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ABSTRACT

Purpose: Oxidative stress and apoptosis contribute to the pathological basis of doxorubicin (DOX)-induced cardiotoxicity. 
Columbianadin (CBN) is one of the main bioactive constituents isolated from the root of Angelica pubescens. Herein, we 
intended to explore the potential role and molecular basis of CBN in DOX-induced cardiotoxicity. Methods: C57BL/6 mice were 
subjected to DOX (15 mg/kg/day, i.p.) to generate DOX-induced cardiotoxicity. CBN (10 mg/kg/day, i.p.) was administered for 
four week following DOX injection. Results: DOX administered markedly dampened cardiac function, increased cardiac injury, 
excessive reactive oxygen species (ROS) production, and cardiomyocyte loss. These alterations induced by DOX significantly 
alleviated by CBN treatment. Mechanistically, our results demonstrated that the CBN exerts cardioprotection role against DOX 
by up-regulating silent information regulator 1 (Sirt1) and decreasing acetylation of forkhead box O1 (FOXO1). Moreover, Sirt1 
inhibition with Ex-527 significantly blunt the beneficial effect of CBN on DOX-induced cardiotoxicity, including cardiac dysfunction, 
ROS, and apoptosis. Conclusion: Collectively, CBN attenuated oxidative stress and cardiomyocyte apoptosis in DOX-induced 
cardiotoxicity through maintaining Sirt1/FOXO1 signaling pathway. Our results demonstrated that CBN might be used to treat 
DOX-related cardiotoxicity.
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Introduction

Doxorubicin (DOX), a potent anthracycline, is widely utilized as the first-line drugs to treat human neoplasms, including 
leukemias, lymphomas and solid malignancies for several decades, but it’s clinically limited due to its cardiotoxicity1,2. 
Although a lot of molecular mechanisms underlying DOX cardiotoxicity effects have been reported, including iron regulatory 
protein, nitric oxide release, mitochondrial dysfunction, impaired adenosine triphosphate level, hampered cardiac progenitor 
cells, calcium dysregulation, inflammatory mediators, endothelial dysfunction, activation of ubiquitin protease system 
and autophagy, the exact mechanisms is indistinct3. Recently, accumulating researches identified the formation of reactive 
oxygen species (ROS) associated with DOX-related cardiac injury. Excessive ROS could cause harm to cardiomyocyte, lead 
to cell loss, ultimately heart failure4,5. Hence, finding drugs to curb ROS and cardiomyocyte apoptosis may be beneficial to 
the therapy of DOX-induced cardiac injury.
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Columbianadin (CBN) is one of the main bioactive constituents isolated from the root of Angelica pubescens6, and it 
is involved in several biological processes7,8. Previous research indicated CBN could inhibit the strength of voltage-gated 
Ca2+ currents in dorsal root ganglion neurons derived from mice9. Furthermore, CBN can also decreased peak or late 
component of voltage-gated Na+ current (INa) in electrically excitable cells10. Recently, CBN was reported to play role in ROS 
inhibition in RAW 264.7 cells11. Theoretically, CBN is expected to ameliorate DOX-induced cardiac injury via inhibition 
of ROS production.

Silent information regulator 1 (Sirt1) is a well-known ROS regulator. Sirt1 has been widely reported to take part in 
DOX-induced oxidative stress and apoptosis12,13. Forkhead box transcription factor O1 (FOXO1) changes in response 
to cellular stimulation and maintains tissue homeostasis during the above-mentioned physiological and pathological 
processes. Substantial evidence indicates that function of FOXO1 depends on the modulation of downstream targets such as 
apoptosis- and anti-oxidative stress enzymes, and metabolic and immune regulators. The regulation of FOXO1 and its role 
might provide a significant avenue for the prevention and treatment of diseases14. As a regulator of Sirt1, FOXO1 has been 
reported to interacted with Sirt1 and to be involved in several biological process. Sirt1/FOXO1 signaling pathway has 
been verified to contribute to ROS production in several pathological stimulus15-17. Song et al. reported that Sirt1/FOXO1 
signaling involved in DOX-induced liver damage, and Dioscin, one natural product, exhibited protective effects against 
DOX-induced liver damage via suppression of oxidative stress, inflammation, and apoptosis through regulating Sirt1/FOXO1 
signaling18. However, whether CBN could inhibit DOX-induced ROS formation through Sirt1/FOXO1 signaling pathway 
still remains unverified. 

Therefore, the present study aimed to explore the protective effects of CBN in DOX-induced cardiac injury. Our hypothesis 
was that CBN could inhibit DOX-induced cardiotoxicity by regulating Sirt1/FOXO1 signaling pathway. 

Methods

Reagents

DOX was purchased from Sigma (#D1515, St. Louis, United States of America). CBN (purity, 99.85%) was purchased 
from MedChemExpress (#5058-13-9, New Jersey, United States of America). Ex-527 was purchased from Sigma (#E7034, 
St. Louis, United States of America) as well.

Animals

Male 8-week-old C57BL/6 mice were purchased from the Chinese Academy of Medical Sciences and housed in plexiglass 
cages, with 12-h light/dark cycles at 22 ± 2°C, with free access to food and water. Mice were randomly assigned to four groups: 
•	 Normal saline (NS, n = 10) with vehicle (NS-Vehicle, n = 10); 
•	 NS with CBN (NS-CBN, n = 10); 
•	 DOX with vehicle (DOX-Vehicle); 
•	 DOX with CBN (DOX-CBN, n = 10). 

DOX-induced cardiotoxicity was produced according to previous report19. Mice were treated with CBN (10 mg/kg/day, i.p.) 
four weeks after injection of DOX for four weeks to explore the potential role of CBN9. In addition, to further verify the role 
of Sirt1, a Sirt1 specific inhibitor (Ex-527, 1 mg/kg/day, i.p.) for one week at the end of CBN treatment20. All experimental 
procedures were according to the guidance of Guidelines for the Care and Use of Laboratory Animals published by the US 
National Institutes of Health and approved by the Animal Experiment Center of Wuhan Third Hospital (approval number: 
SY2022-001).

https://www.medchemexpress.cn/search.html?q=5058-13-9&ft=&fa=&fp=
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Echocardiography analysis and hemodynamics

Transthoracic echocardiography was performed using a MyLab 30CV as described in previous studies9. Briefly, after 
inhalation anesthesia with 2% isoflurane, mice were placed in a shallow left lateral position. The left ventricular ejection 
fraction (LVEF) and short axis shortening rate (FS) were measured. Hemodynamic analysis was performed as previously 
reported9. Hemodynamic variables included +dP/dt and - dP/dt.

Biochemical analysis

Serum levels of cardiac isoform of Tropnin T (cTnT), lactate dehydrogenase (LDH) and creatine kinase isoenzymes 
(CK-MB) were performed according to commercial kits according to manufacturer’s instructions21. Moreover, to detect 
myocardial oxidative injury, fresh heart samples were collected. The activities of superoxide dismutase (SOD), catalase 
(CAT), and the content of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) by commercial kits were performed 
according to manufacturer’s instructions21.

Reactive oxygen species measurement and TUNEL staining

To detect ROS, DHE staining was conducted. Fresh heart samples cryosections were prepared and stained with DHE 
for 30 min at room temperature. The images were photographed, and the fluorescence intensity of DHE was quantified by 
Image-Pro Plus software. TUNEL staining was performed using a commercial kit as previously described21.

Quantitative real-time polymerase chain reaction and Western blot analysis

The total proteins were extracted from the frozen heart tissues. The quantitative real-time polymerase chain reaction 
(RT-qPCR) was conducted according to previously reported21. The sequences of the primers used for RT-qPCR are presented 
in Table 1. The mRNA levels were calculated using the relative standard curve method, and the calculated mRNA levels 
were normalized by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA level. 

Table 1 – Mouse primers for real-time polymerase chain reaction.

Gene Forward primers Reverse primers

ANP GGAGCAAATCCCGTATACAGTG CTCTGAGACGGGTTGACTTCC

BNP TCAAAGGACCAAGGCCCTAC CTAAAACAACCTCAGCCCGTC

GAPDH CGCTAACATCAAATGGGGTG TTGCTGACAATCTTGAGGGAG

Western blotting was conducted as previously reported21. The primary antibody used in this manuscript were: Sirt1 (#9475, 
1:1000, Cell Signaling Technology), Nrf2 (#ab137550, 1:500, Abcam), HO-1 (#43966, 1:1000, Cell Signaling Technology), 
Bcl2 (#ab196495, 1:500, Abcam), cle-caspase3 (#AF7022, 1:500, Affbiotech), Bax (#9475, 1:2000, Cell Signaling Technology), 
and GAPDH (#ab181602, 1:10000, Abcam). 

Sirt1 deacetylase activity assay and immunoprecipitation of FOXO1 acetylation

Sirt1 deacetylase activity was performed by using a commercial Sirt1 assay kit as previously described22. The 
immunoprecipitation of FOXO1 acetylation was conducted as previously described18. The primary antibodies used in this 
manuscript were anti-acetylated lysine (#AcK-103, Cell Signaling Technology) or anti-FOXO1 (#PA5-104560, ThermoFisher)22.

Statistical analysis

All data were presented as mean ± standard error of the mean (SEM). Differences among three or more groups were 
compared using the one-way analysis of variance (ANOVA) analysis followed by Tukey’s test. P < 0.05 was considered 
statistically significant.
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Results

CBN inhibited DOX-induced cardiac dysfunction in mice

Figure 1a showed the study protocol. DOX treatment led to massive loss of cardiomyocytes, indicated by reduced 
heart weight (HW)/tibia length (TL) ratio (Fig. 1b). Previous study also demonstrated that DOX could induce cardiac 
hypertrophy. Our study verified DOX could increase cardiac hypertrophy, which exhibited by increased ANP and BNP 
mRNA expression (Figs. 1c and 1d). In addition, we found that DOX-induced an impaired cardiac function, which was 
exhibited by reduced EF, FS and ± dP/dt (Figs. 1e-1h).

Then, we next investigated whether the DOX administered caused cardiac injury. The results suggested that DOX 
markedly increased cardiac injury, which was shown as elevated CK-MB, cTnT and LDH (Figs. 1i-1k). Unsurprisingly, 
all above alterations induced by DOX treatment could be mitigated by CBN systematic administration. Collectively, we 
concluded that CBN could alleviate DOX-induced cardiotoxicity in mice.

*

*

*

*

*

*

*

*

*

*

#

#

#

#

#

#

#

#

#

#

10

8

6

4

2

0

50

40

30

20

10

0

5

4

3

2

1

0

6

4

2

0

8000

6000

4000

2000

0

6

4

3

2

1

0

8000

6000

4000

2000

0

4

3

2

1

0

100

80

60

40

20

0

4

3

2

1

0

(b)(a)

(f)

(j)

(d)

(h)

(c)

(g)

(k)

(e)

(i)

Adaptation
DOX-incuced cardiotoxicity
Cardioprotection role of CBN

H
W

/T
L 

(m
g/

m
m

)
FS

 (%
)

cT
nT

 le
ve

l (
fo

ld
)

BN
P 

m
RN

A
 (f

ol
d)

+d
P/

dt
 (m

m
H

g)

A
N

P 
m

RN
A

 (f
ol

d)
+d

P/
dt

 (m
m

H
g)

LD
H

 le
ve

l (
fo

ld
)

EF
 (%

)
C

K
-M

B 
le

ve
l (

fo
ld

)

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

NS DOX

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

Vehicle CBN

DOX 
injection, i.p.

CBN 
injection, i.p. Sacrifice

0 1 weeks 5 weeks 9 weeks

CBN: columbianadin; DOX: doxorubicin; CK-MB: creatine kinase isoenzymes; cTnT: cardiac isoform of Tropnin T; LDH: lactate dehydrogenase; NS: 
normal saline; *P < 0.05 vs. NS-Vehicle group. #P < 0.05 vs. DOX-Vehicle group. 

Figure 1 – CBN inhibited DOX-induced cardiac dysfunction in mice. (a) Experimental protocol. (b) Statistical results of 
heart weight (HW)/tibia length (TL) (n = 10 per group). (c and d) Results of ANP and BNP mRNA levels (n = 6 per group). 
(e and f ) Quantitative analysis of ejection fraction (EF), fraction shortening (FS) (n = 10 per group). (g and h) Quantitative 
analysis of +dP/dt and -dP/dt (n = 10 per group). (i-k) Statistical results of serum levels of CK-MB, cTnT and LDH (n = 10 

per group). 
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CBN decreased DOX-induced reactive oxygen species in hearts

Oxidative stress was widely reported to be involved in the pathological mechanism of DOX-induced cardiotoxicity23. 
Then, we tested ROS generation in the heart. As depicted in Figs. 2a and 2b, DHE staining revealed that DOX treatment 
induced enhanced DHE fluorescence intensity in vivo and CBN administered significantly decreased ROS production. 
Western-blot results manifested that CBN up-regulated Bcl2 and HO-1 (Figs. 2c and 2d). Furthermore, we examined the 
serum biomarkers of ROS and found CBN curbed DOX-induced ROS over-production, which depicted by decreased serum 
4-HNE, MDA levels and increased activity of CAT and SOD, compared to DOX-Vehicle group (Figs. 2e-2h). All these clues 
revealed an antioxidant effect of CBN against DOX-induced cardiac injury.
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Figure 2 – CBN decreased DOX-induced ROS in hearts. (a) Representative images and (b) quantitative results of DHE stained heart 
sections (n = 6 per group). (c and d) Representative Western blot and quantitative data (n = 4 per group). (e-h) The serum content of 
4-HNE, MDA, CAT activity and SOD activity (n = 5 per group).

CBN protected DOX-induced cardiomyocytes apoptosis in vivo

We then checked whether CBN could alleviate DOX-induced cardiomyocytes apoptosis. The TUNEL staining indicated 
that DOX treatment led to cell loss, and CBN administered markedly attenuated the alterations (Figs. 3a and 3b). This was 
further verified by western-blot results. CBN significantly reduced the protein levels of Bax and C-caspase3, elevated the 
Bcl-2 protein level following DOX administered (Figs. 3c and 3d).
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Figure 3 – CBN protected DOX-induced cardiomyocytes apoptosis. (a and b) Representative TUNEL staining images and the 
quantitative results for apoptosis in heart tissues (n = 6 per group). (c and d) Representative Western blot and quantitative data (n = 4 
per group). 

Sirt1/FOXO1 signaling pathway contributes to the cardioprotective role of CBN 

Sirt1/FOXO1 signaling pathway was responsible for the ROS generation and cardiomyocytes apoptosis according to 
previously reported24. We then checked its role in this study. The results indicated that DOX down-regulated Sirt1 and 
up-regulated FOXO1, and CBN administered significantly increased Sirt1 and reduced FOXO1 protein expression (Figs. 4a 
and 4b). Sirt1 can deacetylate FOXO1 to exert its cardioprotection effect. We then tested Sirt1 deacetylation activity and 
found that DOX dampened Sirt1 deacetylation activity, and CBN treatment retained Sirt1 deacetylation activity (Fig. 4c). 
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Figure 4 – Sirt1/FOXO1 signaling pathway contributes to the protective role of CBN against DOX-induced ROS and apoptosis. (a 
and b) Representative Western blots, immunoprecipitation, and quantitative results of the Sirt1, Ac-FOXO1 and FOXO1 proteins 
(n = 4 per group). (c) Quantitative results of the Sirt1 deacetylation activity (n = 6 per group). 

Inhibited Sirt1 offset the cardioprotective effect of CBN

To further confirm the role of Sirt1/FOXO1, we treated mice with Ex-527, a specific inhibitor of Sirt1. The results indicated 
that the decreased ROS over-production and cardiomyocytes apoptosis induced by CBN in DOX administered hearts were 
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offset by Ex-527 (Figs. 5a-5d). Similar to the results of immunofluorescence staining, inhibitor Sirt1 with Ex-527 counteracted 
the antioxidant and anti-apoptosis effects of CBN, as indicated by the decreased protein expression of Nrf2 and HO-1, increased 
C-caspase3, Bax and decreased Bcl2 compared to DOX + CBN group (Figs. 5e-5g). Accordingly, we then checked the abolished 
role of Ex-527 in Sirt1/FOXO1 and found that Ex-527 treatment inactivated Sirt1/FOXO1 signaling, as demonstrated by 
decreased protein expression of Sirt1 and increased Ac-FOXO1 compared to DOX + CBN group (Fig. 5e and 5f). 
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Inhibited Sirt1 abolished the protective effect of CBN on DOX-induced cardiac dysfunction in hearts

Figure 6a showed the study protocol of the offset role of Sirt1 inhibition. DOX-treated mice following CBN treatment 
depicted elevated LVEF, Left ventricular fractional shortening (LVFS), ± dP/dt, HW/TL ratios reduced ANP, BNP mRNA 
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(Figs. 6b-6h), and the improved cardiac function by CBN treatment were offset by Ex-527 administered (Figs. 6b-6h). 
Moreover, we also checked Sirt1 inhibition on biomarkers of cardiomyocyte damage. Our data indicated that CBN markedly 
decreased DOX-induced cardiomyocyte damage, which showed as reduced serum levels of CK-MB, cTnT and LDH, and 
these protective effects of CBN were reversed by Ex-527 administered (Figs. 6i-6k). Collectively, these results verified that 
CBN ameliorated DOX-induced cardiotoxicity by activating Sirt1/FOXO1 signaling pathway.
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Figure 6 – Inhibited Sirt1 partially abolished the protective effect of CBN on DOX-induced cardiac dysfunction. (a) Experimental protocol. 
(b) Statistical results of heart weight (HW)/tibia length (TL) (n = 10 per group). (c and d) Results of ANP and BNP mRNA levels (n = 6 per 
group). (e and f) Quantitative analysis of ejection fraction (EF) and fraction shortening (n = 10 per group). (g and h) Quantitative analysis 
of +dP/dt and -dP/dt (n = 10 per group). (i-k) Statistical results of serum levels of CK-MB, cTnT and LDH (n = 10 per group).

Discussion

DOX is an effectively therapy strategy clinically against several cancer. However, its clinical application was limited causing 
its side-effects, especially the cardiotoxicity, after long-term use, due to its highly affinity to the heart that eventually provokes 
cardiac injury and heart failure2. Hence, a promising pharmacological agent to curb this process is needed. Herein, we identified 
the cardioprotective role of CBN in DOX-related cardiac injury, cardiac dysfunction and elucidated the possible mechanisms. 
It is presumably associated with the antioxidant and anti-apoptotic actions of CBN. Mechanistically, we provided evidence that 
CBN activated Sirt1, decreased FOXO1 acetylation, and Ex-527 treated markedly reversed the protective role of CBN (Fig. 7). 

DOX has been shown to induce cardiomyocyte damage through redox cycling and ROS production, which has been 
confirmed by multiple studies to be involved in one of the key processes in DOX-induced cardiomyocyte damage25. 
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DOX-induced ROS over-production often due to a disturbed antioxidant defense system in the myocardium, which leads to 
a destruction of subcellular structure and activation of apoptotic cascades and finally causes heart failure26,27. In the present 
study, high levels of MDA, 4-HNE and low levels of SOD and CAT activities were found in myocardium treated with DOX. 

DOX

Myocardial 
hypertrophy

Oxidative 
stress

Apoptosis

Sirt1/FOXO01 
signaling pathway

Cardiac injury

Cardiotoxicity

CBN

CBN: columbianadin; DOX: doxorubicin; Sirt1: silent information regulator 1; FOXO1: forkhead box O1.
Figure 7 – Schematic summary: mechanisms of CBN inhibited DOX-induced cardiotoxicity via regulating Sirt1/FOXO1 signaling pathway.

Moreover, low protein expression of antioxidant indicators (Nrf2 and HO-1) was observed in DOX-induced myocardium, 
which was consistent with previous reported. Hu et al. also found high levels of MDA, 4-HNE and low levels of SOD and 
CAT activities in myocardium treated with DOX21. Targeting oxidative stress, previous studies indicated that several drugs 
including dexrazoxane, natural plant extracts, animal extracts, or chemically synthesized artificial antioxidants can decrease 
ROS formation, or elevate antioxidants, ultimately alleviate DOX-induced cardiac injury4,28. Among these agents, only 
dexrazoxane has been proven effective29. However, long-term and high-dose use will cause severe side effects. 

Hence, another drug with effectiveness and safety needs to be explored. CBN is one of the main coumarin constituents 
isolated from Angelica pubescens, and it has been found to be involved in several diseases7,8. Previous studied mainly focused 
on inflammatory response. Zhang et al. aimed to investigate the anti-inflammatory effect of CBN on lipopolysaccharide 
(LPS)-stimulated THP-1 cells and found that CBN suppressed the LPS-mediated inflammatory response by inhibiting 
NOD1/NF-κB activation and concluded that CBN may be employed as a therapeutic agent for multiple inflammatory 
diseases30. However, whether CBN exhibited anti-oxidative stress effect remains unknown. In this paper, we uncovered an 
antioxidant role of CBN, which was exhibited by decreased serum levels of 4-HNE, MDA and increased activity of CAT and 
SOD. Moreover, in line with previously reported, we also proven that CBN played an anti-apoptotic role in this study8,30. 

Another question is raised: how did CBN exhibit antioxidant and anti-apoptotic effects against DOX-induced cardiotoxicity? 
Many mechanisms have been explored to be involved in DOX-induced ROS and apoptosis. Hu et al. found that cAMP/
PKA/Sirt1 pathway contributes to DOX-induced ROS and apoptosis21. Moreover, Liu et al. indicated that AMPK/PGC1α 
pathway activation may represent a new mechanism for melatonin exerted protection against acute DOX cardiotoxicity 
through alleviation of oxidative stress and apoptosis31. 

In the present study, we intended to explored whether Sirt1/FOXO1 signaling involved in the cardioprotective effect of CBN 
in DOX-induced oxidative stress and apoptosis. Sirt1 is a NAD+ dependent histone deacetylase and plays indispensable roles in 
multiple pathophysiological processes, ranging from cell proliferation, differentiation, migration, aging to death. Previous study 
reported that Sirt1 serve as a sensing regulator involved in oxidative stress stimuli, and DOX could inhibit the activation of 
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Sirt1, inhibited with Sirt1 aggravated DOX-induced cardiotoxicity19,32. Wang et al. demonstrated that FGF21 enhanced Nrf2 
transcription activity and reduced cardiac ROS generation via Sirt1, while Sirt1 silence abolished this antioxidant effect33. 

Moreover, Sirt1 activation could lead to p53 deacetylation and ultimately decreases cell apoptosis, whereas inhibiting 
Sirt1 augments p53 activity and aggravates apoptosis34. A recent study utilized a Sirt1 genetically modified mouse model and 
found that Sirt1 knockdown in heart (Sirt1f/f; MHCcre/+) mice by DOX treatment was more severe in cardiac dysfunction, 
apoptosis and DNA damage, and active Sirt1 with resveratrol could reverse DOX-related cardiac dysfunction35. Another study 
also manifested that both Sirt1 over-expression and Sirt1 agonist resveratrol can both reduced DOX-induced ROS production 
and cardiomyocyte apoptosis36. Similar to the previous results, our data indicated a reduced protein expression of Sirt1 
following DOX administered. Meanwhile, activating Sirt1 by CBN could significantly alleviate DOX-induced cardiac 
injury, and Sirt1 inhibition counteracted the advantageous effects of CBN in DOX-induced cardiotoxicity, manifesting a 
cardioprotective role of CBN was mediated by Sirt1. 

It is reported that Sirt1 exerts anti-ROS effect through acetylation with FOXO137. Sirt1 has a NAD(+) binding domain 
and modulates the acetylation status of FOXO1. Sirt1 inhibits oxidative stress by causing deacetylation of FOXO1, enhancing 
its ability to bind to FOXO1 DNA38. Sin et al. provided evidence that DOX could decrease Sirt1 deacetylase activity, Sirt1 
activator resveratrol could ameliorate the augmentation of pro-apoptotic markers including p53, Bax, and caspase 3 activity 
caused by DOX by decreasing DOX-induced increases in acetylation of FOXO139. 

Hence, we also intended to examine whether Sirt1/FOXO1 signaling linked to the beneficial role of CBN in this study. 
Our results showed that the protein expression and deacetylase activity of mice were significantly decreased after DOX 
stimulation, while CBN significantly enhanced the protein expression and deacetylase activity of Sirt1, resulting in a decrease 
in the acetylation level of FOXO1. The reversal experiment further demonstrated that inhibition of Sirt1 deacetylase activity 
with Ex-527 abolished the reversal effect of CBN on the DOX-induced increase in FOXO1 acetylation, thereby counteracting 
the protective effect of CBN on cardiac function.

However, there were some limitations in this manuscript. First, in this study, mice were treated with CBN four weeks 
after injection of DOX for four weeks to explore the potential role of CBN. However, the protective role of CBN was not 
evaluated at a shorter time. Meanwhile, CBN attenuated the effects of the chemotherapeutic drug DOX, whether CBN act 
on other chemotherapeutic agents has not been assessed.

Conclusion

In summary, our study for the first time revealed that CBN treatment significantly ameliorated DOX-induced cardiotoxicity 
via oxidative stress and cardiomyocyte apoptosis. CBN administration caused Sirt1 activation and increased deacetylase 
activity of Sirt1, subsequently resulting in a decrease in the acetylation level of FOXO1 to restrain ROS over-formation and 
apoptosis. Our results indicated CBN as a promising therapeutic agent for the treatment of DOX-induced cardiac injury.
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