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ABSTRACT

This paper is concerned with the problem of stability regions
determination for linear systems with saturating inputs. The
paper focuses on a critical analysis of two known approaches
to model the effect of actuator saturation: hybrid modeling
and polytopic modeling. In each case, algorithms to deter-
mine ellipsoidal domains of stability for such class of sys-
tems are provided in terms of LMIs. The ability of such
algorithms in providing large stability domains is analyzed
by highlighting the main reasons they incorporate conserva-
tiveness, including the influence of the saturation modeling.
Two examples are worked out illustrating how significantly
the stability domains obtained by such algorithms can dif-
fer.

KEYWORDS: Control saturation, hybrid modeling, poly-
topic modeling, stability analysis

RESUMO

Este artigo trata do problema de determinagao de regides de
estabilidade para sistemas lineares com entradas saturantes.
O trabalho foca-se em uma anélise critica de duas abordagens
conhecidas para o modelamento dos efeitos da saturacdo de
controle: modelamento hibrido e modelamento politépico.

Artigo submetido em 5/12/2002
1a. Revisdao em 4/08/2003; 2a. Revisao 19/03/2003
Aceito sob recomendacgao do Ed. Assoc. Prof. José R. C. Piqueira

Em cada caso, algoritmos para determinar dominios de es-
tabilidade para a classe de sistemas considerada s@o pro-
postos em termos de LMIs. A habilidade de tais algorit-
mos em fornecer grandes dominios de estabilidade € anali-
sada, enfatizando-se as principais fontes de conservatismo,
incluindo o préprio modelamento da saturagdo. Dois exem-
plos sdo apresentados a fim de ilustrar o quéo diferente po-
dem ser os dominios de estabilidade obtidos com os diferen-
tes algoritmos.

PALAVRAS-CHAVE: Saturacdo de controle, modelamento
hibrido, modelamento politépico, andlise de estabilidade.

1 INTRODUCTION

Stability of linear systems with saturating actuators has re-
ceived a great attention in the recent literature. One impor-
tant aspect of this class of problems is that the properties of
the saturation function give these systems a natural hybrid
structure, in the sense that different dynamics can be associ-
ated to different operating regions in the state space (Gomes
da Silva Jr. e Tarbouriech, 1999b; Gomes da Silva Jr. e Tar-
bouriech, 1999a). This fact has motivated the use of hybrid
systems related tools/techniques in the analysis of these sys-
tems. On the other hand, the saturation term in the state space
equation can be viewed as a time-varying uncertainty that de-
pends on the state at each instant. Such modeling of the sat-
uration function can be locally incorporated by means of a
polytopic system (Molchanov e Pyatnitskii, 1989; Gomes da
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Silva Jr. et al., 1997; Hu e Lin, 2000) which opens another
approach, and a corresponding set of results, to deal with the
stability analysis and synthesis problems.

One of the most concerning problems in this subject is the
determination of asymptotic stability regions for the closed-
loop system. The motivation for these studies is that, in
the presence of control saturation, global stability cannot
in general be ensured. Furthermore, when it is possible
to compute a global stabilizing control law (see (Sussmann
et al., 1994; Burgat e Tarbouriech, 1996)), in general it is
difficult to simultaneously guarantee good performance and
robustness for the closed-loop system. On the other hand,
on the ground of local stabilization, the exact determination
of the basin of attraction is possible only in very particular
cases. Hence it is important to determine asymptotic stabil-
ity regions, in order to approximate the basin of attraction
(Khalil, 1992).

The proposed methods for generating stability regions for
linear systems with saturating inputs explore the special
structure of these systems and are mainly based on the
concept of Lyapunov domains. Special classes of Lya-
punov functions have been considered for such purpose,
for instance, piecewise-linear (Gomes da Silva Jr. e Tar-
bouriech, 1999b), quadratic (see, for example, (Henrion e
Tarbouriech, 1999; Gomes da Silva Jr. e Tarbouriech, 1999c;
Fong e Hsu, 2000; Hu e Lin, 2000) and references therein)
and Lure type (Pittet et al., 1997; Hindi e Boyd, 1998) Lya-
punov functions. In order to obtain testable results, the
choice of each class of Lyapunov functions is connected to
the choice of a convenient representation for the effect of the
saturation function. Moreover, both the choice of the Lya-
punov function and the saturation modeling are directly re-
lated to the conservatism of the results.

In this paper we particularly focus on the hybrid and poly-
topic representations for linear systems with input saturation
and aim at determining ellipsoidal domains of stability. The
interest for such domains is mainly motivated by the recent
developments concerning numerical algorithms and software
packages for solving LMIs and convex optimization prob-
lems. This fact allows the implementation of test conditions
that can be cast as LMI-based optimization problems where
the optimization criteria can be related, directly or indirectly,
to the size of the domain of stability to be computed.

Although these methods involve some degree of conser-
vatism, in general the conservatism of the results is not
conveniently analyzed or elucidated. It can be noticed a
lack of critical comparison between the different approaches.
Hence, one of the objectives of this paper is to provide a crit-
ical analysis of some methods for computing ellipsoidal re-
gions of asymptotic stability for systems with saturating in-

puts. In parallel, we briefly discuss how to use the proposed
conditions for the synthesis of local stabilizing control laws.
Additionally, we propose two new LMI stability conditions
based on a hybrid representation of the saturated system and
the use of the S-procedure.

The paper is organized as follows. Section 2 states the prob-
lem, related concepts, and definitions. In Sections 3 and 4,
two strategies to model the saturation effect are discussed,
namely: the modeling by a hybrid system and the model-
ing by a polytopic system. In each one of these sections the
sufficient conditions to be satisfied and the corresponding al-
gorithms for determining the ellipsoidal regions of stability
are presented and discussed, including related synthesis is-
sues. Finally two examples are worked out, in Section 5, in
order to provide a numerical comparison between the results
obtained with the different approaches. The paper is ended
with concluding remarks in Section 6.

Notations. For any vector x € R", x > 0 means that all
the components of x, denoted z(;), are nonnegative. For two
vectors x, y of k™, the notation x > y means that Ty —
Ya) = 0, Vi = 1,...,n. A denotes the ith row of matrix
A. For two symmetric matrices, A and B, A > B means
that A — B is positive definite. A’ denotes the transpose of
A. diag(x) denotes a diagonal matrix obtained from vector
2 1, 21..1) € R, 0, 2 [0...0) € R™ and I
denotes the identity matrix of appropriate dimensions. int .S
denotes the interior of the set S.

2 PROBLEM STATEMENT

Consider the continuous-time linear system
x(t) = Ax(t) + Bu(t) @)

where z(t) € R™, u(t) € R™, A € R"*" and B € R"*™.
Assume system (1) is in closed-loop with the saturated linear
control law

u(t) = sat(Kx(t)) )

where sat(-) denotes a classical saturation function, i.e. each
component ¢ (i = 1,---,m) of vector u(t), is defined as
follows:

ue(t) = (sat(Kz(t)))a)
—pe) i K@z(t) < —pa)
= K(i)x(t) if — Py < K(i)l’(t) < p»H3)

pay i K@yz(t) > pa
where p(;) and -p(;) represent the control limits.

Due to the saturation term, the closed-loop system is nonlin-
ear:
&(t) = Ax(t) + Bsat(Kz(t)) 4
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The polyhedral set

S(K,p)é{xew; {_ﬂm{g]} )

is the region of linearity of system (4). Inside this region, the
control entries do not saturate and the behavior of the system
is described by the linear model

#(t) = (A + BK)x(t) ©)

Throughout the paper we assume that the matrix K is such
that all the eigenvalues of (A + BK) are placed in the open
left half complex plane. In other words, in the absence of
control bounds, the closed-loop system would be globally
asymptotically stable.

Consider now the ellipsoidal set
EPc)={reR"; 2’Px<c} 7
where P = P’ > 0 and ¢ > 0.

Definition 2.1 The set £(P, ¢) is a region of asymptotic sta-
bility for system (4) if: (i) the point z = 0 is a locally asymp-
totically stable equilibrium point; (¢7) it is contained in the
region of attraction of the equilibrium z = 0.

Definition 2.2 The set £(P, ¢) is contractive with respect to
system (4) if the function V' (z) = 2’ P is strictly decreasing
along the trajectories of (4) in £(P,¢) — {0}. In particular,
if £(P, c¢) is contractive, then it is a region of asymptotic sta-
bility.

In particular, the problem of determining ellipsoidal regions
of stability contained in the region S(K, p) is a trivial prob-
lem (see (Boyd et al., 1994) for instance). In this paper, we
are interested in the study of conditions that allow the de-
termination of stability regions not contained in the region
of linearity and, in consequence, that take into account the
nonlinear characteristic of the closed-loop system.

3 HYBRID SYSTEM MODELING

Due to the specific structure of the saturation function (3),
the system (4) naturally exhibits a hybrid structure. This
representation consists in dividing the state space in regions
called regions of saturation. Inside each region of satura-
tion, the system (4) can be modeled as an affine system or,
equivalently, as a system with an additive constant distur-
bance (Gomes da Silva Jr. e Tarbouriech, 1999b),(Gomes da
Silva Jr. e Tarbouriech, 1999a). Thus, the saturated system
(4) is viewed, generically, as a hybrid system whose dynam-
ics is piecewise linear (Johansson e Rantzer, 1998).

Consider a vector n(t) € %™, such that each entry 7;(t),
1 =1,...,m, takes the values 1, 0 or —1 in accordance with
the saturation function (3) as follows:

-1 if K(i)a:(t) < —=P@)
no) =< 0 if —pu < Kazt) <pay  ®)
L if Kgya(t) > pe

Let{; € R, j =0,1,---,3™ — 1, represent all possible
values of n(t). Then, Vt, n(t) = &; for some j and hence,
each vector {; represents a possible combination between
saturated and non-saturated control entries. Furthermore, for
n(t) = &;, the state vector belongs to a specific region called
region of saturation j. Each region of saturation is defined
by the intersection of half-spaces of the form K,z < d(;)
or —Kx < d;y, where d(;) can be either p(;y or —pg;).
Generically, the region of saturation associated to &; is de-
noted as:

S(Rj,d]):{xeﬂ%", le'jd]} 9)

where d; € R is defined from the entries of p and —p, and
R; € Rli*™ is defined from the rows of K and —K (see
numerical examples of the regions description in (Gomes da
Silva Jr. e Tarbouriech, 1999b) and (Gomes da Silva Jr. e
Tarbouriech, 1999a)).

We define £, = 0,, and so the region associated to ;7 = 0
corresponds to S(K, p). In the other regions there is at least
one control entry that is saturated. Thus, the motion of the
system (4) can be described by the following hybrid system

@(t) = Ajz(t) +vj, x(t) € S(R;,dy),

j=0,1,---,3"-1 (10)
with A; = A+ Bdiag(1,, — |&;|)K and v; = Bdiag(&;)p,
where |¢;] is taken componentwise.

Theorem 1 The function V(x) = «’Px, P = P’ > 0, isa
strictly decreasing Lyapunov function for the saturated sys-
tem in E(P, ¢) if and only if the following conditions hold:

(i) 2'P(A+ BK)x+2'(A+ BK) Pz <0,
Ve € S(K,p)NE(P,c), z#0

(1) 2'P(Ajz+v;) + (Ajz +v;) Px <0,
Vo € S(R;,d;) NE(P,¢),Yj, j=1,...,3™ 1,
St S(Rj,dj) ﬂZTltE(P, C) ?é @
(11)

Proof: it follows directly from (10). O
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Although Theorem 1 provides a necessary and sufficient con-
dition for a set £(P, c) to be contractive, it still lacks of prac-
tical benefit because the conditions (11)-(%) (%) are not easily
solvable with the available numerical methods. In the se-
quel we present two conditions that, despite being only suffi-
cient for the satisfaction of (11)-(¢)(é%), are numerically more
tractable.

3.1 Test Condition 1

The condition below corresponds to a generalization, to
multi-input systems, of the results proposed in (Fong e
Hsu, 2000).

Proposition 1 If there exist a matrix P € R™"*", P = P’ >
0, and nonnegative scalars v; and 7;(;y,¢ = 1,...,[; satisfy-
ing the following matrix inequalities

(i) P(A+ BK)+ (A+ BK)'P <0

PAj+ AP — ;P Puj —0.5R;T}

W) | P —05T;R, e+ Tydy | <9
Vi, j=1,...,3™ —1,
such that S(R;,d;) NintE(P,c) # 0

(12)

with Tj = [7j1) ...T;q,)) then the set £(P, c) is a region
of asymptotic stability for the saturated system (4).

Proof: Relation (12)-(4) implies that relation (11)-(2) is sat-
isfied for all « # 0. If z € S(R;,d;) N intE(P,c) then
T satisfies { ¢'Py—c<0

Rj],‘ — dj j 0
ficient condition for the satisfaction of (11)-(4¢) is that for
some nonnegative scalars v; and 7;(;),% = 1,...,[; one ver-
ifies

. Hence, it follows that a suf-

a'(PAj 4+ A} P)x + 2’ Pv; + v Pz — (2’ Pz — c)
L
i=1

or, equivalently

[« 1}GH}<0 Vo, x # 0 (14)

PA; + AP — ~;P

l.
i P’Uj —0.5 szzl Tj(l)R;(l>
;P —0.5330, 7 R

1
yic+ 2l T di
It follows that a sufficient condition for the satisfaction of

(14), and, in consequence, for the satisfaction of (11)-(7) is
given by

{ PAj+ A5P —~; P Puj —0.5R,T]

<0 15
U;P - O.5TjRj Y€ + Tjdj :| (as)

which completes the proof. O

The result of Proposition 1 allows to verify whether a given
ellipsoidal set £(P, ¢) is contractive or not. It also allows to
compute an estimate of the region of attraction of the origin
in two different ways:

(a) Given a contractive set (P, ¢) one can try an homoth-
etic expansion by interactively increasing ¢ and testing
the condition (15). In this case, the test corresponds to
solve an LMI feasibility problem.

(b) Use condition (12) to directly find a contractive set
E(P, c) for system (4). In this case, however, the condi-
tion (12)-(72) becomes a BMI since P and -y; will both
be decision variables. The solution of a BMI is much
more complex than an LMI, and is usually performed by
employing some relaxation method (Goh et al., 1996).
It is important to remark that, since P is a decision vari-
able, c can be taken as 1 without loss of generality.

A possible relaxation algorithm is as follows.

Algorithm 3.1

1. Choose y; =~,Vj=1,...,3™ -1

2. Setc=1.Fix~;,j =1,...,3™ — 1, obtained in
the previous step and search for P and 7T); by opti-
mizing a criterion on the size of £(P, ¢) subject to
the LMI conditions (12) .

3. Fix P obtained in step 2. Maximize c subject to
conditions (12) withy; and T3, 5 = 1,...,3™ —1
as free variables 2.

4. Go to step 2.

The steps 2 and 3 of the algorithm are performed it-
eratively until a desired precision in the size criterion
for £(P, c) is achieved. Note that, (P,,,T}) obtained
in step 2 consists in a feasible solution for step 3 with
¢ = 1. Conversely, (P, c,v;,T}) obtained in 3 is a fea-
sible solution for step 2 by setting P as P/c. Hence the
convergence of the algorithm is always ensured.

Remark 1 Computational burden can be reduced in the im-
plementation of inequalities (12) by removing all regions of
saturation that are symmetric with respect to the origin, since
the satisfaction of (12) in one region of saturation also im-
plies its satisfaction in the region symmetric to it.

LSince ~y; are given, the condition becomes an LML
2This can be accomplished by increasing interactively c and testing (12)
as an LMI feasibility problem
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Remark 2 The condition (11)-(é4) has been turned into con-
dition (12)-(i4), which can be verified as an LMI test or, in
the worse case, as a BMI. In this transformation, however,
some conservatism has been introduced due to the following
facts:

1. The determination of the stability conditions is based
on the S-procedure (see inequality (13)). Indeed, the
S-procedure is only a sufficient condition in this case
because there is more than a single constraint involved
(Boyd et al., 1994).

2. The LMI test (15) implies that
(16)

for all (z,z) # 0, while it would be enough to check
the case where z = 1.

3. The need of a relaxation method implies that we are not
certain to find a solution of the problem even if it ex-
ists. Moreover, whenever a solution is found, there is
no guarantee that solution is the best that could have
been found.

4. Ttis clear that the contractive set £( P, ¢) does not neces-
sarily intersect all the regions of saturation. Moreover,
only the region that do intersect the set need to be tested.
However, if the set £(P, ¢) is being synthesized, it is not
possible to determine, a priori, whether the searched el-
lipsoid will intersect or not some of the regions of satu-
ration. In this case, in Algorithm 3.1 the test of (12)-(i¢)
is performed for all regions of saturation. Hence, it can
happen that condition (12)-(#4) is unnecessarily verified
in some region j.

3.2 Test Condition 2

The condition below was mainly inspired by the results pre-
sented in (Johansson e Rantzer, 1998) for generic hybrid sys-
tems.

Proposition 2 If there exist a matrix P € ®"*", P = P’ >
0, symmetric matrices M; € RLixli with nonnegative en-
tries, and nonnegative scalars -y; satisfying the following ma-
trix inequalities

(i) (A+ BK)'P + P(A+ BK) <0

(i) { PA; + AP + RjM;R; — ;P Puv; — R;M;d; <0
U;-P—d;-MjRj ’y]'C-f—d;-dej
Vi, j=1,...,3™ =1,
such that S(R;,d;) NE(P,c) # 0
a7

then the set (P, ¢) is a region of stability for the saturated
system (4).

Proof: Relation (17)-(¢) implies that relation (11)-(¢) is sat-
isfied.

Condition (11)-(i4) can be rewritten as:

’ P 0 Aj Uj z
[@ 1][ 0 OH 0 0|1
AL 0 P 0 x
’ j
w302 0] <0
_ . 2’Pr—c<0
Vi=1,...,3™ —1,Vz such that {ij—djjO'

Let now M, € RLixli be a symmetric matrix with nonneg-
ative entries and let ; be a nonnegative scalar. It follows

that
R
[« 1][ d/,J]MJ‘[—RJ dﬂ{:ﬂzo’
j
Va: Rz —d; <0 (19)
, —P 0 T ,
vl 1][ 0 C:||:1:|20,VCUZ$P$—C§O(20)

Using now the S-procedure, it follows that a sufficient con-
dition for the condition (11)-(44) is that, for some symmetric
matrix M; € %% with nonnegative entries and a nonneg-
ative scalar +;, one has, Va # 0,

LT 80% w08 8118 ]
AR R e IR AL

Hence, a sufficient condition for the satisfaction of (21), and,
in consequence, for the satisfaction of (11)-(ii) is:

PA; + AP+ RjM;R; —v;P Puv; — R;M;d; <0
U;-P—d;-MjRj ’ch—‘rd;-dej
(22)
which completes the proof. O

As it can be concluded from the proofs, Propositions 2 and
1 basically differ in the strategy the S-procedure is handled.
In Proposition 2 the constraints are tranformed into quadratic
forms (19), (20) before being included in the matrix inequal-
ities. Due to the similarity in the development of the two
propositions, all the remarks made about Proposition 1, con-
cerning Algorithm 3.1 and Remarks 1 and 2, apply to Propo-
sition 2.

Remark 3 In the single input case, since M is a is a non-
negative scalar it follows that d’; M;d; is always nonnegative
and so, inequality (22) never admits a feasible solution. In
order to avoid this problem we can consider a modified form
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for (19) which yields the following equation as a replacement
for (21),

with R; = [ If)j } and d; = [ dlj ] In this case M; €

R2*2 and, since d; has always at least one negative element,
d;- M;d; can assume negative values depending on the M
entries.

3.3 Synthesis Issues

As seen in the previous section, the conditions stated in
Propositions 1 and 2 can be directly applied to the problem of
estimating the region of attraction of system (4). In this sec-
tion we discuss how to use these conditions for addressing
the following synthesis problem.

Problem 1 Compute a matrix K such that the saturated state
feedback control law defined by (3) ensures that for all initial
states belonging to a given set of admissible initial condi-
tions Xy, the corresponding trajectories of system (4) con-
verge asymptotically to the origin.

In order to address this problem, define diagonal matrices
Q1. Q25 and A; as follows

—1 it & =1

Quj(ii) = 0 if &u=-1 i=1,...,m (23)
Lif &y =0

Q2j(ii) = 1 if &um=-1,i=1,...,m (24)
-1 if & =0

Ny =1 =1&@D, i=1,...,m
From the definitions (23)-(25), it follows that:

Q1

A
m=qK | 3

| w2 5]

For the sake of simplicity, consider &} as a polyhedral® set
described by its vertices:

Xo 2 Cofvr,...,vun,}, vs ER" Vs=1,...,n, (26)

Based on Proposition 1 the following synthesis result can be
stablished.

31t could be also ellipsoidal or an union of ellipsoidal and polyhedral
sets.

Proposition 3 If there exist a matrix W = W' > 0, W €
R™*" a matrix Y € R™*", matrices 7; € R**?™ with non-
negative entries, and scalars v; > 0, ¢ > 0 and 8 > 1 such
that the following matrix inequalities are satisfied:

(i) (AW + BY) + (AW + BY) <0
AW + WA’ + BA;Y +Y'A;B — ;W

(”) L Ué- — 05T]QJY
—0.5Y'QNT!
v =05 QH]<0, Vi, j=1,...,3m —1
e+ TiQ4p
c Bl
S > =1,...
(#41)  Go. W >0, Vs=1,...,n,

27
then the gain K = YW ~! solves Problem 1.

Proof: With 3 > 1 condition (iii) ensures that the set X is
contained in the ellipsoidal set £(P, c), with P = W 1. Pre

0 I
and considering K = YW 1, it follows, from the proof of
Proposition 1, that £(P, ¢) is a contractive set for the system
(4). Hence if z(0) € Ap, it follows that z(0) € E(P,c)
which ensures that the corresponding trajectory of system
(4) converges asymptotically to the origin. O

and post multiplying (¢) and (i¢) by the matrix { Po ]

Considering W, Y, T}, ~ and c as decision variables, in-
equalities (27)-(i7) in Proposition 3 are nonlinear and thus
very hard to solve. On the other hand, if we fix some of these
variables the conditions becomes LMIs. This is the case, for
instance, if we fix ; and 7};. Of course, for given «y; and T}
it may actually be impossible to find a feasible solution for
LMIs (27). In fact, considering a scaling factor 3, 5 > 0,
the maximum homothetic set to Xy, 35Xy, that can be stabi-
lized considering the fixed y; and 7, can be obtained solving
the following convex optimization problem with LMI con-
straints:

max
B,e, WY b

subject to
LMIs (4), (i4), (#i¢) of Proposition 3

(28)

In general we are interested in finding a stabilizing control
law that is associated to a domain of stability as large as pos-
sible. Of course, fixing variables in (27)-(i¢) can lead to very
conservative solutions in this sense. In order to overcome
this problem we can try to find solutions to the problem us-
ing, iteratively, LMI relaxations of conditions (27)-(i4). With
this aim we can propose, for example, the following iterative
algorithm:
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Algorithm 3.2

1. Fix ¢ = 1 and solve (28) without constraints (27)-(ii).

2. Fix Y obtained in the previous step, grid v (v = 7;,
Vj =1,..,3™ — 1) and find T;, W and c considering
the maximization of the scaling factor (3 for each value
of 7 in the grid. Take the solution W, T}, ¢ such that 3
is maximal.

3. Fix «y and T}, obtained in the previous step, and solve
for W, Y and c considering as optimization criteria the
maximization of 3.

4. Go to step 2.

The algorithm stops when no significant improvement in the
value of (3 is achieved or when 8 > 1. For the same argu-
ments given in Algorithm 3.1, the convergence of the algo-
rithm is always ensured. In this case, if the final value of 3 is
greater than one, a solution to Problem 1 is given by the final
values of W and Y.

As pointed out in the analysis case, a drawback of the pro-
posed approach is that conditions (27)-(47) should be verified
in all regions of saturation. It is implicitly assumed that the
region & will have a non empty intersection with all the re-
gions of saturation, which is not always true. However, since
the definition of the regions of saturation depends on the ma-
trix K to be computed, it is impossible to verify this a priori.

The development of synthesis results on the basis of Propo-
sition 2 leads to the following inequality as a replacement for

27)-(i):

AjW + WA; + Y/Q;-MijY - ’}/jW
V) — P'Q"M'Qj
-Y'Q: M,

@ QJ <0

%c + Qi M;Qjp
Due to the terms Y'Q’; M;Q;Y’, this inequality is more dif-
ficult to solve considering Y and M as decision variables.
One way to handle this problem would be to force M to be
positive definite and apply Schur’s complement. However,
note thatNthis i§ impossible because, in this case, the term
vic+p Q; M; @ p would be always positive. Hence, the ap-
plication of the test condition 2 for the synthesis problem is
not very interesting.

4 POLYTOPIC SYSTEM MODELING

Note that the ¢th entry of the saturated control law defined in
(3) can be also written as:

(sat(Kx(t)))u) = a(z(t)) @ Ku(t)

where 0 < a(x(t))(;) < 1,is defined as :

(29)

—P()

Koo »(t) < —pg)
alz®)e = 1 if —pe) < Kpa(t) < po
“m i E@z(t) > pp)

Kyz(t)

(30)

The coefficient a(x(t)) ;) can be viewed as an indicator of

the degree of saturation of the ith entry of the control vector.

In fact, the smaller the o(x(t)) s, the farther the state vector

is from the region of linearity (5). Notice that a(x(t)) ;) is a
function of z(t).

Define from the vector a(z(t)) € R™ a diagonal matrix

D(a(z(t)) = diag(a(a(t))),
rewritten as

Thus, system (4) can be

z(t) = (A+ BD(a(z(t))K)x(t) (€2))
Theorem 2 The function V(z) = 2'Px, P =P > 0, isa
strictly decreasing Lyapunov function for the saturated sys-
tem in E(P, c) if and only if the following condition hold:

'[(A+ BD(a(x))K)' P+ P(A+ BD(a(z))K)]z < 0,
Vo € E(P,c), x #£0
(32

Proof: it follows directly from (31). O

As the result of Theorem 1, the necessary and sufficient con-
dition given above is hard to test with the available numerical
tools. This comes from the fact that «(x) depends on x at
each time instant. A way to overcome this difficulty consists
in considering, at least locally, a differential inclusion that
generates all the trajectories of system (31). In particular,
we can consider polytopic differential inclusions. This kind
of modeling has been successfully used in the last years for
the determination of regions of stability (Gomes da Silva Jr.
e Tarbouriech, 1999¢c; Henrion e Tarbouriech, 1999) as well
as for the synthesis of stabilizing control laws in presence
of saturating inputs (Gomes da Silva Jr. et al., 1997; Gomes
da Silva Jr e Tarbouriech, 2001). Following the same idea of
these papers, an interesting alternative modeling was recently
proposed in (Hu e Lin, 2000). In the sequel we presented
these different approaches of polytopic modeling and the as-
sociated sufficient conditions for the satisfaction of (32).
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4.1 Approach 1

Let 0 < aq;) < 1 be alower bound to a(x(t)) ;) and define

A . .
the vector @ = [aq), -, Q(,y)]’- The vector a is associated
to the following region in the state space:

S(K,p*) = {z € R"; [_[; ]:H [ ZZ }} (33)

A po
a 2 PE) S
where Py = ag Vi=1,...,m.

Consider now all the possible m-order vectors such that the
ith entry takes the value 1 or Q- Hence, there exists a to-
tal of 2" different vectors. By denoting each one of these
vectors by v;, 7 = 1,...,2™, define the following matrices:
D;(a) = D(v;) = diag(v;) and A; = A+ BD;(a)K.
Note that the matrices A; are the vertices of a convex
polytope of matrices. If z(t) € S(K,p®) it follows that
(A + BD(a(z(t)))K) € Co{A1, As,..., Aam}. Hence,
if x(t) € S(K, p®), (t) can be determlned from an appro-
priate convex linear combination of matrices A; at time ¢,
that is:

(34)

=2 (@) Ase(t)

with 27, 0 (@(0) = 1, A(a(t)) 0.

It should be pointed out that model (34) represents the satu-
rated system only in S(K, p®). Actually, if z(t) € S(K, p®),
the polytopic model (34) can be used to determine ().

Proposition 4 If there exist a matrix P = P’ > 0, P €
Rm*", avector o € R and a positive scalar ¢ satisfying the
following conditions

(i) P(A+ BD;(a)K)+ (A+ BD;(a)K)'P <0,

Vi=1,...,2m
P Q
(i) 2K >0Vi=1,...,m
apnKa  pl/e
111 <oy < 1=1,...,m
i12) 0 @ <1Vvi=1

(35)
then the set (P, ¢) is a region of stability for the saturated
system (4).

Proof: Provided conditions (i7) and (ii%) are verified it fol-
lows that £(P, ¢) is contained in S(K, p®) (Gomes da Silva
Jr. et al., 1997; Boyd et al., 1994).

Hence, for all z(t) € E(P,c¢), Vt > 0, it follows that there
exists \;(z(t)), with Z?Zl)\j(x(t)) =1, X(z(t) >0,

such that:
(t) = (A+ BD(a(x( Z A a(t)
(36)
From condition (4) it follows that
PZ)\ )(A+ BD;(a)K)z(t)
+Z )(A+ BD;(a)K) Pz(t) <0  (37)
or equivalently,
2(t) (A+ BD(a(z(t)))K) Px(t)
+x(t) P(A+ BD(a(x(t)))K)z(t) <0 (38)

Since this reasoning is valid Vz(t) € (P, ¢), x # 0,Vt > 0,
from Theorem 2 it follows that £( P, ¢) is a region of stability
for the saturated system. O

Similarly to Propositions 1 and 2, the sufficient condition
stated in Proposition 4 allows both to test if a given £(P, ¢) is
contractive and to determine a contractive set based on some
geometric criterion:

e In the first case, since P and c are given, conditions
(35)-(4)(47) (47) can be easily tested as an LMI feasibil-
ity problem in variable a.

e In the second case, P and « appear as problem vari-
ables* and conditions (35)-(i) become BMIs whereas
(35)-(44)(i4i) are LMIs. As pointed out in section 3.1,
the presence of a BMI constraint makes difficult the di-
rect solution of an optimization problem. A possible
relaxation scheme in this case is as follows (see (Gomes
da Silva Jr. e Tarbouriech, 1999c) and (Henrion e Tar-
bouriech, 1999) for more details):

Algorithm 4.1

1. Choose a.

2. Set ¢ = 1. Fix « obtained in the previous step,
search for P by optimizing a criterion on the size
of £(P, c) subject to the LMI constraints given by
(35)-(i) (i)

3. Fix P obtained in step 2. Minimize p1 = = subject
to LMI constraints given by (35)-(7)(4 )(zzz) with
« as free variable.

4Note that here we can consider without loss of generality ¢ = 1.
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4. Go to step 2.

The convergence of Algorithm 4.1 can be concluded by
a reasoning similar to Algorithm 3.1.

Remark 4 The conservatism of the condition given by
Proposition 4 is due to the modeling of the behavior of
the saturated system by a differential inclusion. In fact,
(35)-(4) is a necessary and sufficient condition for the
quadratic stability of the polytopic system

-
B(t) = Aj(t)Aja(t) (39)
j=1

VA, (t) such that 2321 Aj(t) =1, Xj(t) > 0. Note,
however, that all trajectories of the saturated system (4)
are also trajectories of system (39), but the converse is
not necessarily true.

4.2 Approach 2

Consider a matrix H € R™*™ and define
_ . i
S(H,p) & {zeR"; { q }xj { g }}

Let now matrices ©;, j = 1,...,2™ be diagonal matrices
whose diagonal elements are equal to 1 or 0. From these
definitions, if z(¢) belongs to the set S(H, p), it can be shown
(by convexity arguments) that ©(¢) can be computed by the
following polytopic model:

B(t) =Y Aj(@(t)(A+ B(O;K + (I —©;)H)x(t) (40)
j=1

with 25:1 Aj(z(t)) =1, Aj(z(t)) > 0. Similar to the pre-
vious section, the model (34) represents the saturated system
only in the region S(H, p).

Proposition 5 (Hu e Lin, 2000) If there exist matrices P =
P'>0,P e R"™ and H € R™*", and a positive scalar ¢
satisfying the following conditions

)]

—©;)H)I'P <0,

+[A+B(O;K + (I )
Vi=1,...,2m

H
"

_ (41)
P H&

VA
(#) Hey piy/e

] >0,Vi=1,....m

then the set (P, ¢) is a region of stability for the saturated
system (4).

Proof: Considering that (i7) ensures that (P, ¢) C S(H, p
the proof follows similarly to the one of Proposition 4. O

):

By setting W = P71, y = % one can state the following
corollary.

Corollary 3 If there exist a symmetric positive definite ma-
trix W, a positive scalar vy and a matrix G satisfying the
following LMIs:

(i) AW + B(O,KW + (I —0,)G) + WA’
+(O,KW + (I —©,)G)B <0, ¥j=1,...,2m

(i)

WG :
5 >0Vi=1,....m
G VPG

(42)
then H = GW =1 and the set E(P,y~') C S(H,p) is a
region of stability for the saturated system (4).

Considering a criterion on the size of the region £(P,y~1),
the conditions given in Proposition 5 or in Corollary 3 can be
straightforwardly applied to the determination of ellipsoidal
regions of stability for the saturated system. The main ad-
vantage of this approach is that the conditions are LMIs and
no relaxation scheme is needed. Note that in this case we
can consider v = 1 without loss of generality. Regarding the
conservativity of the modeling, similar comments stated in
Remark 4 apply to this approach.

4.3 Synthesis Issues

Following the same reasoning presented in section 3.3, the
condition proposed in Proposition 4 can be used for synthesis
purposes. This result is formalized as follows:

Proposition 6 (Gomes da Silva Jr. et al., 1997) If there exist
matrices W =W’ > 0, W € " and Y € R™*" and a
vector o € R, satisfying the following matrix inequalities:

(i) WA + AW + BD;(@)Y + Y'D;(a)B' <0

Vi=1,...2m

(if) [ w Y/

ii
Yy (puy/a
T
(#i7) [ v W }
(iv)
(43)
then K 2 YW~ solves Problem 1.

As in the Proposition 3, inequalities (43)-(7) and (43)-(i1)
are nonlinear if we consider « and Y as decision variables.
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The same discussion done in the previous section is valid
here. A similar iterative algorithm can be proposed in or-
der to find a solution for Problem 1 considering a given set
Xy of admissible initial conditions (see (Gomes da Silva Jr
e Tarbouriech, 2001)). Note that here the algorithm will be
simpler than the Algorithm proposed in section 3.3 since it
suffices to iterate two steps: in the first step we fix « and in
the second we fix Y.

On the other hand, the result of Corollary 3 can be used for
synthesis purposes by substituting (43)-(¢) and (43)-(ii) by

(i) AW + B(6,Y + (I — ©,)G) + WA’
+(@]Y + (I - @j)G)/B/ <0,Vy=1,...,2™

w

ii
(i) G

G
D l>0vi=1,...,m
Piy

In this last case, as in the analysis case, the constraints appear
directly as LMIs in the decision variables W, Y and G which
avoid the use of relaxation schemes.

5 NUMERICAL EXAMPLES

The algorithms to synthesize ellipsoidal stability domains for
linear systems with saturation described in the paper will now
be applied to two different systems. The goal is to compare
the effectiveness of the algorithms in synthesizing large sta-
bility domains and to verify the actual effect of the conserva-
tive steps involved in each algorithm.

For each system we solve the problem of finding an ellip-
soidal asymptotic stability domain by applying each of the
methods described in the paper. For each method, we search
for the best possible ellipsoid, in the attempt to finding the
largest possible region of stability. All the results are plot-
ted to allow a visual comparison of the size of the stability
regions obtained with each method.

Example 5.1 We consider first a single input, second order
linear system in closed-loop by a linear state feedback with
saturation. The parameter of this system are:

05 -1 0.5
=1 o |-V
K=1[0278 —2139 ]; p=4

o Result obtained with the hybrid modeling 1st condition:

The criterion considered was the maximization of the
minor axis of the ellipsoidal region (i.e. minimization
of the greater eigenvalue of P). The optimal value of

Figure 1: hybrid modeling 1st and 2nd condition (dash-
dotted); polytopic 1st approach (dashed); polytopic 2nd ap-
proach (solid)

this criterion is obtained for v = 2.1 with

0.0942

P= { —0.0517 pe=1

—0.0517
0.1591

e Result obtained with the hybrid modeling 2nd condi-
tion:
The optimal value of this criterion is obtained for v =
2.1 with

0.0942

P= [ —0.0517  0.1591

—0.0517 } o1
e Result obtained with the polytopic modeling 1st ap-
proach:

Applying the Algorithm 4.1, considering in step 2 the
minimization of the greater eigenvalue of P and starting
with o = 1 we obtain

0.0596

~0.0302
P‘{—o.o:soz }’C_l

0.0816

e Result obtained with the polytopic modeling 2nd ap-
proach:

One obtains:

0.0525

~0.0273
P‘{—0.0273 }’C_l

0.0793

Figure 1 depicts the ellipsoids obtained with the different ap-
proaches.

In this case, the regions obtained with the hybrid system
modeling approaches are practically identical but smaller
than the ones obtained from the polytopic models.
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Example 5.2 Consider now the following multi-input sec-
ond order linear system with:

0 .

1 )

0.1 —0.1 5
a=loy S E=]s
—0.03387] [5
—1.3583 [P T | 2

—0.7283
K= { —0.0135
e Result obtained with the hybrid modeling 1st condition:

Applying the Algorithm 3.1, considering as criterion the
maximization of the minor axis of the ellipsoidal region
(i.e. minimization of the greater eigenvalue of P), the
best value for  in the first step is 0.25. With this value
one obtains

0.5886 0.0023

— 103 o

P=10""1 00023 0.2800 | €= 1

e No solution was found with the hybrid modeling 2nd
condition.

e Result obtained with the 1st polytopic modeling ap-
proach:

Applying the Algorithm 4.1, considering also the maxi-
mization of the minor axis of the ellipsoidal region and
initializing « as 1,,,, we obtain

_ o4 01608 0.0001]
p=10 {0.0001 0.1502 | ¢= 1

with o = [ 0.0275 0.0034 ]".

e Result obtained with the 2nd polytopic modeling ap-
proach:

0.1542

o —0.0038 |
P=10 [—0.0038 ]’C_l

0.0078

Figure 2 depicts the ellipsoids obtained with the different ap-
proaches.

Note that the set obtained with the hybrid modeling 1st con-
dition is significantly smaller than the set obtained with the
polytopic approaches. Moreover the 2nd polytopic approach
gives a less conservative domain than the 1st one.

6 CONCLUDING REMARKS

We have considered the local stability and stabilization prob-
lems for saturated linear systems in a comparative study con-
text. We focused on the determination of ellipsoidal do-
mains of stability by employing quadratic Lyapunov func-
tions. This has been done for two different approaches to

1500

1000

500

x2
=3

-500

-1000 -

_150 L L L L
-300 —200 -100 0 100 200 300

Figure 2: hybrid modeling 1st condition (dash-dotted); poly-
topic 1st approach (dashed); polytopic 2nd approach (solid)

model the saturated system: a hybrid modeling and a poly-
topic modeling. Based on the results presented and the sim-
ulations provided, it is possible to draw de following conclu-
sions:

e Two main sources of conservativeness can be identified:
the modeling and the strategy to develop a testable con-
dition. It is clear that these two aspects are connected,
since the modeling determines, in a large extent, the
tools that can be applied to obtain testable conditions.

e The main source of conservativeness in the hybrid mod-
eling case comes from the transformation of the prob-
lem into a set of matrix inequalities, which requires the
use of the S-procedure among other key assumptions.

e The main source of conservativeness in the polytopic
modeling can be identified as the abstraction of the
modeling. The test condition considers A; as arbitrary
functions of time that live between given limits, thus ne-
glecting their intrinsic link to the state.

The synthesis of linear feedbacks is also possible with both
modeling strategies. However, the conditions involved with
the polytopic modeling are simpler to handle. The difficul-
ties to deal with the synthesis problem with the hybrid mod-
eling come from the fact that the partition of the state space
is performed in accordance with the saturation function and,
thus, depends on the state feedback gain being designed. As
a result, the problem is highly nonlinear and more elaborate
relaxations methods have to be employed to reduce the prob-
lem to LMIs. This procedure, however, is certainly another
source of conservativeness. On the other hand, in the poly-
topic case, one of the approaches allows to state the test con-
ditions for both analysis and synthesis problems, directly as
an LMI, thus avoiding the need for relaxation methods.
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As far as the computational burden is concerned, the two test
conditions derived from the hybrid modeling are similar. In
this case, a set of 3" LMIs have to be solved. On the other
hand, the polytopic modeling involves 2" LMIs, thus being
less computationally expensive.
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