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ABSTRACT

Multidisciplinary optimization (MDO) is concerned
with complex systems exhibiting challenges in terms
of organization and scale. Thus, it is well suited to
be applied to complex multivariable control design.
Collaborative optimization is one approach for dealing with
complex multidisciplinary optimization problems. Three
MDO architectures, including collaborative optimization,
are applied to control system design for a gas turbine
engine, in order to improve the design search process by
exploring possible solutions with parallel, but independent
search strands. The optimization is carried out through a
multiobjective genetic algorithm framework.

KEYWORDS: Genetic algorithms, gas turbines,
optimization, PI controllers.

1 INTRODUCTION

There is a significant body of research devoted to the study
of design and optimization of a number of interacting or
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coupled systems. Most of this research tends to be related
to aerostructural design and is called multidisciplinary
optimization. The design of an airplane requires the bringing
together of resources representing structures, metallurgy,
aerodynamics, performance, control and other disciplinesin
order to produce an optimal design. The main challenges
faced in MDO design problems are computational cost
and organizational complexity (Sobieszczanski-Sobieskiand
Haftka, 1996). The complexity of design optimization
depends on the complexity of the pertinent disciplines,
the size of the problem, and the nature of the objectives
and constraints. Comparing with an aggregation of many
disciplines, the problem grows very much in complexity, if
there is more than one discipline controlling the same design
variables for a particular objective. This is mainly due to
the effect of coupling between the variables. Organizational
complexity is due to the fact that the various disciplines
traditionally reflect different analysis methods, schoolsof
thought, software and hardware platforms, standards, etc.
The organizational challenge in MDO is for an efficient
exchange of data, systems integration and other aspects of
communication.

Evolutionary computing refers to computer-based problem
solving systems that use evolutionary algorithms (EAs). EAs
generally use computational models that exploit mechanisms
based on the neo-Darwinian theory of evolution. The
main techniques used in EAs include: genetic algorithms
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(GAs), evolutionary programming (EP), evolution strategies
(ES) and genetic programming (GP). EAs are amenable
to parallelization and can help reduce the computational
cost. These algorithms are stochastic in nature and can
usually start an optimization process without much a priori
knowledge. No derivative information is required as in
the traditional gradient based methods and this helps EAs
deal with difficult search spaces characterized by multimodal
disjoint feasible areas.

Most design problems are multiple objectives in nature,
including MDO problems. These objectives are often
conflicting or competing. The concept of Pareto optimality
is a powerful method for dealing with multiple objectives.
Using this approach, the designer is no longer searching for
a single optimum, rather a compromise satisfying the various
objectives. and constraints. The collection of compromise
solutions is referred to as the non-dominated set. Within this
set, attempted improvement in one objective will result in
degradation in one or more of the others. EAs are amenable
to multiobjective optimization (MO). This is because an EA
works on a population of solutions instead of the traditional
single point search. The search with this population can help
achieve a faster and more comprehensive mapping of the
trade-off hyper surface. An overview of the application of
EAs to MDO can be found in Khatib and Fleming (1997).

2 THE GAS TURBINE ENGINE

Gas turbine engines (GTE) are highly nonlinear plants that
have multiple inputs and outputs. The operating conditions
span extremes of temperature, pressure and load conditions.
The engine performance requirements cover a wide flight
envelope that includes a continuum of set points of altitude
and speed in terms of the Mach number. These requirements
add to the complexity of designing suitable controllers
that can achieve high performance levels while maintaining
stability and safe operation with minimum overall cost. H∞

and PI (proportional and integral) controllers have been
designed for the GTE using simplified models obtained
through the response surface variable complexity modelling
technique (Silva etal., 2007). It was also obtained
inprovements on this engine’s performance by reducing
fuel consumption, increasing thrust in dash missions and
minimizing turbine blade temperature (Silva etal., 2005).
In this work, multidisciplinary collaborative optimization
structures are used to split the PI controller design problem
in three and thus, optimization is carried out.

The engine model has three inputs: fuel flow (wFE), exhaust
nozzle area (A8) and inlet guide vane angle (IGV). Sensors
provided from engine outputs include: high pressure spool
speed (NH), low pressure spool speed (NL), engine pressure
ratio (EPR) and fan pressure ratio. These measurements
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Figure 1: PI controller structure for the Spey GTE.

can be used to provide various pairings of input-output for
closed-loop control. Important engine variables such as
thrust (XGN) and surge margin (LPSM) cannot be measured
directly. Such variables are controlled implicitly through
other related measurable values such as pressure ratios
and bypass duct Mach number (DPUP). Silva and Fleming
(2002) used a non-linear model for control configuration
and PI (proportional and integral) controller design, and
also for a H∞ controller design. Using findings from
these studies, a closed-loop control strategy is chosen for
parametric optimization of a designed PI controller structure
for a particular operating point to demonstrate the use of
MDO architectures for control design (Fig. 1).

Two PI controllers are implemented for controlling XGN
and LPSM. Because these two variables cannot be measured
directly, they are controlled implicitly through EPR and the
DPUP respectively. The third input, inlet guide vane angle
(IGV), is gain scheduled against the measured output values
of the NH. The two PI controllers supplied with the Rolls-
Royce SIMULINK model of this engine, use the structure
proposed by Åström and Häagglund (1995), and it is shown
in Figure 2.
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Figure 2: PI controller with anti-windup.
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When there is no actuator saturation, the anti-windup
feedback signal Ei(s) is zero The expression of the output
Ui of the i-th controller is given by equation 1.

Ui (s) = KpiEi (s) +
Kpi

TIis
Ei (s) (1)

where, Ei = Ri – Yi, is the error signal for loop i, Ri is
the set point signal for loop i, and i = 1, 2. With reference
to Figure 2, Kpi and TIi denote the parameters of the i-th
PI controller. The parameter Tti is known as the tracking
time constant, and controls the effect of the integral anti-
windup mechanism. This structure has been applied to
design optimized PI controllers with genetic algorithm for
industrial plants (Ghaffari, 2007).

The design is expected to satisfy the following objectives and
constraints:

a. XGN > 48.6 kN (performance requirement).

b. TBT < 1713oC (physical limit).

c. LPSM > 10% (stability limit).

d. XGN rise and settling time for speed of response
performance.

e. steady state error limits for NH and NL.

f. steady state error limit for exhaust nozzle area (A8).

g. limits on overshoot/undershoot for transient regions of
NH and NL.

h. other engine limits for spool speeds and exhaust nozzle
area.

A successful design of an engine controller can be achieved
as part of, say, an overall MDO design of an aircraft. Such
designs are still not attempted on a full scale in industry due
to the limitations of available resources for MDO. However,
MDO techniques can be applied to the design process for
the controllerper se. To demonstrate this, we present an
example for designing a PI control strategy for a GTE that
comprises two PI controllers. A nonlinear SIMULINK
model for a Spey GTE is used to design and evaluate
controller performance.

3 MULTIOBJECTIVE GENETIC
ALGORITHM

Multiobjective optimization and decision making refers
mainly to simultaneous optimization in order to achieve

optimal trade-off solutions satisfying various objectives.
These objectives tend to be conflicting or competing. There
is not usually one unique solution but rather a family of
compromise solutions that need to be analyzed by a decision
maker.

The multiobjective genetic algorithm (MOGA) combines
the characteristics of a powerful evolutionary optimization
strategy, the genetic algorithm with the concept of Pareto
optimality (Giannakoglou, 2002) to produce solutions
illustrative of a problem’s trade-off set. A MOGA
evolves a population of solution estimates thereby conferring
an immediate benefit over conventional multiobjective
optimization methods.

Mathematically, the multiobjective optimization (MO)
problem is to find a vector of design variables x, that is
within the feasible region in the universeℜ, to minimize (or
maximize) a vector of objective functions F(x). Some or all
of the component functions can be non-linear. Most practical
problems are also bounded by a vector of constraints g(x).
Multiobjective optimization can be expressed as follows:

Minimize: F (x) = {f1(x), f2(x), . . . , fn(x)}
subject to:g(x) ≤ 0

(2)

whereg (x) is the constraint vector andfi (x) is the i-th
objective function.

The set of trade-off solutions that express the best
performance in all of the objectives is known as the Pareto
or the non-dominated set.

The concept of Pareto-optimality constitutes by itself the
origin of research in multiobjective optimization. In a
multiobjective minimization problem, a feasible vectorx∗ ∈
X is Pareto-optimal if and only if there is no feasible vector
x ∈ X such that for alli ∈ {1, 2, ..., n}

fi (x∗) ≤ fi (x) (3)

and for at least onei ∈ {1, 2, ..., n}

fi (x∗) < fi (x) (4)

The decision making process picks the best solution from
the non-dominated set (Pareto-optimal) according to some
preference information.

Most real-world optimization problems are multi-modal.
There often exist several criteria to be considered by the
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designer. The compromise of better performance for all of
them has to be achieved. Fonseca and Fleming (1995) use
the ranking approach for assigning fitness to each individual
in the population. They define the individual’s rank simply
as the number of members of a population in a generation
that dominate it. Thus, non-dominated individuals are
assigned rank zero, while the lowest possible rank in any
generation of population is rankn-1, wheren is the number
of individuals in the population. The fitness is then assigned
to each individual by interpolating from the best to the worst,
according to some function, that can be linear, exponentialor
other type.

Any attempted improvement for a member of this set in one
of the objectives will result in deterioration in performance
in one or more of the other objectives.

The work described here employs a genetic algorithm with an
implementation of multiobjective optimization as proposed
by Fonseca and Fleming (1993).

4 MDO ARCHITECTURES

Balling and Sobieszczanski-Sobieski (1996) introduce a
consistent method for classifying the various approaches for
formulating MDO problems using compact and consistent
notation. For practical purposes, the various approaches can
be grouped into three main categories:

i. Single-level approaches

j. Collaborative optimization

k. Concurrent sub-space optimization

A detailed discussion of these methods can be found in
Khatib and Fleming (1998). Single-level approaches address
a design problem as one whole unit. Concurrent sub-
space optimization relies on recursive iteration loops and
can be less efficient. The collaborative optimization (CO)
approach works through decomposition of complex large-
scale problems into smaller sub-problems or elements. Each
element proceeds with its own optimization using separate
decision variables. The outputs of the various disciplines
can be pooled into a shared resource area to be redistributed
or observed by a system designer or optimizer to ensure a
viable overall design. The decomposition boundaries depend
on the physical organization of the problem, the available
resources and/or the mathematical limits. This gives rise
to soft and hard boundaries. The evolutionary collaborative
architecture proposed by Khatib and Fleming (1998) allows
the various disciplines to progress simultaneously in search
of optimal designs. This approach draws on a seemingly
good match between the two elements of CO and EAs. They

share amenability to parallelization and this is also reflected
in existing practices in industry.

5 MOGA-PI DESIGN ARCHITECTURE

For single level optimization of a MIMO (Multi Input Multi
Output) system, in terms of the underlying GA engine in
the MOGA (multiobjective genetic algorithm) framework,
the two main operators that guide the optimization process
are selection and crossover. The selection pressure which
favors the fitter individuals is based on how well each of the
individuals performs in terms of Pareto optimality. Grouping
the proportional and integral terms for both controllers
together for each individual suggests that an integral term,
say, might be promoted in the population based on influence
of a proportional term in the same individual. This form of
nepotism can be inefficient in computing terms and might
even lead to less optimal solutions.

Three different frameworks using MOGA are applied,
employing one single-level and two collaborative design
approaches. The single-level MOGA addresses the two
controllers and all the objectives simultaneously. Each
individual in the MOGA population is a chromosome made
up of the four controller parameters in a Gray-coded binary
representation. The two CO implementations are different in
the way the design problem is decomposed.

CO I has two optimization sub-problems: one dealing with
the proportional gains in both controllers, and the other
dealing with the integral gains. The objectives for each of
these sub-problems reflect potential scope of influence. The
proportional gains are designed to optimize all the objectives
and constraints of the problem simultaneously, while the
integral gains are considered for optimization of XGN and
TBT dynamics only. The optimization process for P1 and P2
can be described as follows:

Maximise: LPSM
Minimize: NH and NL steady-state errors

A8 steady-state error
NH and NL overshoot/undershoot.

Satisfy: XGN≥ 48.6 kN
TBT ≤ 1713˚C
XGN rise time≤ 1.0 s
XGN settling time≤ 1.4 s
NH ≤ 102%
-8˚ ≤ IGV ≤ 32˚
0.25 m2 ≤ A8 ≤ 0.34 m2

(5)

The optimization process fo I1 and I2 has no soft objectives.
It is a constraint satisfaction problem in which MOGA is
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used to satisfy the following constraints:

TBT ≤ 1713˚C
XGN rise time≤ 1.0 s
XGN settling time≤ 1.4 s
NL ≤ 102%
-8˚ ≤ IGV ≤ 32˚
0.25 m2 ≤ A8 ≤ 0.34 m2

(6)

CO II designed for this problem depicts the boundaries by
having each of two sub-problems dealing with one of the
two PI controllers. The pertinent objectives also reflect the
level of influence: PI1 design optimizes XGN, NH and NL
dynamics (objectives d and g), steady state errors for NH
and NL (objectives e) whilst minimizing TBT (objective b).
PI2 design optimizes the A8 variations (objective f) while
maintaining LPSM and TBT within safe limits (objectives
b and c). It can be noticed that TBT is common to both
controllers. This suggests coupling in the system and can
help the two design sub-problems achieve a satisfactory
overall results. The optimization process for PI1 can be
described as follows:

Minimize: NH and NL steady-state errors
NH and NL overshoot/undershoot.

Satisfy: XGN≥ 48.6 kN
TBT ≤ 1713˚C
XGN rise time≤ 1.0 s
XGN settling time≤ 1.4 s
NL ≤ 102%
-8˚ ≤ IGV ≤ 32˚
0.25 m2 ≤ A8 ≤ 0.34 m2

(7)

The optimization process for PI2 can be described as follows:

Maximise: LPSM
Minimize: A8 steady-state error
Satisfy: TBT≤ 1713˚C

NL ≤ 102%
-8˚ ≤ IGV ≤ 32˚
0.25 m2 ≤ A8 ≤ 0.34 m2

(8)

The work described here employs a GA with an
implementation of MO as proposed by Fonseca and Fleming
(1993). This multiobjective GA (MOGA) presents a simple
but powerful tool for design optimization were preferences
can be articulated progressively by the decision maker as
more insight into the problem in hand is gained.
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Figure 3: MOGA CO I architecture.

6 IMPLEMENTATION

The three different frameworks described in the previous
section are used for parametric optimization of a PI controller
structure. The MOGA generates two sets of PI controller
gains for the wFE and A8 loops. The MOGA parameters for
crossover and mutation are 90% and 5% respectively.

Because of the parallel nature of MOGA, the two sub-
problems in CO I and CO II run concurrently. Each
problem has its own population of solutions. Each
population experiences selection and crossover driven by
its own pertinent objectives. The two populations do
not share or individuals through migration. To achieve
a consistent overall design, each population presents its
proposed solutions to a shared data pool which performs the
engine simulations (Figure 3). Results of the simulations are
fed back into the pool and each separate MOGA scans for its
relevant outputs to drive its own GA operators.

The control response is measured after a step input in thrust
demand, corresponding to changes from 85% to 90% of high
pressure spool speed. Using two populations of solutions
simply increases the requirements to compute the MOGA
operators for ranking, selection, crossover and mutation.
These costs are negligible when compared to the cost of
engine simulations. The number of simulations required is
the same as for the single-level optimization case. Each of
the three MOGAs employs 40 individuals and is evolved for
50 generations.

7 RESULTS

The multidisciplinary optimization and multiobjective
optimization produce a family of non-dominated solutions,
for each of the three aproaches: 21, 12 and 12 controller sets
for the single-level, CO I and CO II respectively. Figures

Revista Controle & Automação/Vol.18 no.4/Outubro, Novemb ro e Dezembro 2007 475



 

Figure 4: Thrust responses for single-level approach.

 

Figure 5: Thrust responses for CO I approach.

4 – 5 present XGN step responses for changes from 35%
to 87% of thrust demand, for the obtained controllers of the
three design architectures. The responses are normalized for
the desired point. Most of these controllers exhibit similar
performance characteristics for the three structures. Forthe
CO II approach, the responses are slower than for the other
two cases. Although for the single-level, the responses seem
to be the fastest, it can also be seen that some responses
for the CO I structure outperformed the single level, even
considering this criterium.

To study the control performance in more detail, further
filtering is applied to choose one controller set for analysis
from each approach. The full thermodynamic model is
evaluated for all the controllers in each set. The objectives
representing the steady-state errors are all catered for
adequately by all solutions and are ignored. The solutions are

 

Figure 6: Thrust responses for CO II approach.

now further ranked but only using a subset of the objectives
a – d only, to choose the best controller using multiobjective
ranking. All the performance graphs (Fig. 7 - 10) refer to
the final selected controller set for each case. They indicate
that the CO I controller outperforms the other two. CO II
perfomance indicates slower, though stable, responses when
compared to the other two. The superiority of CO I was
found to hold for all the other nondominated controllers in
each case.

In all the response graphs, CO II appears to indicate
the slowest performance indicating overdamping, but the
responses are still within limits. The thrust response
indicates that the single-level controller achieves slightly
faster response. The transient behavior however, appears to
indicate that CO I gives the most satisfactory results overall.
LPSM and TBT overshoot are worst for the single-level case.

Thus, decomposing the problem into the two different types
of controller (P and I) as in CO I gives better results
than spliting the actual controllers along the structures
corresponding to different input-output combinations as in
CO II. This decomposition also outperforms the classical
single-level all in one approach. The engine is one whole unit
made up of various interacting sub-units. The single level
approach can allow some perfomance dynamics, pertinent
only to a subset of the controller parameters, to influence
other controller parameters. If this is the case, it will lead to
inefficiencies. CO I appears to offer a better decomposition
scheme than CO II. This allows the relevant perfomance
metrics to be allocated to each optimization strand in a more
efficient and appropriate way.

In order to calculate the computational cost of MOGA-PI
approach, it is useful to consider relative computing costs(in
seconds of CPU time) of the design stages as follows:
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Figure 7: Thrust responses for the three design approaches.

 

Figure 8: TBT responses for the three design approaches.

• Model evaluations

PI stable model evaluation: a = 27.8383 s/evaluation

PI unstable model evaluation: b = 11.4950 s/evaluation

• Optimization costs: there are five operators used in the
MOGA: selection, crossover, mutation, multiobjective
ranking and fitness assignment. The average cost of all
of these operators is: c = 0.006167 s/individual

The optimization was carried out over 50 generations of
40 individuals each. Thus, the computational cost is: c =
50*40*(a + b)/2 + 50*40*c) = 39345.624 seconds

The evaluation of the models is the main cost of the overall
optimization process.

 

Figure 9: LPSM responses for the three design approaches.

 

Figure 10: NH responses for the three design approaches.

8 CONCLUSIONS

Multidisciplinary optimization is used to tackle some
difficult design problems involving interacting systems with
strong coupling, and is traditionally based in the aircraft
industry.

Complex systems tend to have strong coupling between the
various elements, creating complex optimization scenarios
in control design problems, and are usually multidisciplinary
in nature. MDO challenges are envisaged to be present in
complex control scenarios such as multivariable control.

This is the case for the optimization of the PI controllers
for a GTE. The design methodology using collaborative
optimization together with MOGA decomposes the problem
along convenient and efficient boundaries. This allows for
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improvements in terms of computational cost, problem set-
up and efficiency issues, and can also lead to improvements
in the performance of the final designs.

Some improvements are possible using a collaborative
optimization framework for PI controllers design. These
improvements are reflected in the actual control performance
in the engine response. The compromise solutions showed
the trade-offs between the variables and can help the designer
understands the interactions between the sub-systems. The
final overall designs can also offer improvements over
traditional single-level all-in-one approaches.
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