CONTROLADOR EM MODO DUAL ADAPTATIVO ROBUSTO PARA PLANTAS COM GRAU RELATIVO UNITÁRIO: PROVA DE ESTABILIDADE

Caio D. Cunha* dorneles@ufrnet.br Aldayr D. Araújo* aldayr@dca.ufrn.br

Francisco C. Mota[†] mota@dca.ufrn.br

*Departamento de Engenharia Elétrica - UFRN 59.072-970 Natal-RN, fone 84 3215 3732-fax 84 3215 3731

[†]Departamento de Engenharia de Computação e Automação - UFRN 59.072-970 Natal-RN, fone 84 3215 3771-fax 84 3215 3738

RESUMO

Neste artigo é apresentada uma prova de estabilidade para o controlador em Modo Dual Adaptativo Robusto (DMARC) para plantas com grau relativo unitário. O DMARC é um controlador que interpola as estratégias de Controle Adaptativo por Modelo de Referência (MRAC) e o Controle Adaptativo por Modelo de Referência e Estrutura Variável (VS-MRAC) com o intuito de incorporar as vantagens de desempenho transitório de um VS-MRAC, com as propriedades de regime permanente de um MRAC convencional. Desta forma, deseja-se obter um sistema de controle robusto a incertezas paramétricas e perturbações externas, com desempenho rápido e pouco oscilatório durante o transitório e um sinal de controle suave em regime permanente.

PALAVRAS-CHAVE: Controle em Modo Dual, Controle Adaptativo, Sistemas com Estrutura Variável.

ABSTRACT

In this paper the stability proof to the Dual Mode Adaptive Robust Control (DMARC) applied to plants with relative degree one is presented. The DMARC is a control strategy which interpolates the Model Reference Adaptive Control (MRAC) and the Variable Structure Model Reference Adaptive Control (VS–MRAC). The main idea is to develop a robust controller to parametric uncertainties and external disturbances with good transient characteristics (fast response and small oscillations) as in a VS-MRAC and good steadystate characteristic (smooth control signal) as in a conventional MRAC.

KEYWORDS: Dual Mode Control, Adaptive Control, Variable Structure Systems.

1 INTRODUÇÃO

O Controlador DMARC teve seu início a partir da idéia proposta por Hsu e Costa (1989). Os autores utilizaram uma expressão que, dependendo da escolha de um parâmetro, podia se comportar como o Controlador MRAC ou como o Controlador VS-MRAC. Essa expressão, para a lei de adaptação dos parâmetros do controlador, foi utilizada para justificar que o VS-MRAC pode ser visto como um controlador adaptativo sem memória e com aprendizado instantâneo (ver Hsu

ARTIGO CONVIDADO:

Versão completa e revisada de artigo apresentado no SBAI-2005 Artigo submetido em 21/06/2006 1a. Revisão em 14/08/2006 2a. Revisão em 13/12/2006 3a. Revisão em 23/02/2007 Aceito sob recomendação do Editor Convidado Prof. Osvaldo Ronald Saavedra Mendez

e Costa (1989) e (1990)).

A partir da teoria de controle binário desenvolvida por Emelyanov (1987), Hsu e Costa (1990) propuseram um Controlador Binário Adaptativo por Modelo de Referência (B-MRAC) para plantas com grau relativo (n^*) igual a 1 e depois generalizado em Hsu e Costa (1994), para plantas com grau relativo (n^*) arbitrário. No B-MRAC é utilizada uma lei gradiente de adaptação de alto ganho com projeção, a qual com um parâmetro fixo suficientemente alto tende ao VS-MRAC.

No controlador MRAC convencional, que usa leis integrais de adaptação, a saída da planta segue um modelo de referência especificado (Ioannou e Sun (1996), Åström e Wittenmark (1995), Sastry e Bodson (1989) e Narendra e Annaswamy (1988)). Mesmo com as modificações para aumentar a robustez do algoritmo convencional (fator σ , normalização, etc.) (Ioannou e Sun, 1996) em geral o transitório é lento e oscilatório.

No VS-MRAC, utiliza-se a estrutura de controle por modelo de referência do MRAC e leis chaveadas, como nos sistemas com estrutura variável, para o sinal de controle (Hsu e Costa (1989), Hsu, Araújo e Costa (1994), Hsu, Lizarralde e Araújo (1997), Cunha e outros (2003)). Apesar do bom desempenho transitório, em geral temos a presença do fenômeno de "*chattering*".

O Controlador em Modo Dual Adaptativo Robusto propõe uma ligação entre o VS-MRAC e o MRAC convencional. O objetivo é conseguir um sistema robusto, com desempenho rápido e pouco oscilatório (características do VS-MRAC), e sinal de controle suave em regime permanente (característica do MRAC).

Uma versão inicial do controlador DMARC, utilizando a lei de adaptação proposta em Hsu e Costa (1989), foi apresentada nos artigos Cunha e outros (2005) e Mota e Araújo (2002). Nesses trabalhos, o parâmetro que dita a transição entre as duas estratégias de controle (MRAC e VS-MRAC) é ajustado em tempo real, utilizando a lógica fuzzy.

Neste trabalho, é proposta uma modificação da lei de adaptação inicial do DMARC utilizada nos trabalhos anteriores (Cunha e Araújo(2004) e Cunha e outros (2005)). Foi acrescentado um termo na lei de adaptação para eliminar os termos de sinais indefinidos que aparecem na derivada da função de Lyapunov.

Esse artigo é organizado como segue. Na seção 2 é dada a formulação do sistema a ser controlado. Os controladores MRAC convencional, VS-MRAC, B-MRAC e DMARC são apresentados nas seções 3, 4, 5 e 6 respectivamente. A análise de estabilidade é feita na seção 7. Na seção 8 é mostrada uma das possíveis formas de ajuste do DMARC, a qual é uti-

lizada nas simulações da seção 9.

2 FORMULAÇÃO DO PROBLEMA

Considere uma planta linear com parâmetros incertos monovariável e invariante no tempo com função de transferência

$$W(s) = k_p \frac{N_p(s)}{D_p(s)} \tag{1}$$

com entrada u e saída y e o modelo de referência tendo a entrada r e a saída y_m caracterizado pela função de transferência

$$M(s) = k_m \frac{N_m(s)}{D_m(s)} \tag{2}$$

Tem-se como objetivo determinar u tal que o erro de saída

$$e_0 = y - y_m \tag{3}$$

tenda a zero assintoticamente para condições iniciais arbitrárias e sinais de referência r(t) uniformemente limitados e contínuos por partes.

As seguintes hipóteses convencionais são feitas (Sastry e Bodson (1989), pag. 103-104):

- **a.** A planta é controlável e observável com $grau[D_p(s)] = n$ e $grau[N_p(s)] = m$, n e m conhecidos;
- **b.** $sgn(k_p) = sgn(k_m)$, positivos, sem perda de generalidade;
- **c.** $N_p(s)$ é Hurwitz (W(s) é de fase mínima);
- **d.** O modelo de referência é estritamente real positivo (ERP) e tem o mesmo grau relativo da planta $(n^* = n - m = 1);$
- e. Considera-se apenas a realimentação de saída da planta.

São usados os seguintes filtros de entrada e saída da planta

$$\begin{cases} \dot{v}_1 = \Lambda v_1 + gu\\ \dot{v}_2 = \Lambda v_2 + gy \end{cases}$$
(4)

sendo $v_1 e v_2$ pertencentes ao \Re^{n-1} , g pertence ao $\Re^{n-1} e \Lambda$ uma matriz estável pertencente ao $\Re^{(n-1)x(n-1)}$, escolhidos tal que o par (Λ, g) é controlável e $N_m(s) = det(sI - \Lambda)$. Define-se o vetor regressor como $\omega^T = \begin{bmatrix} v_1^T \ y \ v_2^T \ r \end{bmatrix}$. O controle é, então, definido como

$$u = \theta \left(t \right)^T \omega \left(t \right) \tag{5}$$

onde $\theta(t)^{T} = \begin{bmatrix} \theta_{v1}^{T}(t) & \theta_{n}(t) & \theta_{v2}^{T}(t) & \theta_{2n}(t) \end{bmatrix}$ é o vetor de parâmetros adaptativos (Ioannou e Sun (1996), pag. 384).

Sabe-se que, sob as hipóteses acima, existe um único vetor constante θ^* tal que a função de transferência da planta em malha fechada (com $u = {\theta^*}^T \omega$), de r para y, é M(s) (condição de "*Matching*"). Obviamente θ^* somente pode ser conhecido se a planta for conhecida .Quando isto não é o caso, $\theta(t)$ é adaptado até que $e_0(t) \to 0$ quando $t \to \infty$ e, sob alguma condição de riqueza de sinal, $\theta(t) \to \theta^*$ (Ioannou e Sun (1996), Pag. 177).

Seja $[A, b, h^T]$ uma realização mínima da planta e x $\in \Re^n$ o respectivo vetor de estado. Então, a planta com os filtros podem ser representados como

$$\dot{x}_c = A_0 x_c + b_0 u$$

$$y = h_c^T x_c$$
(6)

onde $x_c^T = \left[x^T, v_1^T, v_2^T\right] \,, \; x_c \in \Re^{3n-2}$,

$$A_0 = \begin{bmatrix} A & 0 & 0 \\ 0 & \Lambda & 0 \\ gh^T & 0 & \Lambda \end{bmatrix}, \quad b_0 = \begin{bmatrix} b \\ g \\ 0 \end{bmatrix}$$
$$h_c^T = \begin{bmatrix} h^T & 0 & 0 \end{bmatrix}$$

Nota-se que $\omega = \Omega x_c + b_r r \operatorname{com}$

$$\Omega = \begin{bmatrix} \Omega_c \\ 0 \end{bmatrix}, \quad \Omega_c = \begin{bmatrix} 0 & I & 0 \\ h^T & 0 & 0 \\ 0 & 0 & I \end{bmatrix} e b_r = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Tem-se, então,

$$\dot{x}_c = A_c x_c + \frac{b_c}{\theta_{2n}^*} (u - {\theta^*}^T \omega) + b_c r$$

$$y = h_c^T x_c$$
(7)

onde $A_c = A_0 + b_0 \theta_r^{*^T} \Omega_c$, $\theta_r^{*^T} = [\theta_1^* \dots \theta_{2n-1}^*]$, $b_c = \theta_{2n}^* b_0, \theta_{2n}^* = k_m/k_p > 0.$ $[A_c, b_c, h_c^T]$ é uma realização não mínima e estável de M(s) (Sastry, (1984)), ou seja, o modelo de referência pode ser representado como

$$\dot{x}_{c\,m} = A_c x_{c\,m} + b_c r, \quad x_{c\,m} \in \Re^{3n-2}$$

$$y_m = h_c^T x_{c\,m}$$
(8)

Definindo o vetor de erro por $e = x_c - x_{cm}$ tem-se a seguinte equação de erro

$$\dot{e} = A_c e_c + \frac{b_c}{\theta_{2n}^*} (u - {\theta^*}^T \omega)$$

$$e_0 = h_c^T e$$
(9)

e, na forma entrada saída,

$$e_0 = \frac{1}{\theta_{2n}^*} M\left(u - {\theta^*}^T \omega\right) \tag{10}$$

3 MRAC CONVENCIONAL

No MRAC o desempenho desejado para a planta é definido por um modelo de referência. A função de transferência para o modelo de referência deve ser definida com a mesma ordem do modelo nominal da planta. O objetivo do MRAC é que a planta siga o modelo (condição de "*matching*").

Se os parâmetros da planta são conhecidos com exatidão, têm-se os valores dos parâmetros do controlador θ^* para os quais a saída da planta converge para a saída do modelo (Ioannou e Sun(1996), pag. 333). Porém, se esses parâmetros são desconhecidos ou conhecidos com incertezas, torna-se necessária uma adaptação para os parâmetros do controlador. No MRAC o sinal de controle é dado por

$$u = \theta^T \omega \tag{11}$$

e a lei original de adaptação por

$$\dot{\theta} = -\gamma e_0 \omega \quad , \quad \gamma > 0$$
 (12)

No MRAC, o algoritmo é baseado na estimação dos parâmetros e contém leis de adaptação integrais, o que resulta na falta de robustez à dinâmica não modelada e distúrbios externos. Para aumentar a robustez no MRAC foi proposta uma lei de adaptação com modificação σ (Ioannou e kokotovic (1984)), dada por

$$\dot{\theta} = -\sigma\theta - \gamma e_0 \omega$$
 , $\gamma > 0 \ e \sigma > 0$ (13)

onde o primeiro termo do lado direito da igualdade pode ser interpretado como um fator de esquecimento e o segundo termo, um fator de aprendizagem. Esta modificação garante no mínimo estabilidade local na presença de dinâmica não modelada e/ou distúrbios externos A introdução do fator σ , entretanto, pode levar ao aparecimento de "*bursting*" como verificado por Hsu e Costa (1987). Narendra e Anaswammi (1987) propuseram a utilização de um fator de esquecimento variável, substituindo o parâmetro sigma pelo módulo do erro de saída eliminando o efeito de "*bursting*.

A estabilidade global e a eliminação de "bursting" do algoritmo com modificação sigma, foi obtida depois por Ioannou e Tsakalis (1986), retendo a modificação sigma e introduzindo normalização no termo $e_0\omega$.

A introdução da normalização pode levar a transitórios de adaptação demasiadamente lentos e mesmo com a excitação rica em freqüência, a qualidade do transitório de adaptação (quando $\theta(t)$ está distante de θ^*) não é uniforme e a convergência dos parâmetros adaptativos é muito lenta. Apesar do comportamento transitório não ser totalmente aceitável, em algumas situações, o sinal de controle é suave, tornando-o adequado para a condição de regime permanente.

4 VS-MRAC

O VS-MRAC foi desenvolvido por Hsu e Costa (1989), com o intuito de buscar um controlador robusto em relação às incertezas da planta e com um desempenho transitório significativamente melhor que os obtidos com os algoritmos baseados em identificação de parâmetros. Para o caso de $n^* = 1$, a solução foi substituir as leis integrais de adaptação por leis de adaptação a estrutura variável, tornando o erro de saída $e_0(t) \equiv 0$ uma superfície deslizante no espaço de estado do erro do sistema e a condição de deslizamento é $\dot{e}_0 e_0 < 0$. A lei de adaptação é dada por

$$\theta_i = -\overline{\theta}_i sgn(e_0\omega_i) \operatorname{com} \overline{\theta}_i > |\theta_i^*|, i = 1, 2n$$
(14)

 $\bar{\theta}_i$ deve ser dimensionado de forma a levar em consideração as incertezas nos parâmetros da planta. No caso em que os parâmetros da planta sãoinvariantes no tempo pode-se demonstrar a estabilidade exponencial global para o VS-MRAC. Ainda, o algoritmo é estável para perturbações desconhecidas e uniformemente limitadas atuando na entrada da planta, desde que $||\omega(t)||$ seja maior que uma determinada constante positiva (Hsu e Costa (1989)) ($||\omega(t)||$ é uma norma do vetor regressor $\omega(t)$). Simulações têm levado às mesmas conclusões para o caso variante no tempo. A grande desvantagem do VS-MRAC é que ele requer excessiva ação de controle e sua implementação prática pode apresentar algumas dificuldades.

5 CONTROLADOR B-MRAC PARA N*=1

A partir da teoria de controle binário desenvolvida por Emelyanov (1987), Hsu e Costa (1990) desenvolveram um esquema de controle denominado de Controle Binário Adaptativo por Modelo de Referência (B-MRAC). O B-MRAC consiste de uma lei gradiente de adaptação com projeção. A lei de adaptação é a mesma do MRAC com fator σ (equação (13)) com a exceção de que σ representa o fator de projeção especificado por

$$\sigma = \begin{cases} 0, se \|\theta\| < M_{\theta} \text{ ou } \sigma_{eq} < 0, \\ \sigma_{eq}, se \|\theta\| \ge M_{\theta} e \sigma_{eq} \ge 0, \\ \theta\|\theta\|^{2} \end{cases} \quad \sigma_{eq} = \frac{-\gamma e_{0} \theta^{T} \omega}{\|\theta\|^{2}}$$
(15)

 $\operatorname{com} \gamma > 0$ e $M_{\theta} > \|\theta^*\|$ é uma constante.

Com essa estrutura de controle mostra-se que se $\gamma \to \infty,$ a lei de controle se torna

$$\theta = -M_{\theta} sgn\left(e_{0}\omega\right) \quad , \quad M_{\theta} > \|\theta^{*}\| \tag{16}$$

que é a lei do VS-MRAC dada na equação (14). Para γ suficientemente alto e sobre a condição de riqueza do sinal de referência, prova-se a estabilidade global exponencial uniforme do B-MRAC (Hsu e Costa (1990) e (1994)). A exigência de alto ganho de adaptação para uma boa resposta transitória, pode, por sua vez, acarretar em amplificações nas perturbações e dinâmicas não modeladas, além de apresentar picos transitórios iniciais no sinal de controle em condições de elevado erro inicial de saída .

6 CONTROLADOR EM MODO DUAL ADAPTATIVO ROBUSTO PARA N*=1

No controlador em Modo Dual Adaptativo Robusto é proposta uma ligação entre o MRAC e o VS-MRAC através de uma única lei de adaptação. Para a prova de estabilidade a lei de adaptação inicial (Cunha e outros, 2005) foi modificada. Basicamente, foi adicionado um termo na lei de controle de forma a se poder eliminar os termos de sinais indefinidos, que aparecem na derivada da função de Lyapunov. A idéia das ponderações da lógica nebulosa do tipo Takagi-Sugeno (Mota e Araújo (2002), Takagi e Sugeno (1985)) é incorporada em uma única expressão.

Considere a seguinte lei de adaptação

$$\mu \dot{\theta} = -\sigma \theta - (1 - \mu)\sigma \Gamma e_0 \omega - \mu \gamma e_0 \omega \tag{17}$$

onde
$$\gamma > 0, \sigma > 0$$
 e $\Gamma = diag\left[\frac{\overline{\theta}_i}{|e_0\omega_i|}\right], \overline{\theta}_i > |\theta_i^*|$

i = 1, 2n.

Quando $\mu \rightarrow 0$, nota-se que a equação (17) se resume à equação (14), ou seja, ao algoritmo VS-MRAC. A equação (17) pode ser reescrita como

$$\dot{\theta} = -\frac{\sigma}{\mu}\theta - \frac{1}{\mu}\left[(1-\mu)\,\sigma\Gamma + \mu\gamma\,I\right]e_0\omega, \quad \gamma > 0 \ \ \mathbf{e}\,\sigma > 0$$
(18)

Ainda, quando $\mu \rightarrow 0$, observa-se que o fator de esquecimento tende a infinito, implicando que o VS-MRAC não tem memória. O termo de aprendizagem também cresce ilimitadamente, de onde conclui-se que no VS-MRAC a adaptação é instantânea.

Quando $\mu = 1$, a equação (17) se resume à (13) que é a lei de adaptação do MRAC com fator σ .

No DMARC (equação (18)) o fator de esquecimento é variável como em Narendra e Annaswamy (1987), e dependendo da forma como se ajusta o parâmetro μ , o algoritmo DMARC pode trabalhar próximo do VS-MRAC. Esses fatores contribuem para o não surgimento do fenômeno de "*bursting*".

No algoritmo DMARC, o MRAC só começa a ter sua maior ponderação quando o erro de saída é suficientemente pequeno. Dessa forma e pelos fatores mencionados no final da seção **3**, foi introduzido o termo $(1 - \mu)$ na equação (17) de forma que a normalização (representada pelo termo Γ) é gradativamente reduzida, até se obter a lei com fator σ que garante estabilidade local.

7 PROVA DE ESTABILIDADE

Considere o sistema e as hipóteses descritas na seção 2. Define-se o fator σ como:

$$\sigma = \begin{cases} 0 & \text{se } \|\theta\| < M_{\theta} \text{ e } \mu \neq 0\\ \sigma_c & \text{em caso contrário} \end{cases}$$
(19)

onde M_{θ} é dado por

$$M_{\theta} = \left\| \bar{\theta} \right\| \tag{20}$$

Teorema 7.1. Seja o sistema (5), (9), (17), (19) e uma bola $\|\theta\| \le M_{\theta}$, definida como em (20). Então,

i) Todos os sinais em malha fechada são uniformemente limitados. ii) $||e|| \rightarrow 0$ assintoticamente, se $\mu \rightarrow 0$

Prova: A prova de estabilidade é semelhante a apresentada em Hsu e Costa (1990). Escolhendo-se a função definida positiva como candidata a função de Lyapunov

$$V\left(e,\tilde{\theta}\right) = \frac{1}{2}\left(e^{T}Pe + \frac{\tilde{\theta}^{T}\tilde{\theta}}{\theta_{2n}^{*}\gamma}\right)$$
(21)

Segundo o lema de Kalman-Yakubovitch $(A_c^T P + PA_c = -2Q, Pb_c = h_c, P = P^T > 0$ e $Q = Q^T > 0)$ e, considerando que $e^T h_c = h_c^T e = e_0$, encontra-se para a derivada de (21)

$$\dot{V}\left(e,\tilde{\theta}\right) = -e^{T}Qe - \frac{\sigma\tilde{\theta}^{T}}{\theta_{2n}^{*}\gamma\mu}\left[\theta + (1-\mu)\Gamma e_{0}\omega\right]$$

que, juntamente com (17) resulta

$$\dot{V}\left(e,\tilde{\theta}\right) = -e^{T}Qe - \frac{\sigma}{\theta_{2n}^{*}\gamma\mu}\sum_{i=1}^{2n}\left[\theta_{i} - \theta_{i}^{*}\right] \\ \left[\theta_{i} + (1-\mu)\bar{\theta}_{i}sgn\left(e_{0}\omega_{i}\right)\right]$$
(22)

Definindo os termos dentro do somatório como a função

$$F_i(\theta_i) = \left[\theta_i - \theta_i^*\right] \left[\theta_i + (1 - \mu) \,\overline{\theta}_i sgn\left(e_0 \omega_i\right)\right]$$
(23)

vê-se que $\bar{\theta}_i$ e $-\bar{\theta}_i$ são as maiores raízes possíveis (em valores absolutos) de $F_i(\theta_i)$, pois $0 < \mu \le 1$ e $\bar{\theta}_i > |\theta_i^*|$

Como o coeficiente de θ_i^2 é positivo, então, $F(\theta_i) > 0, \forall \theta_i$ tal que $|\theta_i| > \overline{\theta}_i$. Conseqüentemente, com (19) e (20) tem-se que

$$\dot{V}\left(e,\tilde{\theta}\right) \leq -e^{T}Qe \leq 0$$
 (24)

De (21) e (24) conclui-se que e, $\tilde{\theta}$ e, conseqüentemente, $e_0 e \theta$ pertencem ao L_{∞} . De $e = x_c - x_{cm}$, considerando que $r \in L_{\infty}$ e M(s) é estável, tem-se que x_{cm} e $y_m \in L_{\infty}$, consequentemente, x_c e $y \in L_{\infty}$. Como $x_c^T = [x^T, v_1^T, v_2^T]$, tem-se que x, v_1 e $v_2 \in L_{\infty}$. Desde que $\omega^T = [v_1^T y v_2^T r]$ e $u = \theta^T \omega$, conclui-se que ϖ e $u \in L_{\infty}$, resultando em i). Agora, se $\mu \rightarrow 0$, a equação (17) se resume à (14) e, no limite tem-se para (22) e (23)

$$\dot{V}\left(e,\tilde{\theta}\right) = -e^{T}Qe - \frac{\sigma}{\theta_{2n}^{*}\gamma} \lim_{\mu \to 0} \sum_{i=1}^{2n} \frac{1}{\mu} F_{i}\left(\theta_{i}\right) \qquad (25)$$

Fazendo o limite do termo dentro do somatório tem-se

$$\lim_{\mu \to 0} \frac{1}{\mu} F_i(\theta_i) = \lim_{\mu \to 0} \frac{1}{\mu} [\theta_i - \theta_i^*] \\ \begin{bmatrix} \theta_i + (1-\mu) \bar{\theta}_i sgn(e_0 \omega_i) \end{bmatrix} \\ \lim_{\mu \to 0} \frac{1}{\mu} F_i(\theta_i) = \lim_{\mu \to 0} \frac{1}{\mu} \begin{bmatrix} -\bar{\theta}_i sgn(e_0 \omega_i) - \theta_i^* \end{bmatrix} \\ \begin{bmatrix} (-\mu) \bar{\theta}_i sgn(e_0 \omega_i) \end{bmatrix} \\ \lim_{\mu \to 0} \frac{1}{\mu} F_i(\theta_i) = \begin{bmatrix} \bar{\theta}_i + \theta_i^* sgn(e_0 \omega_i) \end{bmatrix} \bar{\theta}_i > 0$$

pois $\bar{\theta}_i > |\theta_i^*|$. Dessa forma tem-se para (25)

$$\dot{V}\left(e,\tilde{\theta}\right) < -e^{T}Qe < 0$$
 (26)

o que resulta em (ii).

8 AJUSTE DO DMARC

Para sintonizar o Controlador em Modo Dual Adaptativo Robusto utiliza-se uma expressão para o parâmetro μ , a partir da idéia do modelo de Takagi-Sugeno (Mota e Araújo (2002)), dada pela equação (27) e ilustrada na Figura 1.

$$\mu = e^{-e_0^2/L} \tag{27}$$

onde L é um parâmetro a ser ajustado.

Observa-se que quando $e_0 \rightarrow 0$, $\mu \rightarrow 1$ aproximando-se do MRAC. Quando e_0 se torna razoavelmente grande μ assume um valor suficientemente pequeno tendendo ao VS-MRAC. O parâmetro *L* tem a importante função de determinar a forma como se dá a transição entre o MRAC e o VS-MRAC. Quanto menor o valor de *L* maior a ação do VS-MRAC no espaço de e_0 .

A expressão (27) determina como o parâmetro μ deve ser variado, para ajustar o controlador DMARC, à medida que o erro e₀ evolui. A derivada de μ é dada por

$$\dot{\mu} = -2\frac{\mu}{L}e_0\dot{e}_0\tag{28}$$

Figura 1: Evolução de μ função do erro de saída

Analisando essa derivada, considerando que μ é positivo, chega-se ao resultado apresentado na Tabela 1

Tabela 1: Variação de μ com a condição de escorregamento

$e_0 \dot{e}_0 < 0$	$\dot{\mu} > 0$
condição de	μ aumenta (aproxima-se
escorregamento satisfeita	do MRAC)
$e_0 \dot{e}_0 > 0$ condição de escorregamento não satisfeita	$\dot{\mu} < 0$ μ diminui (aproxima-se do VS-MRAC)
$e_0 \dot{e}_0 = 0$	$\dot{\mu} = 0$
superfície de	μ constante, controlador
escorregamento alcançada	fixo

Um aspecto prático da implementação do DMARC deve ser considerado a partir da observação da equação (17). Para evitar erro numérico, o valor de μ , que se encontra no denominador de (18), é limitado inferiormente por um valor μ_p , suficientemente pequeno.

Analizando-se ainda, a sintonia do DMARC, considere que o sistema está inicialmente operando como VS-MRAC, com $L e \mu_p$ pequenos. Se após um determinado tempo a condição de deslizamento é satisfeita ($e_0 \dot{e}_0 < 0$) e o erro atinge um valor suficientemente pequeno (ver figura 1), a variação de μ , expressa pela equação (28), será dada por

$$\dot{\mu} = 2\frac{\mu_p}{L} \left| e_0 \dot{e}_0 \right| \tag{29}$$

Considere agora, que o sistema está operando como MRAC com L pequeno, $e_0 \cong 0$ e $\mu \cong 1$. Se e_0 se afasta da origem tem-se $e_0\dot{e}_0 > 0$ (ver Figura 1) e desta forma a variação de μ será expressa por

$$\dot{\mu} = -2\frac{1}{L} \left| e_0 \dot{e}_0 \right| \tag{30}$$

Vê-se que a transição do VS-MRAC para o MRAC se dá de uma forma mais lenta (mais cautelosa) com uma taxa de variação μ_p/L (μ_p e *L* pequenos), enquanto a transição do MRAC para o VS-MRAC, na mesma condição (mesmo valor absoluto de $e_0\dot{e}_0$), se dá com uma taxa de variação de aproximadamente 1/L (*L* pequeno).

Sendo μ_p suficientemente pequeno, o algoritmo de controle do DMARC é implementado com σ dado por

$$\sigma = \begin{cases} 0 & \text{se } \|\theta\| < M_{\theta} \text{ e } \mu > \mu_p \\ \sigma_c & \text{em caso contrário} \end{cases}$$
(31)

onde $\frac{\sigma_c}{\mu_p}$ é suficientemente grande, tal que (17) seja o mais próximo possível de (15). Assim, se o erro de saída é tal que $\mu = \mu_p e$, nesse caso, o DMARC atua como o VS-MRAC, espera-se, intuitivamente, que o erro de saída seja forçado a decrescer (note que no VS-MRAC $||\theta|| = ||\bar{\theta}||$ é constante). Dessa forma, teria-se $\mu_p \ge e^{-e_0^2/L}$. De uma forma mais relaxada, e considerando que esse é um resultado intuitivo tem-se

$$|e_0| = O\left(\sqrt{-L\ln\left(\mu_p\right)}\right) \tag{32}$$

A rigor, a exata convergência de (17) para (15) necessita que $\mu = 0$. Porém, analisando (22), a condição necessária para que (26) seja satisfeita, é que $\frac{\sigma_c}{\mu_p}$ seja tal que $\|\theta^*\| < (1 - \mu_p) \|\bar{\theta}\| \le \|\theta\| \le \|\bar{\theta}\|.$

9 RESULTADOS DE SIMULAÇÕES

Para ilustrar o funcionamento do DMARC, considere a planta de segunda ordem e grau relativo unitário expressa pela função de transferência

$$W(s) = \frac{s+1}{(s-1)^2}$$

O modelo de referência é especificado por

$$M(s) = \frac{s+2}{(s+1)(s+3)}$$

Foram escolhidos os filtros da entrada e saída como

$$\Lambda = -2 e g = 2$$

Os parâmetros $\theta^* \in \overline{\theta}$ são respectivamente

$$\theta^* = (0,5; -6; 5; 1)^T \ \mathbf{e} \ \bar{\theta} = (0,6; 7; 6; 2)^T$$

Nas simulações é utilizado o método de integração numérica de Euler. Inicialmente são feitas simulações com o intuito de observar as semelhanças existentes entre o controlador B-MRAC e o controlador DMARC. Em ambos, o parâmetro de adaptação θ é limitado ao interior de uma bola de mesma dimensão ($M_{\theta} > ||\theta^*||$). No B-MRAC quando o vetor adaptado θ , atinge a superfíce da bola ele é projetado sobre a mesma, permanecendo nela até que a lei de adaptação indique o decréscimo de $||\theta||$. No DMARC, quando o erro de saída é alto, a superfície da bola é atingida de forma chaveada, sendo essa, provavelmente, a principal diferença entre o DMARC e o B-MRAC.

Se o vetor de parâmetros de adaptação está no interior da bola, ou seja, $\|\theta\| \le M_{\theta}$, tem-se nos dois controladores $\sigma =$ 0 e a lei de controle, tanto do DMARC (equações (17), (19) e (20)), como do B-MRAC (equações (13) e (15)) se resume a (12).

Nas primeiras simulações foram feitas as modificações na referência r(t) e na perturbação d(t) na entrada da planta, de acordo com a Tabela 2.

Tabela 2: Variações em r e d durante as simulações

INTERVALO	REFERÊNCIA	PERTURBAÇÃO
$0 \le t < 0, 8$	r(t) = 1	d(t) = 0, 8
$0,8 \le t < 1,6$	r(t) = -1	d(t) = 0, 0
$1, 6 \le t < 2, 4$	r(t) = 1	d(t) = 0,8

Figura 2a: Resultado do controlador DMARC

Com o mesmo valor de $\gamma = 750$ e sob as mesmas condições foi feita a simulação com o B-MRAC e o resultado encontra-

Figura 2b: Resultado do controlador DMARC

se na Figura 3. A semelhança entre os resultados obtidos nas figuras 2a e 3, se deve ao fato de que, com gama grande e com uma relação $\frac{\sigma_c}{\mu_p}$ de valor não suficientemente alto, o DMARC, semelhantemente ao B-MRAC, trabalha como um MRAC com uma lei gradiente de adaptação de alto ganho. Na Figura 2b a linha pontilhada no detalhe do erro de saída, representa o limite do erro dado pela equação (32).

Figura 3 : Resultado do controlador B-MRAC

Para comparar os resultados do B-MRAC, VS-MRAC e o DMARC, novas simulações foram feitas, sob as condições apresentadas na Tabela 3.

Tabela 3: Variações em r e d durante as simulações

INTERVALO	REFERÊNCIA	PERTURBAÇÃO
$0 \leq t < 0, 2$	r(t) = 1	d(t) = 0, 8
$0,2 \leq t < 0,4$	r(t) = -1	d(t) = 0, 0
$0,4 \leq t < 0,6$	r(t) = 1	d(t) = 0, 8

Para obter uma resposta rápida no B-MRAC foram utilizados $h = 10^{-5}$ s e $\gamma = 10^6$ e o resultado é apresentado nas figuras 4a e 4b.

Figura 4a: Resultado do controlador B-MRAC

Na figura 4a, observa-se que no B-MRAC, com γ grande, a saída da planta se aproxima da saída do modelo de referência mais rapidamente que nos casos do VS-MRAC e DMARC (Figuras 5a e 6a, respectivamente). No entanto, o B-MRAC tem um sinal de controle, inicial, de maior amplitude. Além disso, o BMRAC, apesar de γ grande, apresenta oscilações de maior amplitude (Figura 4b) que o VS-MRAC (Figura 5b) e o DMARC (Figura 6b). Na Figura 4b, a linha pontilhada, no detalhe do erro de saída do B-MRAC, serve apenas para comparação com o DMARC das Figuras 7a e 7b.

Figura 4b: Resultado do controlador B-MRAC

Para o VS-MRAC foi usado $h = 10^{-5}s$ e os resultados são apresentados nas figuras 5a e 5b.

No VS-MRAC, para se obter um modo deslizante, é necessário que a frequência de chaveamento seja alta, o que leva ao uso de um passo de integração muito pequeno. Considerando

Figura 5a: Resultado do controlador VS-MRAC

que $h = 10^{-5}s$ é uma boa escolha para o bom funcionamento do VS-MRAC, são feitas simulações com o DMARC usando $h = 10^{-5}s$, $L = 10^{-9}$, $\gamma = 10$, $\sigma_c = 10^{-1}$, $\mu_p = 10^{-4}$ e são obtidos os resultados apresentados nas Figuras 6a e 6b. O valor de γ foi reduzido, em relação à primeira simulação (Figura 2a e 2b), pois no DMARC o funcionamento como o VS-MRAC pode ser especificado pelos parâmetros L, $\sigma_c e \mu_p$, ao passo que no B-MRAC o funcionamento como VS-MRAC só é possível com γ tendendo para infinito (ver Hsu e Costa (1990) e (1994)). Ainda, γ muito alto pode amplificar os efeitos de perturbações externas e dinâmicas não modeladas.

Da Figura 6a, observa-se que a planta segue o modelo praticamente sem oscilações, uma característica do VS-MRAC, e o sinal de controle apresenta uma certa suavidade em relação ao chaveamento do VS-MRAC. Na Figura 6b é apresentado o erro de saída da simulação referente à Figura 6a, a linha pontilhada, no detalhe do erro de saída representa o limite dado pela equação (32). O controle apresenta robustez com

Figura 6a: Resultado do controlador DMARC

Figura 6b: Resultado do controlador DMARC

relação a perturbações externas na entrada da planta.

Para atenuar mais o sinal de controle, pode-se diminuir a região de ação do VS-MRAC, em relação ao erro de saída, aumentando-se o valor de L. O valor de h, nesse caso, pode ser aumentado. Então com $h = 10^{-4}s$, $L = 10^{-7}$, $\gamma = 10$, $\sigma_c = 10^{-1}$, $\mu_p = 10^{-4}$, nova simulação é feita com o DMARC e o resultado é apresentado nas Figuras 7a e 7b.

Pode-se observar na Figura 7a uma boa suavização do sinal de controle, em relação ao sinal apresentado na Figura 6a. Porém, na Figura 7b, vê-se que o erro de saída agora é da ordem de 10^{-3} , enquanto que o da Figura 6b é da ordem de 10^{-4} .

Com uma relação $\frac{\sigma_c}{\mu_p}$ suficientemente grande e com *L* bem pequeno, o DMARC trabalha como VS-MRAC até que o erro de saída seja bem próximo de zero (ver Figura 1), levando o sistema a uma resposta transitória consideravelmente rápida. Obviamente, se trabalharmos com $L \cong 0$, ape-

Figura 7a: Resultado do controlador DMARC

Figura 7b: Resultado do controlador DMARC

sar de se ter uma boa resposta transitória, pode-se ter um sinal de controle com uma freqüência elevada. Assim, a escolha dos parâmetros L, $\sigma_c \in \mu_p$ irá ditar o compromisso entre resposta transitória rápida e suavidade no sinal de controle.

10 CONCLUSÕES

Neste artigo é apresentada uma demonstração de estabilidade para o controlador em Modo Dual Adaptativo Robusto para plantas com grau relativo unitário. Conforme pode ser verificado pelas simulações, o algoritmo em Modo Dual Adaptativo Robusto proporcionou um transitório rápido e praticamente sem oscilações e um desempenho em regime permanente com sinal de controle com boa suavização. Adicionalmente apresentou robustez a incertezas paramétricas e distúrbios.

Para plantas com grau relativo arbitrário, o DMARC utiliza a mesma estrutura do VS-MRAC, usando a lei de adaptação do DMARC, para $n^* = 1$, no bloco onde é gerado o sinal de controle que será aplicado à planta (Cunha e Araújo (2004)). A análise de estabilidade, para plantas com $n^* > 1$, pode ser feita a partir da análise de plantas com $n^* = 1$, seguindo Hsu (1990) e Hsu e Costa (1994).

REFERÊNCIAS

- Åström, K. J. e Wittenmark, B. (1995). Adaptive Control, Addison-Wesley Pub. Co.
- Cunha, C. D., Araújo, A. D., Barbalho, D. S. e Mota, F. C. (2005). A Dual-Mode Adaptive Robust Controller Applied to the Speed Control of a Three-Phase Induction Motor, *Asian Journal of Control*, 7(2), 197-201.
- Cunha, C. D. e Araújo, A. D. (2004). A Dual-Mode Adaptive Robust Controller for Plants with Arbitrary Relative Degree. Proceedings of 8th International Workshop on Variable Structure Systems - VSS'04. Vilanova i la Geltrú, Espanha.
- Cunha, J.P.V.S., Hsu, L., Costa, R.R. e Lizarralde, F. (2003). Output-Feedback Model-Reference Sliding Mode Control of Uncertain Multivariable Systems, *IEEE Transactions on Automatic Control*, AC-48 (12), 2245–2250.
- Emelyanov, S. V. (1987). Binary Automatic Control Systems. MIR Publishers, Moscow (English Translation).
- Hsu, L. and Costa, R. R. (1987), "Bursting Phenomena in Continuous-Time Adaptive Systems with a Sigma-Modification", *IEEE Trans. Automatic Control*, *AC*-32 (1), 84-86.
- Hsu, L. e Costa, R. R. (1989). Variable Structure Model Reference Adaptive Control Using only Input and Output Measurements: Part I, *Int. J. Control*, 49(2), 399-416.
- Hsu, L., Araújo, A. D. e Costa, R. R. (1994). On the Design of Variable Structure Adaptive Control Using only Input/ Output Data. *IEEE Trans. Automatic Control, AC*-39 (1), 4-21.
- Hsu, L. e Costa, R.R. (1990). A Binary Control Approach to Design Globally Exponentially Stable Systems. Proceedings of the 7th International Conference on Systems Engineering, Las Vegas, July.
- Hsu, L. e Costa, R. R. (1994). B-MRAC Global Exponential Stability with a New Model Reference Adaptive Controller Based on Binary Control Theory. *Control-Theory and Advanced Technology*, 10 (4), Part 1, 649-668.
- Hsu, L., Lizarralde, F. e Araujo, A. D. (1997). New Results on Output-Feedback Variable Structure Model-Reference Adaptive Control: Design and Stability Analysis, *IEEE Transactions* AC-42 (3), 386–393

- Ioannou, P. A. e Sun, J. (1996). Robust Adaptive Control, Prentice-Hall, Inc., Englewood Cliffs.
- Ioannou, P. A. e Kokotovic, P. V. (1984). Instability Analysis and Improvement of Robustness of Adaptive Control. *Automatica*, AC-20(5),583-594
- Ioannou, P. A. e Tsakalis, K. S. (1986). A Robust Direct Adaptive Controller. *IEEE Trans. Automatic Control*, *AC*-31(11), 1033-1043.
- Mota, F. C. e Araújo, A. D. (2002). Proposta de um Controlador Dual Adaptativo Robusto Utilizando o Modelo de Takagi-Sugeno, *Congresso Brasileiro de Automática* Natal-RN, Brasil, 173-177.
- Narendra, K. S. e Annaswamy, A. M. (1987). New Adaptive Law for Robust Adaptive Control Without Persistent Excitation, *IEEE Trans Automatic Control*, *AC*-32, 134-145.
- Narendra, K. S. e Annaswamy, A. M. (1988). Stable Adaptive Systems, Prentice Hall, Inc., New Jersey.
- Sastry, S. S. (1984). Model Reference Adaptive Control Stability, Parameter Convergence and Robustness, *IMA J. Mathematical Control and Information*, **1**, 27-66.
- Sastry, S. S. e Bodson, M. (1989). Adaptive Control: Stability Convergence and Robustness, Englewood Cliffs, NJ, Prentice-Hall.
- Takagi, T e Sugeno, M. (1985). Fuzzy Identification of Systems and its Applications to Modeling and Control, *IEEE Trans. Syst., Man, Cybern.* SMC-15(1), 116-132.