neuroinflammation, 
and block the generation of ROS have important clinical application value and could be used to improve cerebral I/R injury. 
However, no safe and clinically effective treatment methods or drugs can prevent and improve cerebral I/R injury.

Many natural compounds have been reported to exhibit therapeutic functions by modulating ferroptosis22,23. Astragaloside 
IV (AS-IV), a newly discovered glycoside of cyclobutane-type triterpene extracts from Astragalus membranaceus, has 
proven to be effective (Fig. 1)24. AS-IV is effective in treating several neurodegenerative disorders, including Alzheimer’s 
disease, Parkinson’s disease, and cerebral ischemia25–29. It is intriguing to note that rats treated with AS-IV for 24 h showed 
significant improvement in learning, memory, motor status, and neurological function. Our recent study also demonstrated 
that AS-IV inhibits the process of ferroptosis in SAH by activating the Nrf2/HO-1 pathway30.
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Figure 1 – The chemical structure of astragaloside IV.

Cerebral I/R injury develops from ROS, an inflammatory cytokine, and glutamate-induced excitotoxicity, which can 
lead to rapid neuronal death in the brain20,31. The molecular signaling pathways of neuroinflammation and ferroptosis 
are complex. Activation of Nrf2 has been reported to occur in many diseases, with abnormal expression after ferroptosis 
and amino acid depletion32–34. Whether AS-IV alleviates cerebral I/R damage caused by regulating neuroinflammation and 
ferroptosis through the Nrf2/HO-1 signaling pathway remains unclear. Hence, we constructed a rat cerebral I/R injury 
model to explore the neuroprotection of AS-IV and studied the interplay between neuroinflammation and ferroptosis.

Methods

Animals

All experimental tests were carried out on healthy Sprague-Dawley rats (8–10 weeks old, Nantong University, Nantong, 
China). A total of 45 rats were used and randomly assigned to the sham, middle cerebral artery occlusion (MCAO), and 
MCAO+AS-IV groups. Each of the animal tests conducted for this research followed the National Institutes of Health 
criteria for the care and use of laboratory animals and was approved by the Ethics Committee of the 904th Hospital of Joint 
Logistic Support Force of PLA (YXLL-2022011).

Transient MCAO animal model

Following the intraluminal filament approach, the rat MCAO model was produced in full compliance with a previously 
reported procedure35. Afterward, 1% sodium pentobarbital (40 mg/kg) was administered to the rats intraperitoneally to 
anesthetize them before placing them in a brain stereotaxic device. An incision was created in the midline of the neck to 
expose the common internal and external carotid arteries. After ligating and cutting the external carotid artery on the 
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left side, a 3-mm stump was exposed. We then perforated the carotid artery at the bifurcation of the middle and anterior 
cerebral arteries utilizing an 18–20-mm-long surgical filament (0.26 mm diameter; Beijing Cinontech Co. Ltd., China) was 
threaded through the external carotid artery stump into the internal carotid artery and left in situ for 120 min. After that, 
the filament was withdrawn to facilitate reperfusion. Rats in the sham surgery group received the identical procedure as 
the other rats but without filament insertion.

Preparation and administration of drugs

Following the successful establishment of the MCAO model, AS-IV (No. 84687–43-4, purity ≥ 98%) was obtained 
from Nanjing Spring and Autumn Biotech Co., Ltd. (Nanjing, China). The injection of AS-IV (20 mg/kg) was carried out 
intraperitoneally (i.p.) at 30 min after MCAO induction.

Assessment of neurobehavioral functioning

Neurological functionality was measured 72 h following MCAO establishment to determine the degree of brain damage, 
as reported earlier36. Each rat belonging to each group was subjected to a behavioral evaluation, with a greater score indicating 
enhanced neurological function.

Determination of the water content in the brain

The degree of cerebral edema was ascertained by assessing the content of water in the brain utilizing the conventional 
wet-dry technique, as described earlier36–38. It was decided that the rats should be euthanized 72 h following MCAO, and 
the whole brain was extracted (wet weight). Brain samples from rats in each group were subsequently dried for 24 h at 
105 °C to obtain dry weights. The proportion of the water content in the brain was equivalent to (wet weight – dry weight) 
/ wet weight × 100%.

2,3,5-triphenyl tetrazolium chloride (TTC) staining and infarct volume measurement

By using TTC (Sigma, T8877), we successfully determined the volume of the infarct at 72 h following transient MCAO. 
The procedure protocol was conducted as previously reported39. Briefly, fresh rat brain samples were collected after the rats 
were sacrificed and then rinsed using ice-cold phosphate-buffered saline. After this, the brain was kept at –20 °C for 15 min 
before being sliced into 2-mm coronal slices utilizing a brain mold in preparation for the next steps. We then stained the brain 
slices with 2% TTC solution for 20 min at 37 °C in the dark. The viable portion of the brain segment was dyed red, whereas the 
dead portion was dyed pale white. Images of these segments were taken, and the infarct volume was computed with ImageJ.

Measurements of cytokines in ipsilateral cortical tissue

The ELISA kit was utilized following the guidelines stipulated by the manufacturer to determine the levels of cerebral 
cortex NF‑κB (cat. no. ab176663; Abcam), TNF‑α (cat. no. ab208348; Abcam), IL‑6 (cat. no. ab222503; Abcam), and IL‑1β 
(cat. no. ab197742; Abcam).

Terminal deoxynucleotidyl transferase dutp nick-end labeling (TUNEL) staining

To determine neuronal cell death in the cerebral cortex, a TUNEL test was utilized. Each sample was introduced into 
a 50 μL TUNEL reaction solution, and the slides were subjected to incubation for 60 min at 37 °C in a humid darkened 
chamber; 4’,6-diamidino-2-phenylindole was subsequently applied to the slides for 5 min at ambient temperature in the 
dark to stain the nuclei, after which the slides were photographed with a fluorescence microscope. The process, which used 
a TUNEL staining kit, was carried out in compliance with the package recommendations. A negative control (i.e., one that 
did not include any of the TUNEL reaction media) was employed. The cell density was checked in 4 high-power fields 
that were chosen at random, and the collected data from each field were combined to compute the average value.
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Measurements of malondialdehyde (MDA) and glutathione (GSH) contents

Levels of MDA and GSH in cerebral cortex tissue were investigated by using commercialized assay kits (Beyotime, 
China) 72 h after MCAO, following the manufacturer’s instructions. The absorbance of MDA in the samples was detected 
at 532 nm, and the concentration of GSH was determined at 412 nm.

Lipid ROS measurement

ROS levels in cerebral cortex tissue were detected using a ROS kit (Beyotime, China). Briefly, brain tissue samples 
were homogenized and centrifuged at 10,000 g and 4 °C for 15 min. ROS levels in tissues were detected using DCFH-DA 
according to the manufacturer’s instructions. Fluorescence intensity was detected using a fluorescence microplate reader 
(Molecular Devices, United States) with an excitation wavelength of 485 nm and an emission wavelength of 530 nm. All data 
were normalized to the Sham group.

Western blotting

Western blot analyses were carried out in the same manner as reported earlier36. Samples of the cerebral cortex 
were harvested, homogenized, and isolated utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis on 
10% polyacrylamide gels. To assess protein content, we employed a BCA Protein Assay Kit (Beyotime) using the 
bicinchoninic acid technique. Upon isolation, the protein specimens were subsequently placed onto Immobilon 
nitrocellulose membranes. Blocking of the membranes was performed for 1 h at ambient temperature using 5% nonfat 
milk. After that, the membranes were treated using the primary antibodies listed below for an overnight period at 
4 °C: rabbit anti-β-actin (1:1,000, mouse monoclonal, Abcam, ab8226), rabbit anti-Nrf2 (1:1,000, Abcam, ab92946), 
rabbit anti-glutathione peroxidase 4 (GPX4) (1:500, cat# A1933, Abclonal), rabbit anti-SLC7A11 (1:500, cat# A15604; 
Abclonal), and rabbit anti-HO-1 (1:1,000, Abcam, ab186284). Once the membranes had been rinsed three times using 
TBST, they were subjected to a 1.5-h incubation at ambient temperature with secondary antibodies, including goat 
anti-mouse IgG secondary antibodies or HRP-conjugated goat anti-rabbit IgG (1:5,000). A Bio-Rad imaging system 
(Bio-Rad, Hercules, CA, USA) was utilized for the detection of the protein bands, which were subsequently quantified 
utilizing ImageJ software.

Quantitative real-time polymerase chain reaction (qPCR)

Quantitative real-time PCR analysis was performed as previously indicated. Total RNA was extracted from cerebral cortex 
samples using TRIzol Reagent (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s 
instructions. Then, RNA was reverse transcribed to complementary DNA (cDNA) using the RevertAid First Strand cDNA 
Synthesis Kit (K1622; Thermo Fisher Scientific Inc., Rockford, IL). The HO-1 and Nrf2 mRNA levels in each sample were 
measured by qPCR using SYBR Green Master Mix (Toyobo Co., Ltd., Osaka, Japan). GAPDH was used as an internal 
control. The qPCR thermocycling conditions were as follows: 45 °C (2 min) and 95 °C (10 min), followed by 40 cycles 
of denaturation at 95 °C (15 s), annealing at 60 °C (1 min), and extension at 72 °C (1 min). All samples were analyzed in 
triplicate. The target genes and the specific primers are as follows:

HO-1 (forward, 5’-TGACAGAAGAGGCTAAGACCG-3’; reverse, 5’-AGTGAGGACCCACTGGAGGA-3’),

Nrf2 (forward, 5‘-CAGTGCTCCTATGCGTGAA-3’; reverse, 5‘-GCGGCTTGAATGTTTGTCT-3’)

GAPDH (forward, 5’- ATGGGTGTGAACCACGAGA-3’ and reverse, 5’-CAGGGATGATGTTCTGGGCA-3’)

Statistical analysis

All experimental tests were replicated three times, and the data are presented as the means and standard deviation 
(SD). Analyses of all statistical data were accomplished utilizing GraphPad Prism 6 (GraphPad Software, San Diego, CA, 
USA) and SPSS 14.0 (SPSS, Chicago, IL, USA). In the case of two groups being compared, Student’s t-test was employed, 
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and in the case of two independent variables being compared, a one-way analysis of variance (ANOVA) accompanied by 
Bonferroni’s post-hoc test was utilized. Specifically, we executed the Kruskal–Wallis test, accompanied by Dunn’s post-hoc 
test, to analyze the data with nonnormal distribution and/or nonhomogeneous variance. Statistical significance for all the 
statistical data was established at p < 0.05.

Results

AS-IV alleviates cerebral I/R injury and brain edema after MCAO

We developed the MCAO model and administered AS-IV following cerebral I/R damage. The impact of AS-IV therapies 
on long-term neurological impairment metrics, such as death rates and neurological scores, was investigated in this study. 
As depicted in Fig. 2, a decrease in the mortality rates (Fig. 2a) was observed in the MCAO+ AS-IV groups, although there 
were no remarkable differences in contrast with the MCAO group (p > 0.05). A remarkable decrease in neurological scores 
was discovered following MCAO, and AS-IV administration remarkably elevated neurological scores (p < 0.05, Fig. 2b). 
To clarify the EBI and cerebral I/R injury after MCAO, we measured the water content in the brain utilizing the wet–dry 
technique for 72 h following MCAO to assess the extent of brain damage. The findings illustrated a substantial elevation 
in the water content of the brain following MCAO, which was alleviated after AS-IV administration (Fig. 2c). Comparable 
findings were recorded for blood brain barrier (BBB) permeability, which was shown to be considerably increased following 
MCAO, and AS-IV treatment remarkably ameliorated this permeability (Fig. 2d). Additionally, compared to the sham 
operation group, the MCAO group exhibited a greater cerebral infarct size, while the cerebral infarction area was significantly 
improved in the AS-IV cohort (Fig. 2e).
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decreased following AS-IV therapy. (b) Neurological scores of rats in the three groups at 72 h following MCAO. (c) AS-IV alleviates 
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AS-IV decreased neuronal damage and ROS levels after MCAO

Neuronal damage is the main factor that leads to cerebral I/R injury after MCAO. Therefore, the degree of cell death 
in MCAO rats subjected to treatment with and without AS-IV at 72 h following model formation was assessed utilizing 
a TUNEL test. The TUNEL staining findings demonstrated more hippocampal neuronal death following MCAO, which 
was attenuated by AS-IV (Fig. 3a;b). Lipid ROS measurement showed that lipid ROS levels increased in MCAO rats and 
decreased significantly after AS-IV treatment (Fig. 3c).
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AS-IV ameliorates neuroinf﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿lammation after MCAO

As discovered in earlier studies, neuroinflammation performs a critical function in the onset and progression of cerebral 
I/R damage after MCAO40. The inflammatory complex triggers the release of proinflammatory cytokines, such as TNF-
α, IL-6, and IL-1β, and the consequent stimulation of proinflammatory signaling via NF-κB. Therefore, we measured the 
hippocampal expression levels of TNF-α, NF-κB, IL-6, and IL-1β utilizing ELISAs. The expression levels of proinflammatory 
cytokines were considerably enhanced after MCAO, whereas those of proinflammatory cytokines were dramatically attenuated 
following AS-IV administration (Fig. 4a-d). These findings illustrated that AS-IV exerted a substantial anti-inflammatory 
effect against the MCAO-triggered neuroinflammatory response.
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AS-IV ameliorates ferroptosis after MCAO

The previous detection confirmed that lipid ROS levels increased in MCAO rats and decreased significantly after 
AS-IV treatment (Fig. 3c). Further studies showed that the levels of MDA (Fig. 5a) and iron content (Fig. 5b) increased 
significantly after MCAO, and the levels of GSH (Fig. 5c) decreased significantly after MCAO, which was reversed after 
AS-IV administration. Therefore, AS-IV treatment appears to reduce iron content and alleviate lipid peroxidation in rat 
brains after MCAO.Western blot analysis of the expression of ferroptosis-associated proteins after MCAO was utilized to 
assess the influence of AS-IV on ferroptosis (Fig. 5d). The findings of the western blotting assay also revealed that AS-IV 
can lower the levels of the ferroptosis-associated proteins GPX4 and SLC7A11 (Fig. 5e; f). Hence, we postulated that the 
neuroprotective properties of AS-IV are attributed to its ability to suppress ferroptosis.
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AS-IV regulates neuroinflammation and ferroptosis by modulating the Nrf2/HO-1 signaling pathway 
after MCAO

To explore the molecular mechanism whereby AS-IV alleviates early brain injury (EBI) after MCAO, we examined the 
key members in the Nrf2/HO-1 signaling pathway. Therefore, we detected the protein and gene expression profiles of Nrf2 
and HO-1 after MCAO and AS-IV induction by RT‑qPCR and western blotting. The findings from RT‑qPCR illustrated that 
the levels of Nrf2 and HO-1 were elevated following MCAO and alleviated after AS-IV treatment (Fig. 6a; b). Comparable 
findings were recorded by western blotting analysis of the levels of protein expression (Fig. 6c‑e). Therefore, it was postulated 
that AS-IV suppresses EBI by suppressing the Nrf2/HO-1 signaling pathway after MCAO.
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Nrf2/HO-1 inhibitor reversed the neuroprotection of AS-IV after MCAO

Nrf2-targeting siRNA was used to knock down the expression of Nrf2 in the animal MCAO model, which was 
procured from GeneChem (Shanghai, China), to investigate the neuroprotective effects of AS-IV following Nrf2 
downregulation. The neurological scores decreased significantly after the Nrf2 knockdown (Fig. 7a), and the brain 
water content increased significantly after the Nrf2 knockdown (Fig. 7b). TUNEL staining also showed that Nrf2 
knockdown led to significantly aggravated neuronal death (Fig. 7c). These data showed that Nrf2 knockdown reversed 
the neuroprotection of AS-IV after MCAO. Lipid ROS (Fig. 7d) and MDA (Fig. 7e) levels in the MCAO + AS-IV 
+ siRNA group were significantly higher than those in the MCAO + AS-IV + scr-RNA group. The GSH (Fig. 7f ) 
level also decreased significantly after the Nrf2 knockdown. Hence, the anti-ferroptosis effect was blocked after the 
Nrf2 knockdown.
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Figure 7 – Nrf2/HO-1 inhibitor reversed the neuroprotection of AS-IV after MCAO. Knockdown of Nrf2 reversed the neuroprotective 
effect of AS-IV at 72 h post MCAO. (a, b) Neurological scores and brain water content 72 h after MCAO in rats. (c) TUNEL staining. 
Knockdown of Nrf2 enhanced cell death in the hippocampus 72 h after MCAO. (d, f) Quantitative analysis of lipid ROS, MDA, and GSH 
levels. Data are represented as the mean ± SD.

Discussion

In the present study, we examined the therapeutic roles of AS-IV in mitigating EBI in a rat model of MCAO. As illustrated in 
this work, AS-IV plays a neuroprotective role that helps to reduce the severity of EBI after MCAO. We discovered that AS-IV (1) 
improves neurological dysfunction after MCAO, (2) alleviates neuronal damage in vitro, (3) relieves neuroinflammation and prevents 
ferroptosis following MCAO, and (4) the anti-ferroptosis and anti-neuroinflammation properties of AS-IV might be attributed to 
the Nrf2/HO-1 signaling pathway.

AS-IV is a primary active ingredient of the Chinese herb Radix Astragali, which protects against acute cerebral ischemic/
reperfusion/hemorrhagic injury through its antioxidant, anti-inflammatory, and antiapoptotic properties30,41,42. In a rat MCAO 
model, AS-IV relieved cerebral ischemia/reperfusion injury and enhanced neurogenesis, angiogenesis, and neurological 
functional recovery partially by transforming microglia/macrophages from the M1 to the M2 phenotype in a PPARγ-dependent 
manner41. Liu et al.42 also reported that AS-IV protected the integrity of the BBB in LPS-induced mice, the mechanism of 
which might be mediated by activating the Nrf2 signaling pathway. Additionally, AS-IV can attenuate neurological deficits in 
rats with I/R injury and decrease cerebral infarction and neuronal apoptosis by inhibiting the activation of key factors in the 
death receptor pathway and mitochondrial pathway44. In the present study, we also found that AS-IV can improve delayed 
ischemic neurological deficits, reduce cerebral infarction, and decrease neuronal death by modulating neuroinflammation 
and ferroptosis. To our knowledge, this was the first study to explore the anti-ferroptosis effects of AS-IV after I/R injury.

Ferroptosis is a nonapoptotic form of iron-dependent programmed cell death that differs from traditional cell death processes, 
such as apoptosis and autophagy, and is mostly caused by a disturbance of iron homeostasis and accumulation of lipid ROS in 
the cytoplasm11. The classical morphological characteristics of cell death are the disappearance of mitochondrial cristae and 
significantly narrowed mitochondria, thickening of the lipid bilayer membrane, small cell size, and reduced cell connections 
that lead to cell separation11,45. Ahmad et al.46 reported that sesamin induces significant neuroprotection by ameliorating many 
signaling pathways; the level of GSH was markedly reduced and lipid peroxidation increased after ischemic stroke and exhibited 
an effect similar to that in PC-12 cells in an oxygen-glucose deprivation (OGD) experimental model47. Alim et al.48 neuronal 
ferroptosis plays an important role in ischemic stroke, and systemic administration of a brain-penetrant selenopeptide activates 
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homeostatic transcription to inhibit cell death and improve function after ischemic stroke. Recent studies have also demonstrated 
that inhibiting ACSL4 can promote the recovery of neurological function after stroke by suppressing ferroptosis49-51.

The mechanisms and molecules regulating neuroinflammation and ferroptosis are very complex. According to the findings from 
the current research, AS-IV decreases the levels of hippocampal NF-κB, TNF-α, IL-6, and IL-1β production, subsequently inhibiting 
neuroinflammation, and AS-IV can also decrease the levels of ferroptosis. Additionally, we found that the antineuroinflammatory 
and anti-ferroptosis impacts of AS-IV might be linked to the Nrf2/HO-1 signaling pathway. In a PM2.5-mediated lung injury model, 
AS-IV can decrease serum NF-κB, TNF-α, IL-6, and IL-1β and can also improve the oxidative stress level in BALF, restore the GSH 
level in the lung tissue, and reduce the iron content in the lung tissue via the Nrf2/SLC7A11/GPX4 axis 52. AS-IV might play a protective 
role against adriamycin-induced myocardial fibrosis, which may partly be attributed to its antiferroptosis action by enhancing Nrf2 
signaling53. Tang et al.54 also reported that AS-IV inhibited miR-138-5p expression, subsequently increasing Sirt1/Nrf2 activity and 
cellular antioxidant capacity to alleviate ferroptosis, resulting in decreased cell death, which potentially inhibits the DR pathological 
process. Nrf2 pathway activity is thought to restore iron homeostasis, limit ROS production, and upregulate SLC7A11 by reducing 
intracellular iron pools55. In addition to being an antioxidant and cytoprotective gene, HO-1 is also a downstream target of Nrf256. 
As a result, the therapeutic function of AS-IV may be mediated by activating the Nrf2/HO-1 pathway. Future studies should focus 
on the molecular mechanisms by which AS-IV exerts its neuroprotective effects on ischemic stroke.

Conclusion

In summary, our research provides evidence that neuroinflammation and ferroptosis are critical cellular modulatory 
mechanisms that result in EBI following MCAO. We reported the AS-IV-mediated regulation of neuroinflammation and 
ferroptosis by the Nrf2/HO-1 signaling pathway and offered an innovative idea to examine the biological impacts and 
mechanisms involved in the antineuroinflammatory, anti-ferroptosis, and neuroprotective effects of AS-IV.
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