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ABSTRACT

This paper deals with the global stabilization problem of
linear systems with saturating actuators. Global stabi-
lization is achieved by scheduling a parameterized con-
trol law constructed from a parameterized solution of
the algebraic Riccati Equation (ARE). The scheduling
algorithm is guided by the magnitude of the control
signal and reduces conservativeness of similar existing
schemes. Several important properties of this algorithm
regarding its functionality, design parameters, imple-
mentation issues, and capabilities are discussed. Sim-
ulation results for a case study are included illustrating
the main features of the control scheme and the overall
performance of the closed loop system.
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RESUMO

Este trabalho trata do problema da estabilização global
de sistemas lineares com saturação nos atuadores. A es-
tabilização global é obtida por meio de uma estratégia
de escalonamento de ganho, aplicada a uma lei de con-
trole parametrizada constrúıda a partir de uma famı́lia
de soluções da equação de Riccati (ARE). O algoritmo
de escalonamento é guiado pela magnitude do sinal de
controle e reduz a conservatividade de algoritmos simi-
lares existentes. Diversas propriedades deste algoritmo
são discutidas relativamente a sua funcionalidade, parâ-
metros de projeto, aspectos de implementação e poten-
cialidades. São inclúıdos resultados de simulação para
um estudo de caso ilustrando as principais propriedades
do algoritmo e o desempenho geral do sistema em malha
fechada.

PALAVRAS-CHAVE: Saturação, estabilização global, es-
calonamento de ganho, equação de Riccati.

1 INTRODUCTION

Stabilizing linear systems with saturating actuators has
been a fast growing research topic in the last decade.
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While local stabilization is always possible, achieving
global stabilization and/or enlarging the region of at-
traction are more delicate issues. Necessary and suffi-
cient conditions for global stabilizability of linear sys-
tems with bounded controls have been given in (Sontag
and Sussmann, 1990). The requirement is that the
pair (A, B) be stabilizable and all the eigenvalues of A
have non-positive real part, a requirement that is equiv-
alent to the linear system being asymptotically null-
controllable with bounded controls (Schmitendorf and
Barmish, 1980).

In general, the global stabilization of linear systems
with saturation requires nonlinear feedback (Sontag and
Sussmann, 1990; Teel, 1992; Sussmann et al., 1994; Teel,
1996; Megretski, 1996). As a matter of fact, even a chain
of 3 or more integrators cannot be globally stabilized by
linear feedback (Fuller, 1969). Nonetheless, semi-global
stabilization by linear feedback was proven in (Lin and
Saberi, 1993; Teel, 1995b; Saberi et al., 1996) by synthe-
sizing linear feedback control laws based on a parameter-
ized family of solutions of both the Riccati equation and
the H∞-type Riccati equation. Semi-global stabilization
with performance improvements is also considered in
(Wredenhagen and Belanger, 1994; Saberi et al., 1996).

Generating control laws on the basis of parameterized
ARE (algebraic Riccati equation) solutions led to im-
portant achievements in the control of this class of sys-
tems. The main property of this construction is the
possibility of synthesizing a nested family of ellipsoidal
sets which can be rendered positively invariant for the
closed-loop system by appropriately choosing the value
of the parameter in the parameterized control law. Such
property has been exploited to achieve global stabiliza-
tion by implementing an on-line scheduling of the pa-
rameterized control law according to the evolution of
the state (Teel, 1995a; Megretski, 1996; Lin, 1998). The
general intuition is to use low gain when the state is large
(to ensure stability) and to allow the gain to be higher
when the state is small (to speed up convergence). The
scheduling of the parameterized control law is also a de-
gree of freedon that can be used to improve performance
of the closed-loop system over to well know low gain de-
signs for semiglobal stabilization.

The estimates based on ellipsoidal sets, however, are
in general conservative, a fact that limits closed-loop
system performance since the assigned gain is usually
smaller than it could be. An attempt to reduce such con-
servativeness was made in (Reginatto et al., 2000b; Regi-
natto et al., 2000c), where a scheduling mechanism
guided directly by the magnitude of the control signal
was proposed. The scheme does not employ estimates

based on ellipsoidal sets and allows the scheduling pa-
rameter to be non-monotone in time as opposed to the
schemes in (Megretski, 1996; Lin, 1998).

In this paper we focus on the scheme of (Reginatto
et al., 2000b; Reginatto et al., 2000c) to schedule a pa-
rameterized control law constructed from a parameter-
ized ARE solution. The scheme is given a thorough
analysis revealing its functionality, degrees of freedom,
design parameters, and performance achievements. An
illustrative case study is worked out showing the main
features of the scheduling algorithm.

The paper is organized as follows. The main theory is
presented in Section 2 where the scheduling algorithm
is presented. Section 3 analyzes the functionality of the
scheduling algorithm, the design parameters, and im-
plementation issues. In section 4, simulation results are
presented for a case study illustrating the behavior of
the algorithm. Finally, the paper is concluded in sec-
tion 5. Proofs are included in the appendix.

2 THE SCHEDULING ALGORITHM

We consider linear systems with input saturation given
in the form

ẋ = Ax + Bσ(u) (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
and σ(·) is a locally Lipschitz decentralized saturation
function which is globally bounded and satisfies

u′ σ(u) ≥ u′ sat∆(u), ∀u ∈ Rm (2)

where sat∆(u) is the standard decentralized saturation
function of magnitude ∆, i.e.,

sat∆(u) = [sat∆(u1), · · · , sat∆(um)]′ (3)

where sat∆(ui) = sign(ui) max{|ui|, ∆}. Also assume
that the pair (A, B) is stabilizable.

To consider the global stabilization problem, we intro-
duce the following necessary assumption (Sontag and
Sussmann, 1990),

Assumption 1 No eigenvalue of A has strictly positive
real part1.

In the next lemma (see (Teel, 1995a)) we introduce the
main ingredients of the construction of the parameter-
ized control law which will be employed in our schedul-
ing algorithm. This control law is constructed on the

1Notice that the plant may be open-loop unstable, although it
cannot contain any exponentially unstable mode (eigenvalue with
strictly positive real part).
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basis of a parameterized family of solutions of a param-
eterized Algebraic Riccati Equation. For a proof of this
lemma see (Teel, 1995a).

Lemma 1 Let Q : [1,∞) → Rn×n be a continu-
ously differentiable matrix valued function such that
limξ→∞ Q(ξ) = 0 and, for all ξ ∈ [1, ∞),

Q(ξ) > 0,
∂Q

∂ξ
(ξ) < 0 . (4)

Then, for system (1), there exists a continuously differ-
entiable matrix valued function P (ξ) satisfying for all
ξ ∈ [1, ∞),

A′P (ξ) + P (ξ)A − P (ξ)BB′P (ξ) + Q(ξ) = 0 (5)

P (ξ) > 0, ∂P
∂ξ (ξ) < 0 (6)

limξ→∞ P (ξ) = Po ≥ 0 . (7)

Moreover, if Assumption 1 holds, then Po = 0.

Using the matrix valued function P (ξ) generated accord-
ing to Lemma 1, we generate the parameterized control
law

u = −B′P (ξ)x . (8)

As ξ ranges from 1 to ∞, P (ξ) approaches the constant
Po matrix. In this way, the magnitude of the control
“gain” can be varied by varying the parameter ξ. Since
P (ξ) is monotone, ξ = 1 yields the largest control “gain”
and will be referred to as the nominal value for ξ. In
the case Po = 0, the controller “gain” can be made as
small as desired by choosing large values of ξ. The abil-
ity to change the control gain by varying ξ is the main
property used by scheduling algorithms to achieve global
stabilization.

Most scheduling algorithms (Teel, 1995a; Megretski,
1996; Lin, 1998) determine ξ by looking at the level sets
of a ξ-dependent quadratic positive definite function of
the state, for instance,

Trace (B′P (ξ)B) x′P (ξ)x ≤ ρ, ∀t ≥ 0 . (9)

As a result of the scheme, the state trajectory is confined
to ellipsoidal positive invariant sets and the scheduling
parameter ξ results monotone in time. These are the
properties that we want to focus on, as they inherently
introduce some degree of conservativeness in the scheme,
leading to controller“gains” that are smaller than stabil-
ity itself would require. So, we are interested in avoiding
such properties in the control scheme, while still guaran-
teeing global asymptotic stability. An attempt in such

direction is made in the scheduling algorithm presented
next (Reginatto et al., 2000b; Reginatto et al., 2000a).

The following definition states the main ingredients for
the scheduling algorithm.

Definition 1 Consider system (1) and the notation of
Lemma 1.

1. Let α ∈ (0, 1), ρ ∈ (0, 2∆], and β ∈
[0, min{1, (2∆ − ρ)/ρ}] be real constants. Define,

M(ξ) := αQ(ξ) + βP (ξ)BB′P (ξ) (10)

v(x, ξ) := |B′P (ξ)x| . (11)

2. Let L : Rn × R≥0 → [0, 1] be a globally Lipschitz
function satisfying

{

L(x, ξ) = 1, if v(x, ξ) ≥ ρ
L(x, ξ) < 1, if v(x, ξ) < ρ .

(12)

3. For κ ∈ (0, 2∆) let r : R × Rn → R≥0 be a lo-
cally Lipschitz function satisfying for all (ξ, x) ∈
[1, ∞) × {Rn\{0}},

−r(ξ, x) x′ ∂P
∂ξ x ≤ x′M(ξ)x

r(ξ, x) > 0, if v(x, ξ) ≤ κ/2
r(ξ, x) = 0, if v(x, ξ) ≥ κ .

(13)

4. Let G(x) := {ξ ∈ [1,∞) : v(x, ξ) ≤ ρ}.

The scheduling algorithm (Reginatto et al., 2000b;
Reginatto et al., 2000c) consists in an operator
G(ξ(0), x(t), L(x(t)), ξ(t)), with ξ(0) ∈ G(x(0)), that
yields ξ(t) according to

ξ(t) = min ζ,
ζ ∈ [ξ(t−), ∞)
v(x(t), ζ) ≤ ρ

if L(x(t), ξ(t)) = 1 (14)

ξ̇ = −sat(k (ξ − 1)) r(ξ, x), otherwise (15)

where k is a positive constant (design parameter) and
ξ(t−) := limτ→t− ξ(τ).

With the scheduling algorithm (14)-(15) for the control
law (8), asymptotic stability is achieved for the closed-
loop system, as stated in the next theorem.

Theorem 2 Let P (ξ) and Q(ξ) be as in Lemma 1.
Consider the notation introduced in Definition 1. Then,
system (1) with the control law (8) and the scheduling
algorithm (14)-(15) is such that x = 0 is locally expo-
nentially stable. If, in addition, the Assumption 1 holds,
then x = 0 is globally asymptotically stable. Moreover,
in any case, ξ(t) → 1 as t → ∞.
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Proof. See appendix.

The scheduling algorithm (14)-(15) is guided by the sig-
nal v(x(t), ξ(t)), which corresponds to a measure of the
magnitude of the control signal u. The actual constraint
imposed by the scheduling algorithm is that

v(x(t), ξ(t)) = |B′ P (ξ(t)) x(t)| ≤ ρ, ∀t ≥ 0 . (16)

By comparing (16) and (9) one can grasp the amount
of conservativeness reduction achieved by our schedul-
ing algorithm. Although we have used the Euclidean
norm to define v(x, ξ) as a measure of the magnitude
of the control signal, it is actually possible to employ
any p-norm for p ∈ [1,∞). This may be of interest for
multi-input systems since, in this case, v(x, ξ) will give
different estimates for different p-norms.

3 PROPERTIES OF THE SCHEDULING
ALGORITHM

The scheduling algorithm has the nature of a hybrid
system as the dynamics of ξ(t) are given either by (14) or
(15). The transitions from one to another dynamics for
ξ(t) are dictated by the function L which depends on the
state x and the scheduling parameter ξ. The funcion L
is actually an indicator for the magnitude of the control
signal, as measured by the function v(x, ξ). Since the
control signal depends on ξ, the scheduling mechanism
(14)-(15) is actually defined as an implicit relation in
ξ(t). The following reasoning will clarify this issue, while
addressing the functionality of the scheduling algorithm,
and show that the scheme is in fact well defined.

Recovery phase. When the control signal is small
(L < 1), the scheduling parameter ξ(t) is given by (15).
Since r is non-negative, ξ(t) is non-increasing in time. In
particular, in the region where r(ξ, x) > 0, ξ(t) is strictly
decreasing. The saturation function in (15) plays its
role when ξ(t) is close to one, in which case it guar-
antees ξ = 1 to be an equilibrium point. Thus, when
the control signal is small, the scheduling parameter is
non-increasing and converging to 1, its nominal value.
This phase of the scheduling parameter constitutes the
recovery phase, in which the “gain” of the controller is
pushed towards its maximum value.

Attaining phase. On the other hand, when the mag-
nitude of the control signal grows large (L = 1), the
scheduling parameter ξ(t) is given by (14). The aim
in this phase is to reduce the controller “gain” as much
as necessary to prevent the control signal to exceed the

amount of saturation as given by the parameter ρ. This
is achieved by solving the minimization problem in (14).
It guarantees v(x(t), ξ(t)) ≤ ρ for all t, thus yielding the
desired property. In fact, the equality v(x(t), ξ(t)) = ρ
holds during the time (14) is active. This is possible
as long as the required gain is larger than the limit
value determined by Po, thus characterizing the nature
of the local stability property in Theorem 2. In case the
Assumption 1 holds, for any x we can find a ξ, large
enough, such that v(x, ξ) = ρ, since limξ→∞ P (ξ) = 0.

Discontinuity. In the minimization problem (14) ξ is
constrained to be non-decreasing, which is a fundamen-
tal property to ensure stability of the closed-loop system.
Since v(x, ξ) is not necessarily monotone in ξ, constrain-
ing ξ(t) to be non-decreasing may lead to discontinuities
in the scheduling parameter. However, such discontinu-
ity in ξ(t) does not cause a discontinuity in v(x(t), ξ(t))
by the definition of the minimization problem. Thus, the
actual control signal u is not necessarily discontinuous
at such points. For instance, in the single-input case, the
regularity of the parameterization and the continuity of
v(x(t), ξ(t)) in time implies continuity of u(t).

Transitions. Let us now consider the transition from
(14) to (15) and vice-versa. Assume, for instance, that
the system initialization satisfies L(x(0), ξ(0)) < 1. As
the system evolves in time, the condition L(x(t), ξ(t)) =
1 may be attained. If that is the case, the definition
of the function r(ξ, x) ensures that ξ(t) is constant as
the condition L(x(t), ξ(t)) = 1 is approached. Thus,
only the state is able to cause a transition from (15)
to (14). On the other hand, if the closed-loop system
is operating with L(x(t), ξ(t)) = 1, the minimization
problem ensures v(x(t), ξ(t)) = ρ. Thus, similarly, only
the state is able to cause a transition from (14) to (15).
As a result, the transition is smooth since it is guided
only by the state. Moreover, since L is continuous as a
function of time, the scheduling algorithm can always be
started by checking the value of L and then computing
ξ(t). This solves the implicit problem in the statement
of the scheduling algorithm.

Remark 1 As far as the discontinuity issue is con-
cerned, it is important to remark that there is no pos-
sibility for fast switching in the parameter ξ. As a
matter of fact, discontinuities can only happen when
v(x(t), ξ(t)) = ρ, in which case ξ(t) is given by (14). By
the smoothness of the function v and the nature of the
minimization problem, one can show that discontinuity
points are isolated and only a finite number of them can
exist in any bounded time interval. A more compre-
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hensive treatment of this issue is given in the proof (see
appendix).

Parameters: The most important parameter in the
scheduling algorithm is the function r(ξ, x). It deter-
mines the rate of recovery of the scheduling parameter
ξ(t). In general, the faster the recovery, the higher the
controller “gain” and thus the better the performance.
Thus, we are in general interested in choosing r as large
as possible. A simple and natural choice is

r(ξ, x) = r̃(ξ, x) W (v(x, ξ)) (17)

r̃(ξ, x) := −
x′M(ξ)x

x′ ∂P (ξ)
∂ξ x

(18)

where W (·) is a locally Lipschitz function satisfying

W (s) :=

{

1, s ≤ κ/2
0, s ≥ κ .

(19)

An alternative choice for r(ξ, x) is as follows. Let r̃ :
R → R>0 be a locally Lipschitz and globally bounded
function satisfying

−r̃(ξ)
∂P (ξ)

∂ξ
≤ M(ξ), ∀ξ ∈ [1, ∞) . (20)

Then, we just replace r̃(ξ, x) in (18) by the one in (20).
The function r̃(·) in (20) can be given a closed form and
it is computationally less expensive than (18). The price
paid is that the recovery of ξ may become considerably
slower.

The parameter α affects the function r through M(ξ). A
larger α allows for a larger r and, consequently, a faster
recovery rate for ξ. However, the actual effect on the
closed-loop system performance depends on the param-
eterized ARE solution at hand, namely, whether Q(ξ)
dominates or not the right hand side of M(ξ). More-
over, the convergence rate that can be proved for the
state depends on (1−α) a fact that may lead to a trade-
off in the choice of α. The parameter β plays as similar
role as α with respect to the term P (ξ)BB′P (ξ).

The role of the parameter κ is to ensure a smooth tran-
sition between the increasing (14) and recovery (15)
phases of the scheduling algorithm. Its effect on the
actual recovery rate can be minimized by choosing κ
close to ρ.

Remark 2 The admissible level of saturation is set by
the parameter ρ. If of interest, saturation of the control
signal can be avoided by choosing ρ ≤ ∆. On the other
hand, by exploiting the gain margin of the control law

(8) we can allow ρ up to 2∆, thus possibly improving
the closed-loop system performance. However, in the
presence of uncertainties in the control input, it may be
wise to set ρ not close to its limiting value.

Implementation issues: The minimization problem
(14) required in the scheduling mechanism consists in
a nonlinear programming problem. However, since the
decision variable is scalar (one-dimensional), the prob-
lem is easily tractable with standard algorithms. For
instance, a simple search combined with the bisection
algorithm can be successfully applied.

Since actual implementation of control algorithms are
in general in discrete-time, it is important to consider
the effect of the discretization of the scheduling algo-
rithm. In fact, a discrete-time implementation is highly
desirable since the continuous solving of the minimiza-
tion problem is not practical. A natural approach is
to employ fast sampling and a discrete-time approxima-
tion for (15). In this case, however, the result will be
only semi-global, i.e., stability of the origin can only be
guaranteed for initial conditions in a certain compact set
in the state space. The smaller the sampling time, the
larger the stability domain, this being the meaning of
semi-global. Nonetheless, the result is still satisfactory
for most practical applications.

4 SIMULATION RESULTS

The following example is taken from (Lin, 1998) and
consists in a chain of 2 integrators with state-space rep-
resentation given by

ẋ =

[

−1 1
−1 1

]

x +

[

0
1

]

sat(u) (21)

where the control signal is constrained by a standard
saturation function of magnitude one. The parameter-
ized solution of the ARE (Lemma 1) is constructed for
Q(ξ) = (1/ξ) I. It is given in closed form by (Lin, 1998)

P (ξ) =





g
(

1 +
√

2
ξ − g

) √

2
ξ − g

√

2
ξ − g g



 (22)

where g :=

√

1
ξ + 2

√

2
ξ .
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The function r(ξ, x) is chosen according to (17) with

r̃(ξ, x) = −
x′M(ξ)x

x′ ∂P (ξ)
∂ξ x

(23)

W (s) =







1, s ≤ 0.95κ
20

(

1 − s
κ

)

, 0.95κ < s < κ
0, s ≥ κ

(24)

for α = 0.9, ρ as indicated in each case, and κ = 0.95ρ.
In all simulations k = 10, ξ is initialized at 1, whenever
possible, and the scheduling algorithm is implemented
in discrete time with a sampling period of 5ms.

The behavior of the closed-loop system is illustrated
in Figure 1. For the small initial condition the sys-
tem saturates only at the beginning and the scheduling
parameter is monotone in time. For the large initial
condition, the scheduling parameter exhibits its non-
monotone property since the control signal reaches its
limits twice in this case. In both cases, the state con-
verges to the origin and the scheduling parameter re-
covers its nominal value with a similar rate as the state
goes to zero.

0 5 10 15 20

0

20

40

x 1

0 5 10 15 20
−2

0

2

u,
 σ

(u
)

0 5 10 15 20
0

0.5

1

t (s)

1/
ξ

Figure 1: Simulation for ρ = 1.5. Solid: x(0) = [50, 50]′;
Dashed: x(0) = [2, −2]′.

The functionality of the scheduling algorithm can be vi-
sualized in the 3D plot shown in Figure 2, thanks to
the system being of second order. The scheduling algo-
rithm enforces the closed-loop system to operate in the
region S := {(x, ξ) : v(x, ξ) ≤ ρ}, which corresponds
to the space between the surfaces in the figure. The
scheduling parameter starts at ξ = 1 and is constant
up to the time the trajectory reaches the boundary of
S (the ◦ point in the picture). At that point, a discon-
tinuity in the scheduling parameter takes place because

the right boundary of S has a concave shape close to
ξ = 1 (viewed from the right) so that, if ξ were increased
slightly from 1, a shrink of S would be obtained instead
of an enlargement. Then, ξ jumps to a point where the
region S enlarges as ξ increases (4 point) and continues
increasing keeping the trajectory on the boundary of S.
After the 2 point, the trajectory leaves the boundary
of S and converges to the origin (of the (x1, x2) space)
while the scheduling parameter is slowly decreased to its
nominal value. One can observe that ξ is constant both
when the trajectory reaches the boundary of S and when
leaving it. The same result is shown in time domain in
Figure 3.

−2

0

2

4

−3−2−101234

1

2

3

4

5

6

7

8

9

10

x
1

x
2

ξ

Figure 2: Non-monotonicity/discontinuity of ξ(t). Solid
line: trajectory of the closed loop system for x(0) =
[4, 1]′, ξ(0) = 1, and ρ = 1.5. The region between the
surfaces corresponds to S.

The effect of the parameter ρ on the closed-loop system
performance can be seen in Figure 4. We see that the
maximum value of ρ = 2 allows a faster convergence of
the state than for the case ρ = 1. The scheduling param-
eter illustrates that a higher control gain is employed in
the case ρ = 2 allowing the control signal to saturate as
opposed to the case ρ = 1. One can also observe the
monotonicity of the scheduling parameter in this case.

In Figure 5 we investigate the influence of the function
r(ξ, x) in the performance of the closed-loop system and
the scheduling parameter ξ(t). As previously mentioned,
it might be of interest to reduce computation effort by
choosing a closed form expression for r̃ as a function
only of ξ. We make the following simple choice

r̃(ξ) =
√

ξ . (25)

The required properties for r(ξ, x) are, with some con-
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Figure 3: Result of Figure 2 in time domain. Dashed:
x2(t); Dotted: control signal before saturation.

servativeness, satisfied with this choice and W (v(x, ξ))
given by (24). The result in Figure 5 shows that the
recovery of the scheduling parameter gets considerably
slower causing the convergence of the state to be more
sluggish. Thus, the choice for r becomes a trade-off be-
tween performance and implementation complexity.

For completeness (see also (Reginatto et al., 2000b)),
we also include Figure 6 which compares the perfor-
mance of the scheduling algorithm with the scheme
in (Megretski, 1996). The scheduling mechanism based
on the control signal achieves a faster convergence of
the state and more effective use of the available con-
trol effort. The result confirms the inherent con-
servativeness of the scheme based on ellipsoidal sets
(Megretski, 1996; Lin, 1998), and that the rationale be-
hind the presented scheduling algorithm indeed leads to
a less conservative result.

5 CONCLUSION

We have investigated a scheduling mechanism for a pa-
rameterized ARE solution aimed at achieving global
asymptotic stability for linear systems with saturating
actuators with improved performance.

The fact that the scheduling mechanism is guided di-
rectly by the magnitude of the control signal (instead
of ellipsoidal sets) allows for both reduced conservative-
ness and non-monotone (in time) scheduling parameter.
Although the scheduling parameter is not guaranteed to
be continuous in time, a fact that may introduce discon-
tinuities in the control signal, the closed-loop system is

0 2 4 6 8 10

0

5

10

x 1

0 2 4 6 8 10
−2

0

2

u,
 σ

(u
)

0 2 4 6 8 10
0

0.5

1

t (s)

1/
ξ

Figure 4: Effect of parameter ρ for x(0) = [10, 10]′.
Solid: ρ = 2; Dashed: ρ = 1 ; Dotted: control signal
before saturation.

well behaved in the sense that the trajectories are piece-
wise C1 in time.

The scheduling algorithm can be implemented in
discrete-time employing fast sampling. The stability
property is semi-global in this case, the domain of sta-
bility enlarging as the sampling period is reduced. Com-
plexity of implementation may be reduced by choosing
a closed form expression for r as a function of ξ only,
although possibly at the expense of closed-loop system
performance.

Simulation results have been presented illustrating the
main properties of the scheduling algorithm.

A PROOF OF THE MAIN RESULT

Throughout the proof we drop the t dependence of most
variables for simplicity. Also, we write Pξ for P (ξ), and
similarly for other matrix valued functions.

Existence of solutions Since the minimization prob-
lem (14) constraints ξ(t) to be non-decreasing in time, a
more careful analysis is required regarding the existence
of solutions for the closed-loop system.

Given any xo ∈ Rn and ξo ∈ G(xo), we mean by a
solution for system (1), (8), (14), (15) a continuous and
piecewise C1 function of time x(t) defined on some time
interval [to, t1) which satisfies, together with a (possibly
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Figure 5: Influence of the function r, x(0) = [10, 10]′,
ρ = 1.5. Solid: r̃ given by (23); Dashed: r̃ given by (25);
Dotted: control signal before saturation.

discontinuous) piecewise C1 function ξ(t), x(to) = xo,
ξ(to) = ξo, and (1), (8), (14), (15) for almost all t ∈
[to, t1).

We claim that solutions for the closed-loop system exist
for all initial states x(to) ∈ Rn consistent with the set

Z := {(x, ξ)) ∈ Rn × [1, ∞) : |B′Pξ x| ≤ ρ} . (26)

Moreover, in case Assumption 1 holds, solutions exist
for all initial states in Rn and are defined for all forward
time. To see this, consider the two systems

Σa :

{

ẋa = Axa + Bσ(−B′P (ξa)xa )

ξ̇a = −sat(k (ξa − 1) ) r(ξa, xa)
(27)

Σb :











ẋb = Axb + Bσ(−B′P (ξb)xb )
ξb(t) = min ζ,

ζ ∈ [ξb(t−), ∞)
v(xb(t), ζ) ≤ ρ .

(28)

We shall construct solution for the closed-loop system
by patching solutions of systems Σa and Σb. Let’s first
consider these two systems separately.

Clearly Σa has a unique solution for each (x(to), ξ(to)) ∈
Rn × [1,∞) which is defined for all forward time and is
a continuously differentiable function of time.

For the analysis of system Σb, first notice that the min-
imization problem yields a non-decreasing function of
time ξb(t) which is constant whenever v(xb(t), ξb(t)) <
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Figure 6: Performance comparison for x(0) = [10, 10]′,
ρ = 1. Solid: scheduling based on the control signal;
Dashed: scheme of (Megretski, 1996).

ρ. Thus, ξb(t) is continuous 2 for almost all t ≥ 0 in
the time interval for which a solution for system Σb is
defined. Moreover, discontinuities can only take place
at time instants where the constraint is effective, i.e., in
the set O := {t : v(xb(t), ξb(t)) = ρ}.

Consider the auxiliary problem

f(x) := min
v2(x,ζ)=ρ2

ζ . (29)

Since v(x, ζ) is C1, f(x) will be C1 in a neighborhood of
any point such that ∂v

∂ξ (x, f(x)) 6= 0. From this fact, it

follows that for any xb(to) ∈ Rn and ξb(to) ∈ G(xb(to))
such that (∂v/∂ξ)(xb(to), ξb(to)) < 0, the system Σb has
a unique solution defined for some interval [to, t1) with
the property that, for all t ∈ [to, t1), ξb(t) is continuous
and

∂v

∂ξ
(xb(t), ξb(t)) < 0 . (30)

Clearly, the solution can be continued over time as long
as (30) is satisfied. Since ξb(t) is constrained to be non-
increasing, the violation of condition (30) may lead to
a discontinuity. If a discontinuity takes place at t = t1,
necessarily 3

∂v

∂ξ
(xb(t1), ξb(t1−)) ≥ 0 (31)

2A non-negative and monotone function is continuous at al-
most every point in its domain (Jones, 1993, Chap. 16).

3Notice that xb(·) is continuous at t1.

16 Revista Controle & Automação/Vol.14 no.1/Jan., Fev. e Março 2003



and ξb(t1) obtained from Σb will satisfy (30) at t = t1.
Thus, a unique solution for system Σb will exist over an
interval [t1, t2) starting from xb(t1) and ξb(t1). Clearly,
for any xb ∈ Rn such that |B′Poxb| < ρ there exist a
ξb satisfying (30). Moreover, the continuous differen-
tiability of P (ξ) guarantees that only a finite number
of discontinuities may occur in any compact time inter-
val, thus allowing to extend solutions of system Σb by
repeating the same argument for as long as the mini-
mization problem has a finite solution. This is always
the case if Assumption 1 holds.

Let’s now patch the trajectories of Σa and Σb to
construct solutions for the closed-loop system. Let
(x(to), ξ(to)) ∈ Rn × [1,∞) and assume, without
loss of generality, that v(x(to), ξ(to)) < ρ. Let
(xa(to), ξa(to)) = (x(to), ξ(to)). Thus, (x(t), ξ(t)) =
(xa(t), ξa(t)) as long as v(xa(t), ξa(t)) < ρ. Let t1 > to
be the first time v(xa(t), ξa(t)) = ρ. Assume t1 < ∞,
otherwise we would be done. Set xb(t1) = xa(t1)
and ξb(t1−) = ξa(t1) = ξ(t1−). Now, (x(t), ξ(t)) =
(xb(t), ξb(t)) as long as v(xb(t), ξb(t)) = ρ. Let t2 ≥ t1
be the last time this condition is satisfied for system
Σb. Thus, ∃ δ1 > 0 such that v(xb(t), ξb(t)) < ρ and
ξ̇b(t) = 0 for all t ∈ (t2, t2 + δ1). Set (xa(t2), ξa(t2)) =
(xb(t2), ξb(t2)). Since W (·) is (Lipschitz) continuous
and W (v(x, ξ)) = 0 whenever v(x, ξ) ≥ κ, it follows that
for some δ2 > 0, δ2 ≤ δ1, (xa(t), ξa(t)) = (xb(t), ξb(t))
in (t2, t2+δ2) and thus v(xa(t), ξa(t)) < ρ in (t2, t2+δ2).
Thus (x(t), ξ(t)) = (xa(t), ξa(t)) for all t > t2 such that
v(xa(t), ξa(t)) < ρ. Such property holds at least for
an open time interval so that high frequency switching
(sliding-mode) between (14) and (15) is not possible.

By repeating the same reasoning, solutions of the closed-
loop system can be continued over time for as long as
the minimization problem (14) has a finite solution. It
follows that x(t) is continuous and piecewise C1, while
the scheduling parameter ξ(t) is piecewise C1 and, pos-
sibly, discontinuous at isolated time instants, which add
up to, at most, a finite number in any compact time
interval.

Local Exponential Stability Let ε > 0 and define
the sets

Zε := {(x, ξ) : |B′Pξx| ≤ ρ − ε}

Zo := {(xo, ξo) : (x(t), ξ(t)) ∈ Zε, ∀t ≥ 0} .

Clearly, Zo is well defined (not necessarily compact) and
has a non-empty interior. For initial conditions in the
set Zo, ξ(t) is given by (15) for all times. Then, for the
continuously differentiable positive definite function

W (x, ξ) := x′Pξx + (ξ − 1)2 (32)

we obtain

Ẇ = ẋ′Pξx + xPξẋ + x′Ṗξx + (ξ − 1)ξ̇ . (33)

Using (5), (10), (13) and Lemma 3, we obtain,

ẋ
′

Pξx + x
′

Pξẋ = x
′(A′

Pξ + PξA)x − 2x
′

PξB σ(B′

Pξx)

= −x
′

Qξx + x
′

PξBB
′

Pξx − 2x
′

PξB σ(B′

Pξx)

≤ −(1 − α)x′

Qξx − x
′

Mξx (34)

and

x′Ṗξx = x′ ∂P

∂ξ
x ξ̇

≤ −x′ ∂P

∂ξ
x sat(k (ξ − 1)) r(ξ, x)

≤ x′Mξx sat(k (ξ − 1)) . (35)

Collecting (34) and (35) into (33) and computing ξ̇ from
(15) yields

Ẇ ≤ −(1−α) x′Qξx−(ξ−1) sat( k(ξ−1) ) r(ξ, x) . (36)

It follows from (32) and (36) that the point (x, ξ) =
(0, 1) is locally exponentially stable.

Global Asymptotical Stability Solutions of the
closed loop systems, whenever defined, belong to the set
Z (see eq. (26)). Consider the positive definite function

V (x, ξ) := x′Pξx . (37)

Since ξ(t) and x(t) are piecewise continuously differen-
tiable so is V (x(t), ξ(t)). Thus, for almost all t ≥ 0, we
evaluate the time derivative of V (x, ξ) along trajectories
contained in Z to obtain

V̇ = ẋ′Pξx + xPξẋ + x′Ṗξx . (38)

We again obtain (34) and (35), which now hold for al-
most all t ≥ 0, leading to

V̇ ≤ −(1 − α) x′Qξx . (39)

Clearly, V̇ is piecewise continuous and can be integrated
on any compact time interval. Moreover, V (x(t), ξ(t))
decreases at any discontinuity point of ξ(·) because x(·)
is continuous, ∂Pξ/∂ξ < 0, and ξ(·) increases at any such
point. From this fact, and since only a finite number
of discontinuity points of V (x(t), ξ(t)) can exist in any
compact time interval, we can state that (see also (Jones,
1993, Chap. 16))

V (t) − V (to) ≤

∫ t

to

V̇ (τ) dτ . (40)
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Then, (40) and (39) yield

V (t) − V (to) ≤ −(1 − α)

∫ t

to

x′Qξx dτ ≤ 0 (41)

implying that V (t) is bounded. So, in particular, P
1/2
ξ x

is bounded. In turn, this implies that ξ(t) is bounded,
i.e., ∃ ξ such that ξ(t) ∈ [1, ξ], ∀t ≥ to. For, otherwise
v(t) = |B′

1P
1/2(ξ(t) [P 1/2(ξ(t))x(t)]| → 0 as t → ∞ and

there would exist a T ≥ to such that v(t) ≤ ρ/2, ∀t ≥ T .
Thus, ξ(t) would be decreasing for all t ≥ T , which
contradicts the fact that ξ(t) is unbounded.

Boundedness of ξ implies that both |P (ξ)| and |Q(ξ)|
are bounded away from zero, implying that there exist
constants c1 > 0, c2 > 0, and c3 > 0 (depending on ξ)
such that for all t ≥ 0 (using (41))

c1|x(t)|2 ≤ V (x(t), ξ(t)) (42)

≤ c2|x(0)|2 +

∫ t

0

V̇ (τ)dτ (43)

≤ c2|x(0)|2 − c3

∫ t

0

|x(t)|2dτ (44)

which proves the result.

A.1 Technical lemma

Lemma 3 Let 0 < ρ ≤ 2∆ and β := min{1, (2∆ −
ρ)/ρ}. Let σ(·) be locally Lipschitz and such that
u′σ(u) ≥ u′sat∆(u), ∀u ∈ Rm. Then, for any p ∈
[1, ∞],

|u|p ≤ ρ =⇒ u′u − 2u′σ(u) ≤ −β u′u (45)

where | · |p is the usual p vector norm.

Proof: First notice that the right hand side of (45) is
implied by

2u′sat∆(u) ≥ (1 + β) u′u . (46)

It is clear that (46) holds for 0 < ρ ≤ ∆ since, in this
case, β = 1 and sat∆(u) = u. For the case ∆ < ρ ≤ 2∆,
notice that |u|p ≤ ρ implies |ui|p ≤ ρ for i = 1, · · · , n.
In turn, |ui|p = |ui| ≤ ρ implies

2 uisat∆(ui) ≥
2 ∆

ρ
u2

i .

Consequently,

2 u′sat∆(u) ≥
2 ∆

ρ
u′u

from which the result of the lemma follows. 2
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