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ABSTRACT coupled systems. Most of this research tends to be related
to aerostructural design and is called multidisciplinary
Multidisciplinary ~ optimization (MDO) is concerned gptimization. The design of an airplane requires the briggi
with complex systems exhibiting challenges in termgogether of resources representing structures, metgllurg
of organization and scale. Thus, it is well suited tgerodynamics, performance, control and other discipiimes
be applied to complex multivariable control designorder to produce an optimal design. The main challenges
Collaborative optimization is one approach for dealingwit faced in MDO design problems are computational cost
complex multidisciplinary optimization problems. Threeand organizational complexity (Sobieszczanski-Sobiaski
MDO architectures, including collaborative optimization Haftka, 1996). The complexity of design optimization
are applied to control system design for a gas turbingepends on the complexity of the pertinent disciplines,
engine, in order to improve the design search process Biye size of the problem, and the nature of the objectives
exploring possible solutions with parallel, but indepemtde and constraints. Comparing with an aggregation of many
search strands. The optimization is carried out through disciplines, the problem grows very much in complexity, if
multiobjective genetic algorithm framework. there is more than one discipline controlling the same ahesig
variables for a particular objective. This is mainly due to
'the effect of coupling between the variables. Organization
complexity is due to the fact that the various disciplines
traditionally reflect different analysis methods, schoofs
1 INTRODUCTION thought, software and hardware platforms, standards, etc.
The organizational challenge in MDO is for an efficient

There is a significant body of research devoted to the stu@xchange of data, systems integration and other aspects of
of design and optimization of a number of interacting oeommunication.

KEYWORDS: Genetic algorithms, gas turbines
optimization, PI controllers.

Artigo submetido em 21/11/2004 Evol_utionary computing refers_to compute_r—based problem
la. Revis&o em 30/03/2005 solving systems that use evolutionary algorithms (EAS)sEA
2a. Reviséo em 11/01/2006 generally use computational models that exploit mechasism

3a. Revisao em 12/07/2007 . based on the neo-Darwinian theory of evolution. The
Aceito sob recomendacé&o do Editor Associado

Prof. Takashi Yoneyama main techniques used in EAs include: genetic algorithms
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(GAs), evolutionary programming (EP), evolution stragsgi

(ES) and genetic programming (GP). EAs are amenable
to parallelization and can help reduce the computational Engine Prssure
cost. These algorithms are stochastic in nature and canFefor PI1 Rato

usually start an optimization process without much a priori
knowledge. No derivative information is required as in .
the traditional gradient based methods and this helps EAs egre |\ | .
deal with difficult search spaces characterized by multiahod " P12 &

Sensors
Actuators / ’

disjoint feasible areas. Bypass

Mach No.

Turbine Blade
Temperature

Low Pressure

Most design problems are multiple objectives in nature, - SpoolSpee
including MDO problems. These objectives are often vaeage High Pressure
conflicting or competing. The concept of Pareto optimality oSt
is a powerful method for dealing with multiple objectives.
Using this approach, the designer is no longer searching for
a single optimum, rather a compromise satisfying the variou
objectives. and constraints. The collection of compromise
solutions is referred to as the non-dominated set. Withm th Figure 1: PI controller structure for the Spey GTE.

set, attempted improvement in one objective will result in

degradation in one or more of the others. EAs are amenable

to multiobjective optimization (MO). This is because an EA

works on a population of solutions instead of the traditlonsfan be used to provide various pairings of input-output for
single point search. The search with this population cap heflosed-loop control.  Important engine variables such as
achieve a faster and more comprehensive mapping of tH&ust (XGN) and surge margin (LPSM) cannot be measured
trade-off hyper surface. An overview of the application offirectly. Such variables are controlled implicitly thrdug

EAs to MDO can be found in Khatib and Fleming (1997). other related measurable values such as pressure ratios
and bypass duct Mach number (DPUP). Silva and Fleming

(2002) used a non-linear model for control configuration
and Pl (proportional and integral) controller design, and
%SO for a H, controller design. Using findings from

2 THE GAS TURBINE ENGINE

Gas turbine engines (GTE) are highly nonlinear plants th
have multiple inputs and outputs. The operating condition
span extremes of temperature, pressure and load conditioﬁ
The engine performance requirements cover a wide fligh
envelope that includes a continuum of set points of altitude
and speed in terms of the Mach number. These requiremesig, p| controllers are implemented for controlling XGN
add to the complexity of designing suitable controllerg,g | psm. Because these two variables cannot be measured
that can achieve high performance levels while maintainin@irecﬂy, they are controlled implicitly through EPR ancth
stability and safe_ operation_with minimum overall cost.H ppyp respectively. The third input, inlet guide vane angle
and PI (proportional and integral) controllers have beepgy), is gain scheduled against the measured output values
designed for the GTE using simplified models obtaineds he NH. The two PI controllers supplied with the Rolls-
through the response surface variable complexity moq;ellirpoyce SIMULINK model of this engine, use the structure

technique (Silva etal., 2007). It was also obtained onosed by Astrém and Haagglund (1995), and it is shown
inprovements on this engine’s performance by reducing Figure 2.

fuel consumption, increasing thrust in dash missions and
minimizing turbine blade temperature (Silva at, 2005).
In this work, multidisciplinary collaborative optimizati
structures are used to split the PI controller design proble
in three and thus, optimization is carried out.

ese studies, a closed-loop control strategy is chosen for
grametric optimization of a designed PI controller suiuet

r a particular operating point to demonstrate the use of
DO architectures for control design (Fig. 1).

v, u,
Actuator

The engine model has three inputs: fuel flow (WFE), exhaust T, . 1] E.(s)
nozzle area (A8) and inlet guide vane angle (IGV). Sensors Tl
provided from engine outputs include: high pressure spool

speed (NH), low pressure spool speed (NL), engine pressure
ratio (EPR) and fan pressure ratio. These measurements Figure 2: PI controller with anti-windup.
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When there is no actuator saturation, the anti-windupptimal trade-off solutions satisfying various objective
feedback signal Es) is zero The expression of the outpuiThese objectives tend to be conflicting or competing. There

U; of the ith controller is given by equation 1. is not usually one unique solution but rather a family of
compromise solutions that need to be analyzed by a decision
K maker.
pi
Ui(s) = KpiEi (s) + 7 Ei (s) 1) L . . .
Ty;s The multiobjective genetic algorithm (MOGA) combines

the characteristics of a powerful evolutionary optimiaati
where, E = R; —Y;, is the error signal for loop i, Ris  strategy, the genetic algorithm with the concept of Pareto
the set point signal for loop i, and i = 1, 2. With referencesptimality (Giannakoglou, 2002) to produce solutions
to Figure 2, K,; and T;; denote the parameters of the¢hi- jllustrative of a problem’s trade-off set. A MOGA
Pl controller. The parameter;Tis known as the tracking evolves a population of solution estimates thereby coimfgrr
time constant, and controls the effect of the integral antan immediate benefit over conventional multiobjective
windup mechanism. This structure has been applied tptimization methods.
design optimized PI controllers with genetic algorithm for
industrial plants (Ghaffari, 2007). Mathematically, the multiobjective optimization (MO)

problem is to find a vector of design variables x, that is
The design is expected to satisfy the following objectivess a within the feasible region in the univer§g to minimize (or
constraints: maximize) a vector of objective functions F(x). Some or all
of the component functions can be non-linear. Most pralctica
problems are also bounded by a vector of constraints g(x).

3. XGN >48.6 kN (performance requirement). Multiobjective optimization can be expressed as follows:

b. TBT <1713C (physical limit).

c. LPSM > 10% (stability limit). Minimize: F(x) = {f1(2), fo(@), -, fu(2)}

. 2

d. XGN rise and settling time for speed of response  subjecttoig(z) <0 @
performance.

e. steady state error limits for NH and NL. where g (z) is the constraint vector and; (x) is the i-th

objective function.

f. steady state error limit for exhaust nozzle area (A8). )
The set of trade-off solutions that express the best

g. limits on overshoot/undershoot for transient regions gberformance in all of the objectives is known as the Pareto
NH and NL. or the non-dominated set.

=y

. other engine limits for spool speeds and exhaust nozzithe concept of Pareto-optimality constitutes by itself the
area. origin of research in multiobjective optimization. In a
multiobjective minimization problem, a feasible vecidre

. . . X is Pareto-optimal if and only if there is no feasible vector
A successful design of an engine controller can be ac:hlevede X such that for all € {1, 2 n}
as part of, say, an overall MDO design of an aircraft. Such T
designs are still not attempted on a full scale in industry du
to the limitations of available resources for MDO. However, fi(z*) < fi (2) ©)
MDO techniques can be applied to the design process for
the controllerper se To demonstrate this, we present an
example for designing a PI control strategy for a GTE that
comprises two Pl controllers. A nonlinear SIMULINK
model for a Spey GTE is used to design and evaluate i (") < fi (2) )
controller performance.

nd for at least onee {1, 2, ..., n}

The decision making process picks the best solution from

3 MULTIOBJECTIVE GENETIC  the non-dominated set (Pareto-optimal) according to some
ALGORITHM preference information.

Multiobjective optimization and decision making refersMost real-world optimization problems are multi-modal.
mainly to simultaneous optimization in order to achiev&here often exist several criteria to be considered by the
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designer. The compromise of better performance for all afhare amenability to parallelization and this is also rédiec
them has to be achieved. Fonseca and Fleming (1995) ureexisting practices in industry.
the ranking approach for assigning fitness to each individua

in the population. They define the individual’'s rank SImp|y5 MOGA-PI DESIGN ARCHITECTURE
as the number of members of a population in a generation

that dominate it. ~Thus, non-dominated individuals argqy single level optimization of a MIMO (Multi Input Multi
assigned rank zero, while the lowest possible rank in ayutput) system, in terms of the underlying GA engine in
generation of population is ramk1, wheren is the number the MOGA (multiobjective genetic algorithm) framework,
of individuals in the population. The fitness is then assiinéine two main operators that guide the optimization process
to each individual by interpolating from the best to the Wors gre selection and crossover. The selection pressure which
according to some function, that can be linear, exponemttial t3yors the fitter individuals is based on how well each of the
other type. individuals performs in terms of Pareto optimality. Grougpi

the proportional and integral terms for both controllers
E)gether for each individual suggests that an integral term
say, might be promoted in the population based on influence
of a proportional term in the same individual. This form of

The work described here employs a genetic algorithm with d#ePOtism can be inefficient in computing terms and might
implementation of multiobjective optimization as propose €ven lead to less optimal solutions.
by Fonseca and Fleming (1993).

Any attempted improvement for a member of this set in on
of the objectives will result in deterioration in perforncan
in one or more of the other objectives.

Three different frameworks using MOGA are applied,
employing one single-level and two collaborative design
4 MDO ARCHITECTURES approaches. The single-level MOGA addresses the two
controllers and all the objectives simultaneously. Each
Balling and Sobieszczanski-Sobieski (1996) introduce @dividual in the MOGA population is a chromosome made
consistent method for classifying the various approaces fy of the four controller parameters in a Gray-coded binary
formulating MDO problems using compact and consistengpresentation. The two CO implementations are different i

notation. For practical purposes, the various approaciies Ghe way the design problem is decomposed.
be grouped into three main categories:

CO | has two optimization sub-problems: one dealing with
the proportional gains in both controllers, and the other

I, Single-level approaches dealing with the integral gains. The objectives for each of

j. Collaborative optimization these sub-problems reflect potential scope of influence. The
S proportional gains are designed to optimize all the obyjesti
k. Concurrent sub-space optimization and constraints of the problem simultaneously, while the

integral gains are considered for optimization of XGN and

A detailed discussion of these methods can be found BT dynamics only. The optimization process for P1 and P2
Khatib and Fleming (1998). Single-level approaches addre§an be described as follows:

a design problem as one whole unit. Concurrent sub-

space optimization relies on recursive iteration loops and

can be less efficient. The collaborative optimization (CO) Maximise: LPSM

approach works through decomposition of complex large- Minimize:  NH and NL steady-state errors

scale problems into smaller sub-problems or elements. Each A8 steady-state error

element proceeds with its own optimization using separate NH and NL overshoot/undershoot.
decision variables. The outputs of the various disciplines ~ Satisfy: ~ XGN= 48.6 kN

can be pooled into a shared resource area to be redistributed TBT < 1713°C (5)
or observed by a system designer or optimizer to ensure a XGNrise time< 1.0's

viable overall design. The decomposition boundaries depen XGN settling time< 1.4 s

on the physical organization of the problem, the available NH < 102%

resources and/or the mathematical limits. This gives rise -8° <IGV < 32°

to soft and hard boundaries. The evolutionary collabogativ 0.25nt < A8 < 0.34nt

architecture proposed by Khatib and Fleming (1998) allows

the various disciplines to progress simultaneously incdear

of optimal designs. This approach draws on a seeminglyhe optimization process fo 11 and 12 has no soft objectives.
good match between the two elements of CO and EAs. Thélyis a constraint satisfaction problem in which MOGA is
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used to satisfy the following constraints:

Engine

“I" controller . .
simulation

TBT < 1713°C MOGA performance
XGNrisetime< 1.0s for requirements

XGN settling time< 1.4 s (6) Integral /3& I gains
NL < 102% -simulation time
-8° <IGV < 32°

0.25nt < A8 < 0.34nt ‘1" gains ‘P’ gains

MOGA

CO Il designed for this problem depicts the boundaries P’ controle™y, for

having each of two sub-problems dealing with one of t performance Proportionz
two PI controllers. The pertinent objectives also refleet t requirements

level of influence: PI1 design optimizes XGN, NH and N

dynamics (objectives d and g), steady state errors for NH Figure 3: MOGA CO I architecture.

and NL (objectives e) whilst minimizing TBT (objective b).

P12 design optimizes the A8 variations (objective f) while

maintaining LPSM and TBT within safe limits (objectivesg |MPLEMENTATION

b and c). It can be noticed that TBT is common to both

controllers. This suggests coupling in the system and carhe three different frameworks described in the previous

help the two design sub-problems achieve a satisfactoggction are used for parametric optimization of a Pl colgrol

overall results. The optimization process for PI1 can bstructure. The MOGA generates two sets of Pl controller

described as follows: gains for the wFE and A8 loops. The MOGA parameters for
crossover and mutation are 90% and 5% respectively.

Because of the parallel nature of MOGA, the two sub-

Minimize: NH and NL steady-state errors problems in CO | and CO Il run concurrently. Each
NH and NL overshoot/undershoot. problem has its own population of solutions. Each

Satisfy: XGN> 48.6 kN population experiences selection and crossover driven by
TBT < 1713°C its own pertinent objectives. The two populations do
XGNrise time< 1.0s (7) not share or individuals through migration. To achieve
XGN settling time< 1.4 s a consistent overall design, each population presents its
NL < 102% proposed solutions to a shared data pool which performs the
-8°<IGV < 32° engine simulations (Figure 3). Results of the simulatioes a
0.25n7 < A8 < 0.34nt fed back into the pool and each separate MOGA scans for its

relevant outputs to drive its own GA operators.

The optimization process for PI2 can be described as follow$he control response is measured after a step input in thrust
demand, corresponding to changes from 85% to 90% of high

pressure spool speed. Using two populations of solutions
simply increases the requirements to compute the MOGA
operators for ranking, selection, crossover and mutation.
These costs are negligible when compared to the cost of
engine simulations. The number of simulations required is
the same as for the single-level optimization case. Each of
the three MOGAs employs 40 individuals and is evolved for

50 generations.

Maximise: LPSM

Minimize: A8 steady-state error

Satisfy: TBT< 1713°C (8)
NL < 102%
-8°<IGV < 32°
0.25nt < A8 < 0.34nt

The work described here employs a GA with a7 RESULTS

implementation of MO as proposed by Fonseca and Fleming

(1993). This multiobjective GA (MOGA) presents a simpleThe multidisciplinary optimization and multiobjective
but powerful tool for design optimization were preferencesptimization produce a family of non-dominated solutions,
can be articulated progressively by the decision maker &sr each of the three aproaches: 21, 12 and 12 controller sets
more insight into the problem in hand is gained. for the single-level, CO | and CO Il respectively. Figures
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Figure 4: Thrust responses for single-level approach. Figure 6: Thrust responses for CO Il approach.

now further ranked but only using a subset of the objectives
a —d only, to choose the best controller using multiobjectiv
ranking. All the performance graphs (Fig. 7 - 10) refer to
the final selected controller set for each case. They inglicat
that the CO | controller outperforms the other two. CO Il
perfomance indicates slower, though stable, responses whe
compared to the other two. The superiority of CO | was
found to hold for all the other nondominated controllers in
each case.

Gross thrust

In all the response graphs, CO Il appears to indicate
the slowest performance indicating overdamping, but the
: responses are still within limits. The thrust response
05 k e . = 2 indicates that the single-level controller achieves sligh
faster response. The transient behavior however, appears t
indicate that CO | gives the most satisfactory results divera
LPSM and TBT overshoot are worst for the single-level case.

Figure 5: Thrust responses for CO | approach.

Thus, decomposing the problem into the two different types
4 — 5 present XGN step responses for changes from 3586 controller (P and 1) as in CO | gives better results
to 87% of thrust demand, for the obtained controllers of ththan spliting the actual controllers along the structures
three design architectures. The responses are normatizeddorresponding to different input-output combinations s i
the desired point. Most of these controllers exhibit similaCO II. This decomposition also outperforms the classical
performance characteristics for the three structures.tieor single-level all in one approach. The engine is one whole uni
CO Il approach, the responses are slower than for the othmade up of various interacting sub-units. The single level
two cases. Although for the single-level, the responsesiseapproach can allow some perfomance dynamics, pertinent
to be the fastest, it can also be seen that some responealy to a subset of the controller parameters, to influence
for the CO | structure outperformed the single level, eventher controller parameters. If this is the case, it wilddéa
considering this criterium. inefficiencies. CO | appears to offer a better decomposition

scheme than CO II. This allows the relevant perfomance

To study the control performance in more detail, furthepetrics to be allocated to each optimization strand in a more
filtering is applied to choose one controller set for analysieficient and appropriate way.

from each approach. The full thermodynamic model is

evaluated for all the controllers in each set. The objestivdn order to calculate the computational cost of MOGA-PI
representing the steady-state errors are all catered fapproach, itis useful to consider relative computing cfsts
adequately by all solutions and are ignored. The solutioms aseconds of CPU time) of the design stages as follows:
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Figure 7: Thrust responses for the three design approachekigure 9: LPSM responses for the three design approaches.
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Figure 8: TBT responses for the three design approaches.Figure 10: NH responses for the three design approaches.

e Model evaluations 8 CONCLUSIONS

Pl stable model evaluation: a = 27.8383 s/evaluation Multidisciplinary optimization is used to tackle some

Pl unstable model evaluation: b = 11.4950 s/evaluatioflifficult design problems involving interacting systemstwi
strong coupling, and is traditionally based in the aircraft
e Optimization costs: there are five operators used in thadustry.

MOGA: selection, crossover, mutation, multiobjective

ranking and fitness assignment. The average cost of &Pmplex systems tend to have strong coupling between the
of these operators is: ¢ = 0.006167 s/individual various elements, creating complex optimization scesario

in control design problems, and are usually multidiscitin
in nature. MDO challenges are envisaged to be present in
The optimization was carried out ovef Henerations of complex control scenarios such as multivariable control.

40 individuals each. Thus, the computational costis: ¢ = o
50*40*(a + b)/2 + 50*40*c) = 39345.624 seconds This is the case for the optimization of the Pl controllers

for a GTE. The design methodology using collaborative
The evaluation of the models is the main cost of the overatiptimization together with MOGA decomposes the problem
optimization process. along convenient and efficient boundaries. This allows for
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improvements in terms of computational cost, problem sekhatib W. and Fleming,

up and efficiency issues, and can also lead to improvements
in the performance of the final designs.

Some improvements are possible using a collaborative
optimization framework for PI controllers design. These

P.J., (1997). “Evolutionary
computing for multidisciplinary optimization”Proc
2nd IEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems: Innovations and
Applications GALESIA'9/Glasgow, pp 7-12.

improvements are reflected in the actual control performan&ilva, V.V.R., Fleming, P.J., Sugimoto, J, and Yokoyama,

in the engine response. The compromise solutions showed
the trade-offs between the variables and can help the dasign

R., (2007). “Multiobjective optimization using variable
complexity modelling for control system design”.

understands the interactions between the sub-systems. The Applied Soft Computing, In Press, Corrected Proof,

final overall designs can also offer improvements over
traditional single-level all-in-one approaches.

REFERENCES

Astrém, K.J. and Haagglund, T. (1995), “PID controllers:

Theory design and tuning”, {2 Edition), Instrument Silva,

Society of America.

Balling, R.J. and Sobieszczanski-Sobieski, J., (1996).
“Optimization of Coupled Systems: A Critical
Overview of Approaches’AIAA Journal 34(1), pp. 6-
17.

Chipperfield, A.J. and Fleming, P.J., (1996). “Systems
integration using evolutionary  algorithms”.
International Conference on Control'96 - IEE
Conference Publication n® 427, pp. 705-710.

Fonseca, C.M. and Fleming, P.J., (1993). “Genetic
Algorithms ~ for ~ Multiobjective ~ Optimization:
Formulation,  Discussion and Generalisation”.

In Genetic Algorithms: Proceedings of the Fifth
International Conferencé€S. Forrest, ed.), San Mateo,
CA: Morgan Kaufmann.

Fonseca, C.M. and Fleming, P.J., (1995). “An overview
of evolutionary algorithms in  multiobjective
optimization”. Evolutionary Computing Vol. 3,
N°. 1, pp. 1-16.

Ghaffari, A., Mehrabian, A.R. and Mohammad-Zaheri,
M., (2007). “ldentification and control of power
plant de-superheater using soft computing techniques”.
Engineering Applications of Atrtificial Intelligenc¥®ol.

20, Issue 2, pp. 273-287.

Giannakoglou, K.C., (2002), *“Design of optimal
aerodynamic shapes using stochastic optimization
methods and computational intelligenc®rogress in
Aerospace Sciencegol. 38-1, pp. 43-76.

Khatib W. and Fleming, P.J., (1998). “Evolutionary
Computing Applied to MDO Test Problems”.
7th  AIAA/JUSAF/NASA/ISSMO  Symposium  on
Multidisciplinary Analysis and Optimzation, St.
Louis, MO.

478 Revista Controle & Automagéao/Vol.18 no.4/Outubro, Nov

Sobieszczanski-Sobieski,

Available online 18 March 20Q7

Silva, V.V.R., Khatib, W. and Fleming, P.J., “Performance

optimization of gas turbine engine”’Engineering
Applications of Artificial IntelligenceVol. 18, Issue 5,
August 2005, pp. 575-583.

V.V.R. and Fleming, P.J., (2002). “Control
configuration design using evolutionary computing”.
Proceedings of XV Triennial IFAC World Congress.
Barcelona, Spain.

J. and Haftka, R.T., (1996).
“Multidisciplinary Aerospace Design Optimization:
Survey of Recent Development&IAAPaper 96-0711,
Reno, NV.

embro e Dezembro 2007



