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ABSTRACT

To design controllers for complex non-linear systems usu-
ally involves the use of expensive computational models. A
non-linear thermodynamic model of a gas turbine engine is
used to evaluate a selection of designs for a multivariable PI
controller configuration. An approach using variable com-
plexity modelling (VCM) is introduced to allow more de-
signs to be evaluated and also to speed up the design pro-
cess. Response surface methodology (RSM) is a statistical
technique in which smooth functions are used to model an
objective function. RSM employs statistical methods to cre-
ate functions, typically polynomials, to model the response
or outcome of a numerical experiment in terms of several
independent variables. Regression analysis is applied to fit
polynomial models to this data for various control responses.
These control responses models are evaluated by a multiob-
jective genetic algorithm to design the controller parameters.
The final designs are checked using the original non-linear
model.
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1 INTRODUCTION

Gas turbine engines (GTE) are highly non-linear plants, that
require complex controllers to maintain system stability and
achieve strict performance and design criteria. Control sys-
tems for such plants reflect their inherent complexities. The
main task for these systems is the production of adequate
thrust while maintaining safe and stable operation. Changes
in operating demands, ambient conditions and time vary en-
gine dynamics. The engine control system has to protect
against breaching the physical limits of the engine, as well
as the actual stability and performance requirements. De-
mand changes, disturbance signals and degradation of the
engine components degrades the control system performance
between operating points. The engine under consideration
in this study is the Rolls-Royce Spey engine which is a
two-spool re-heated turbofan used to power military aircraft.
A non-linear SIMULINK? implementation of this model is
used in this study. Linearized state-space models for various
set points are available. Actual model runs simulating a few
seconds of operation require a few minutes of CPU time on
a standard workstation. This cost is more critical for design
purposes where many model evaluations are required. This
overhead cost can limit the number of design/redesign cycles.

Multiobjective optimization genetic algorithm (MOGA) is
applied to the optimization of PI controllers for the GTE.
The computational load of applying MOGA to the design of
a control system for this system is very high.
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VCM techniques like the response surface (RS) models al-
low the designer the freedom to explore the design space
more freely in search for the best design region(s). Once
near optimal designs are established this way, fine tuning can
be carried out if necessary using the full models. RS mod-
elling has been used to assist the design process with large
computational burden and systems with many objectives and
constraints (Giunta et al., 1997; Silva, 2002). The full non-
linear model is replaced by the RS models.

In this work a combination of both non-linear and linearized
models and data-fitted approximations are used to design
complex controllers for a gas turbine engine. A non-linear
thermodynamic model of the gas turbine engine is used to
evaluate a selection of designs for a multivariable PI con-
troller configuration. Regression analysis is applied to fit
polynomial models to this data for various control responses.
These response surface models are used to design the con-
troller within the framework of a multiobjective genetic al-
gorithm. The final designs are checked using the original
non-linear model.

2 MULTIOBJECTIVE GENETIC ALGO-
RITHM

Multiobjective optimization and decision making refers
mainly to simultaneous optimization in order to achieve op-
timal trade-off solutions satisfying various objectives. These
objectives tend to be conflicting or competing. There is not
usually one unique solution but rather a family of compro-
mise solutions that need to be analyzed by a decision maker.

The MOGA combines the characteristics of a powerful evo-
lutionary optimization strategy, the genetic algorithm (Gold-
berg, 1989) with the concept of Pareto optimality (Gian-
nakoglou, 2002) to produce solutions illustrative of a prob-
lem’s trade-off set. A MOGA evolves a population of solu-
tion estimates thereby conferring an immediate benefit over
conventional multiobjective optimization methods.

Mathematically, the multiobjective optimization (MO) prob-
lem is to find a vector of design variables x, that is within
the feasible region in the universe <, to minimize (or max-
imize) a vector of objective functions F (x). Some or all of
the component functions can be non-linear. Most practical
problems are also bounded by a vector of constraints g(x).
Multiobjective optimization can be expressed as follows:

minimize: F (x) = {f1(x), f2(x), . . . , fn(x)}

subject to: g (x) ≤ 0

where g (x) is the constraint vector and fi (x) is the i-th ob-
jective function.

The set of trade-off solutions that express the best perfor-
mance in all of the objectives is known as the Pareto or the
non-dominated set.

The concept of Pareto-optimality constitutes by itself the ori-
gin of research in multiobjective optimization. In a multi-
objective minimization problem, a feasible vector x∗ ∈ X
is Pareto-optimal if and only if there is no feasible vector
x ∈ X such that for all i ∈ {1, 2, . . . , n}

fi (x∗) ≤ fi (x)

and for at least one i ∈ {1, 2, . . . , n}

fi (x∗) < fi (x)

The decision making process picks the best solution from
the non-dominated set (Pareto-optimal) according to some
preference information.

Most real-world optimization problems are multi-modal.
There often exist several criteria to be considered by the de-
signer. The compromise of better performance for all of them
has to be achieved. Fonseca and Fleming (1995) use the
ranking approach for assigning fitness to each individual in
the population. They define the individual’s rank simply as
the number of members of a population in a generation that
dominate it. Thus, non-dominated individuals are assigned
rank zero, while the lowest possible rank in any generation
of population is rank n − 1, where n is the number of in-
dividuals in the population. The fitness is then assigned to
each individual by interpolating from the best to the worst,
according to some function, that can be linear, exponential
or other type.

Any attempted improvement for a member of this set in one
of the objectives will result in deterioration in performance
in one or more of the other objectives.

The work described here employs a genetic algorithm with an
implementation of multiobjective optimization as proposed
by Fonseca and Fleming (1993).

3 VARIABLE COMPLEXITY MODELLING

Variable complexity modelling refers to the design process
by which simple, computationally inexpensive analysis tech-
niques are used together with more detailed, expensive tech-
niques. Low-fidelity analysis is often used to explore the de-
sign space to identify promising regions. VCM has been used
to assist the design process with large computational bur-
den and systems with many objectives and constraints (Bal-
abanov et al., 1996; Giunta et al., 1996; Giunta et al., 1997;
Khatib and Fleming, 1997). This process is formalized by
constructing response surfaces (Mason et al., 1989; Myers
and Montgomery, 1995). Response surfaces are polynomial
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approximations, usually quadratic, that model the objectives
based on the given designs. The hope is that these designs
will form a near convex hull around the feasible design re-
gion. The RS approach helps to reduce the complexity of
the optimization problem. Provided the design space is not
highly irregular, it is usually hoped that the RS models can
model the global optima adequately. Regression analysis us-
ing least squares is usually used to fit the polynomial curves
to the data. If n terms are chosen for the polynomial model,
then the number of design points required to construct the
model should be at least 1.5*n. For a problem with a high
number of design variables, it becomes very expensive for
available computing resources. This problem is often re-
ferred to as the curse of dimensionality. Additional work
might need to be done to construct the RS models depend-
ing on the nature and size of the problem. For regular and
relatively small design spaces, the choice of points can be
made using a variety of simple techniques to construct near-
convex hulls (Giunta et al., 1995). For larger problems with
irregular spaces, other statistical techniques from the design
of experiments domain are needed, an example would be the
D-optimality criterion.

Designs obtained using this approach usually give a good in-
dication of the near-optimal design. These designs can be
fine tuned using the full models to arrive at the final solu-
tions.

4 THE GAS TURBINE ENGINE

The engine model used to design the model-based approach
in this work is this SIMULINK model of the Rolls-Royce
Spey engine (Figure 1).

A controller is planned to control three variables: thrust
(XGN), low pressure surge margin (LPSM) and high pres-
sure spool speed (NH). The engine has three inputs: fuel flow
(WFE), exhaust nozzle area (A8) and inlet guide vane (IGV)
that can control these three outputs independently.

Controlling engine thrust whilst regulating compressor surge
margin is the most important objective of the engine con-
trol system. But compressor surge margin and thrust cannot
be measured directly. Other measurable engine parameters
are used to control these two most important variables af-
ter pre-set transformations. For example, thrust can be con-
trolled through comparing pressure ratios and interpolating
to find the relevant fuel flow readings. Various pairings of
input-output are possible for closed-loop control. Sensors
provided from outputs of the engine model are high and low
pressure spool speed (NH, NL), engine and fan pressure ra-
tios (EPR, FPR) and Mach number (DPUP). These variables
can be used to provide closed-loop control of the input vari-
ables. Table 1 shows the possible combinations of inputs and
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Figure 1: Conceptual SPEY GTE model

available measurable outputs to be controlled.

Table 1: Possible input-output pairings

Engine inputs Possible controlled variables
WFE NL, NH, EPR
A8 FPR, DPUP
IGV NH

Using a MOGA with the existing multivariable PI controller,
it was found the outputs in italics in table 1 to be the best for
control purposes (Silva, 2002).

For the purposes of this design, one set point is considered
corresponding to 87% of thrust demand. The system is re-
quired to meet the following design constraints for this oper-
ating point:

• XGN ≥ 48.64 kN

• TBT ≤ 1713 ˚C

• LPSM ≥ 10%

• XGN rise time (XGN-rtime) ≤ 1.0 s

• XGN settling time XGN-stime) ≤ 1.4 s

where XGN is the engine gross thrust, TBT is turbine blade
temperature, LPSM is the low pressure compressor surge
margin.

The following constraints (engine mechanical limits) are
used to maintain the stability of the simulation:
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• NL < 102%

• 0.25 < A8 < 0.34 m2 (dry thrust limits)

• -8˚ < IGV < 32˚

The following multiple objectives were also addressed by
MOGA:

• minimize steady-state error for NH, NL and A8

• minimize overshoot/undershoot for NH and NL.

5 RESPONSE SURFACE CONSTRUC-
TION AND VALIDATION

For the control configuration designed in Silva and Fleming,
(2002), there are 4 PI controller gains required for the two
closed-loops that control thrust and low pressure surge mar-
gin, by controlling engine pressure ratio (EPR) and by-pass
Mach number (DPUP) respectively. They form the indepen-
dent design variables. The low dimensionality of this prob-
lem precludes most of the difficulties associated with the RS
approach. There is room for choosing higher order poly-
nomials to achieve better approximations. This choice was
done in two stages:

• An uniform, but coarse grid was generated in 4 dimen-
sions covering a wide potential range for the controller
gains. The controller performance is evaluated for these
points. The full model was used to simulate engine re-
sponse for these designs.

• Examining the data, a subset of this mesh is identified
as the feasible design region. Within the feasible region,
two fine grids were generated and evaluated. One data
set was for constructing the RS models, and the other
for model validation.

This kind of information is not often readily available using
the traditional design approach. This mesh refinement helps
to make the search process more efficient. Further data fil-
tering is possible by leaving out designs that do not meet the
stated constraints. For some problems, filtering the data this
way can make the design space less evenly distributed inside
the mesh. As long as the model accuracy is maintained, this
does not pose any serious problems. Certainly, in this case,
no such problems are encountered.

From the 1400 design points chosen for the coarse mesh, two
subsets were chosen for constructing the model (245 points)
and for validation (200 points). The choice of these subsets
was done by filtering the design points which violate the con-
straints imposed on low pressure surge margin (LPSM) and

turbine blade temperature (TBT), and choosing those with
good thrust performance. The remaining objective and con-
straints for this problem were not taken account by this se-
lection.

Engine performance is evaluated for a step response of 62%
to 87% of thrust demand at zero altitude and zero Mach num-
ber conditions.

Low modelling errors were observed for a polynomial of or-
der 4 as follows:

y = co +
∑

1≤i≤p

cixi +
∑

1≤i≤j≤p

cijxixj+
∑

1≤i≤j≤k≤p

cijxixjxk +
∑

1≤i≤j≤k≤l≤p

cijxixjxkxl
(1)

where y is the response or output to be estimated, c are the
polynomial coefficients, x are the independent variables and
p is the number of variables (p = 4 PI controllers parame-
ters).

The difference between the values predicted by the response
surface and the actual values for the ns = 245 points is the
residual error. The remaining ne = 250 points are used to
evaluate the modelling error. If the predicted value is ŷ and
the actual value is y, the modelling error is given by equation
2.

δi = |ŷi − yi| (2)

for i = 1, . . . , ne.

The average modelling error is:

δ̄ =
1

ne

ne∑

i=1

δi (3)

As the validation points are different to those used in con-
structing the RS, equation 3 gives an unbiased estimate of
the modelling error.

In Table 2, the values for the residuals show the average error
for the response surface using the first data set. The error (av-
erage modelling error) values are those for the validation set.
Note that there are 10 RS models for the 10 responses (ob-
jectives and constraints) required for design purposes. The
design points are the actual values of these objectives and
constraints the system achieves for the original controller at
the chosen operating point. The steady-state errors and over-
shoot of the variables were calculated taking into account the
design specifications presented in Section 4. The optimiza-
tion of the nozzle area (A8) steady-state (ss) was considered
to maintain safer LPSM.

Figures 2-5 show the performance of the RS model in pre-
dicting the XGN, TBT, NH overshoot and LPSM responses
for the test data at the nedesign points.
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Table 2: Error performance values for the RS models

Output Mean Modelling Design
residual error point

Constraints
Thrust 0.0517 0.0730 48.6 kN
TBT 2.4127 2.2526 1713 K
XGN-rtime 0.0033 0.0049 1.0 s
XGN-stime 0.0576 0.0897 1.4 s
Objectives
LPSM 0.2907 0.4292 10 %
NH ss error 0.0027 0.0060 0.095
NL ss error 0.0088 0.0164 0.18
A8 ss error 0.0010 0.0015 0
NH ov’shoot 0.0072 0.0126 0.47
NL ov’shoot 0.0181 0.0351 0.90

Test data     
RS performance

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

X
G

N

test points

Figure 2: Performance of the RS model predicting XGN out-
put

6 USE OF RS IN MOGA-PI CONTROLLER
DESIGN

Once the RS models are established for this optimization
problem, they are used for function evaluation within the
MOGA instead of the non-linear SIMULINK engine model.
The MOGA generates a set of 2 PI controller gains for the
fuel flow and nozzle area loops. The designs created by the
algorithm are then used to evaluate the response surface mod-
els.

A MOGA using 80 individuals is evolved over 100 gener-
ations to search for the best controller gains for the two PI
controllers, satisfying the various objectives and constraints
mentioned in Section 4. The controller parameters are en-

Test data     
RS performance

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

T
B

T

test points

Figure 3: Performance of the RS model predicting TBT out-
put

Test data     
RS performance
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Figure 4: Performance of the RS model predicting LPSM
output

coded as 16-bit Gray-coded chromosome. Standard two-
point crossover was used for recombination, and standard
mutation was applied. All the objectives were assigned the
same level of priority. All constraints were assumed to have
the same level of priority. The actual evaluation time is lit-
erally a few minutes of a standard workstation. The same
scenario using the full model will require in excess of day to
execute on the same machine.

7 RESULTS

The system was simulated for the gain-scheduling Rolls-
Royce (RR) PI controller and for the PI gains found using
MOGA and the RS models. All the responses are plotted
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Figure 5: Performance of the RS model predicting NH over-
shoot output

against time in seconds, and the response values are all nor-
malized such that unity represents the desired response.

The MOGA finds a set of nondominated designs for the PI
controllers. To reduce the size of this set, some of the ob-
jectives are tightened further. It was chosen controllers with
fastest responses in terms of thrust rise and settling times. It
was also looked for controllers with minimum overshoot and
good tracking performance in terms of steady state (ss) er-
rors. These modified preferences reduce the number of con-
trollers to a subset of similar gain ranges. The final designs
for the PI controllers are validated using the full thermody-
namic model. The actual y and predicted ŷ values for the
ten objective values are almost identical. Table 3 gives the
percentage modelling error for the outputs given by:

δi = 100 ∗ (|ŷi − yi| /ŷi) (4)

for i = 1, ..., ne.

Table 3: RS design modelling errors (%)

Constraints Modelling Objectives Modelling
error error

Thrust 0.016 LPSM 0.01
TBT 0.3 NH ss error 0.001
XGN-rtime 0.4 NL ss error 0.0
XGN-stime 1.14 A8 ss error 0.0

NH ov’shoot 0.0
NL ov’shoot 0.0078

Figures 6-9 show fast and steady responses for the engine.
The thrust response in particular is of great importance for

RR model      
RS/MOGA models

0 0.5 1 1.5 2 2.5 3
0.94

0.95
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Figure 6: High-pressure spool speed
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Figure 7: Gross thrust

a military aircraft, both in terms of speed of response and
attaining adequate thrust values. Turbine blade temperature
is maintained within the allowable physical range avoiding
deformation of the blades. In order to maintain a robust and
stable engine operation, the surge margin has to be a mini-
mum of 10%. In this case, a low pressure surge margin of
nearly 14% is achieved and maintained, ensuring stall-free
conditions.

No better results, but higher computational cost, were
achieved for the same design process repeated using the full
engine model. The range of gains found using both ap-
proaches is quite similar.
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Figure 8: Turbine blade temperature
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Figure 9: Low-pressure surge margin

8 CONCLUSIONS

A combination of both non-linear and linearized models,
data-fitted approximations were used to design controllers
for a gas turbine engine. The optimization was carried out
using a MOGA. The designs found are shown to be good.

Variable complexity modelling techniques like the response
surface models allow the designer the freedom to explore the
design space more freely in search for the best design re-
gions. Once near optimal designs are established this way,
fine tuning can be carried out if necessary using the full mod-
els.

The initial cost of establishing the RS models is more than
offset by the savings in the design process. Further, these

models are re-usable at no extras cost. The construction of
the models sheds more light on the design problem and helps
design optimization in the process.

More complex data fitting techniques such as genetic pro-
gramming or neural networks can be used, if it is needed.
But, it can lessen the effect of simplicity of this approach.
Least square polynomials are more than adequate for this
problem.
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