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ABSTRACT

This paper presents a new formulation for the security con-
strained optimal active power flow problem which enables
the representation of three basic constraints: branch outage,
generator outage and multiple equipment congestion. It con-
sists of a network model with additional linear equality and
inequality constraints and quadratic separable objectivefunc-
tion, which is efficiently solved by a predictor-corrector inte-
rior point method. Sparsity techniques are used to exploit the
matricial structure of the problem.Case studies with a 3,535-
bus and a 4,238-branch Brazilian power system are presented
and discussed, to demonstrate that the proposed model can
be efficiently solved by an interior point method, providing
security constrained solutions in a reasonable time.
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RESUMO

Este trabalho apresenta uma nova formulação do problema
de fluxo de potência ótimo corrente contínua com restrições
de segurança de três tipos: perda de ramo, perda de gera-
dor e múltiplas perdas. A formulação emprega um modelo
de fluxo em redes com restrições adicionais de igualdade e
desigualdade e função objetivo quadrática separável que é
eficientemente resolvido por um método de pontos interiores
preditor-corretor. Técnicas de esparsidade são utilizadas para
explorar a estrutura matricial do problema. Estudos de caso
para o Sistema Interligado Nacional com 3535 barras e 4238
ramos são apresentados e discutidos, a fim de demonstrar que
o modelo proposto pode ser resolvido através de um método
de pontos interiores de maneira eficiente, fornecendo solu-
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ções que respeitam as restrições de segurança em um tempo
computacional razoável.

PALAVRAS-CHAVE : Segurança, despacho de potência ativa,
fluxo de potência ótimo, fluxo em redes, controle de fluxo de
potência, método de pontos interiores

1 INTRODUCTION

The optimal power flow (OPF) problem consists of obtaining
the optimal settings for control variables in a power system
so that certain operational goals can be achieved; these are
represented by a predefined objective functionf , which is
subject to a set of constraints. The operating state of a power
system provided by an OPF is one that guarantees affordabil-
ity, reliability, security, and dependability (Momoh, 2001).
Generally, the OPF problem can be expressed as

Min f (x, u)
s.t. g (x, u) = 0

h (x, u) ≤ 0,
(1)

wherex is the vector of dependent variables (bus voltage
magnitudes and phase angles),u is a vector of control vari-
ables (as active power generation and active power flow),
g (x, u) is the set of nonlinear equality constraints (power
flow equations), andh (x, u) is the set of inequality con-
straints of the vector argumentsx andu.

Minimization of active power losses, generation cost and re-
active power generation of the system are possible objective
functions. They may be achieved by setting control variables
u, such as dispatching generating units, adjusting bus volt-
ages and setting transformer taps. This set of constraints in-
volves those conditions necessary to guarantee Kirchhoff’s
laws, bus voltage ranges, and the rated limits of equipment.
The problem is usually solved for a normal operating condi-
tion of a power system (n − 0 case).

A security constrained optimal power flow (SCOPF) is a spe-
cial type of OPF where the optimum value of the objective
function is computed while respecting the constraints, both
under normal operating conditions and for specified distur-
bances, such as outages or equipment failures. These secu-
rity constraints allow the OPF to determine the operation of
the power system in a defensive manner (Wood e Wollen-
berg, 1996); i.e., the OPF will force the system to be operated
in such a way that if a contingency is encountered, the result-
ing voltages and power flows will still be within the limits
established. As for outages, SCOPF usually considers only
single outages (n − 1 case), although in some cases certain
critical double outages (n − 2 case) could be evolved.

As stated in (Biskas e Bakirtzis, 2004), a complete security

analysis implies a specific constraint for each branch and unit
outage for each monitored branch. The number of security
constraints would thus bem × (m − 1) for branches and
n× (n− 1) for generators (see Sec. 2 for notation). In order
to constitute each constraint the computation of at least one
load flow is necessary. Two mains approaches to contingency
selection (Stott et al., 1987) are available: direct or indirect
methods.

Examples of direct methods are those that use contingency
filters (Harsan et al., 1997) and distribution factors (Wai,
1981). The Inverse Matrix Modification Lemma (IMML) is
used either explicitly or implicitly for most contingency anal-
ysis studies. Specific versions of these approaches have been
denominated compensation methods (Alsac et al., 1983).
Indirect methods involve the consideration of contingency
quantities without explicitly computing them.

Various optimization methods have been used to solve
the OPF problem, including linear programming, nonlin-
ear programming and integer programming (Dommel e Tin-
ney, 1968; Happ, 1977; Huneault e Galiana, 1991; Mo-
moh, 2001). Nonlinear programing, such as that used in this
paper, can exploit a number of techniques, such as sequential
quadratic programming, augmented Lagrangian methods,
generalized reduced gradient methods, projected augmented
Lagrangian functions, successive linear programming, and
interior point methods. The choice of interior point meth-
ods (IPMs) was based on the robustness and efficiency re-
ported for their use in OPF problems (Granville, 1994; Wu
et al., 1994; Wei, 1996; Torres e Quintana, 1998; Quin-
tana et al., 2000; Yan et al., 2006), specially those involving
SCOPF problems (Lu e Unum, 1993; Vargas et al., 1993; Yan
e Quintana, 1997; Jabr, 2002).

The main contribution of the present study is to develop
an efficient model for a security constrained optimal active
power flow (SCOAPF) that considers three types of contin-
gency situations: branch outage, generator outage and multi-
ple equipment congestion. The solution is obtained by using
an IPM formulated as a network model with additional linear
constraints and also considers a general quadratic separable
objective function that may:

• Minimize the deviation from a specified generation ob-
tained from a market pool or a dispatch model that does
not consider transmission network constraints.

• Minimize the transmission losses.

• Realize both.

The outline of the paper is as follows. Nomenclature is pre-
sented in Sec. 2. The SCOAPF model is presented in detail
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in Sec. 3. An efficient interior point method for its solution
is described in Sec. 4. In Sec. 5 some numerical results for
the Brazilian power system are reported and commented on,
and in Sec. 6 the conclusions are stated.

2 NOTATION

m number of branches.

n number of buses.

l number of independent circuit loops.

g number of generators.

c number of contingencies.

A network incidence matrix (n× m).

L network loop matrix (l × m).

X reactance diagonal matrix (m× m).

R resistance diagonal matrix (m × m).

E matrix (n × g) formed by elementsEij that are equal to
one if generatorj is connected to busi, otherwise it is
zero.

N active power flow contingency matrix (c × m).

M active power generation contingency matrix (c × g).

p active power generation vector (g × 1).

d active power load vector (n × 1).

f active power flow vector (m × 1).

θ bus phase angle vector (n × 1).

fmin lower bound for active power flowf .

fmax upper bound for active power flowf .

pmin lower bound for active power generationp.

pmax upper bound for active power generationp

α,β weights.

φ1 function associated with power flow vector.

φ2 function associated with power generation vector.

∗ symbol for fixed or target value.

3 PROBLEM FORMULATION

The SCOAPF model is formulated as the following network
model with additional linear equality and inequality con-
straints and quadratic separable objective function.

min α φ1 (f) + β φ2 (p) , (2)

subject to

Af = E p − d (3)

L X f = 0 (4)

smin ≤ N f + M p ≤ smax (5)

fmin ≤ f ≤ fmax (6)

pmin ≤ p ≤ pmax . (7)

The objective function (2) corresponds to the association
of two different criteria, the first depending on power flow,
φ1(f), and the second on power generation,φ2(p). Both cri-
teria are represented by quadratic and separable functions,
and can be combined using scalar weightsα andβ within a
simple bi-objective optimization framework.

φ1(f) is a quadratic separable function expressed by

φ1(f) =
1

2
f t M1 f + mt

2 f + m3, (8)

whereM1, m2, m3 are a diagonal matrix, a vector and a
scalar, respectively. By settingM1 = R, m2 = 0 and
m3 = 0, functionφ1(f) represents an approximation of the
transmission power losses.

φ2(p) is a quadratic separable function expressed by

φ2(p) =
1

2
pt N1 p + nt

2 p + n3, (9)

whereN1, n2 andn3 are a diagonal matrix, a vector and a
scalar, respectively. By setting adequate values forN1, n2

andn3, functionφ2(p) will represent quadratic generation
costs.

A quite useful objective functionφ2(p) is the quadratic de-
viation from a desirable generation dispatch. Such a dis-
patch can arise from a pool auction in an electricity market
or from a dispatch model which does not take into consider-
ation transmission network constraints. In such a caseφ2(p)
can be represented by
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φ2(p) =
1

2
(p − p∗)t W (p − p∗), (10)

whereW is a diagonal matrix with the componentwi as the
penalty term associated with deviation from the desired gen-
erationp∗i . The equivalence between Eqs. (9) and (10) shows
thatN1 = W , n2 = −p∗t W andn3 = 1

2
p∗t W p∗.

Eq. (3) corresponds to the nodal balance according to the
Kirchhoff’s Current Law (KCL), while Eq. (4) represents
the independent circuit loop equations, in accordance with
Kirchhoff’s Voltage Law (KVL). Efficient procedures for
finding the loop matrixL from the incidence matrixA are
discussed in (Oliveira et al., 2003; Expósito et al., 2006).

Eq. (5) represents a set of generic relationships between
pieces of equipment in the power grid. This equation cor-
responds to the constraints applied to three basic situations:

• Branch outage: the most important branch outages have
been selected, and for these, the line outage distribu-
tion factors (LODFs) are computed to formulate post-
contingency constraints in the form offmin ≤ N f ≤

fmax. For instance, for the outage of branchk-m, an
overload on branchi-j is avoided by including a con-
straint of the type(S1 ≤ Pkm + α Pij ≤ S2).

• Generator outage: for certain selected generator out-
ages, the generalized generation distribution factors
(GGDFs) are computed, leading to post-contingency
constraints having the form offmin ≤ N f + M p ≤

fmax. For instance, for the outage of generatork, an
overload on branchi-j is avoided by including a con-
straint of the type(S3 ≤ Pk + β Pij ≤ S4).

• Multiple equipment congestion: this involves limits
on the interchange between areas and bottlenecks al-
ready identified by experience of the grid operator.
These constraints have the form offmin ≤ N f +
M p ≤ fmax. For instance, the power flow be-
tween two areas can be limited by adding the constraint
(S5 ≤ Pk + γ Pij + η Plm ≤ S6).

The first two sets of constraints can be seen as to repre-
sent security constraints generated after the analysis of con-
tingency cases, as discussed in (Stott, 1974; Stott e Hob-
son, 1978; Stott e Marinho, 1979). The automatic gener-
ation of sets of security constraints is not the main focus
of this paper and the theme will not be discussed further.
Although the definition and how to calculate LODFS and
GGDFS using contingency cases can be seen in (Sauer, 1981)
and (Ng, 1981), respectively. The contribution of this work

is the use of LODFS and GGDFS to form a set that considers
important contingency constraints and then efficiently solve
the resulting problem. Then, the focus is how to efficiently
find an OPF solution for which the three situations mentioned
above can be handled by the inclusion of Eq. (5).

Eqs. (6) and (7) represent the bounds for active power flow
and generation, respectively. Note that transmission limits
are imposed directly on the power flow variables, which con-
stitutes one of the main advantages of approaches based on a
network model.

The SCOAPF model (2)-(7) corresponds to a DC model
where transmission losses are not considered in the active
power balance equations. In order to compute more realistic
solutions, the following procedureP1 can be adopted for the
computation of transmission loss:

• Solve the SCOAPF model for the original load vectord.
Let (p0, f0) be the optimal solution.

• For the solution(p0, f0) calculate the power loss
for each branch using the equationf loss

km =
( rkm

r2

km
+x2

km

)(xkmfkm)2.

• Compute a new load vector̃d by including the branch
power loss as an incremental load equally distributed
between the terminal busesk andm.

• Solve the SCOAPF model for the new load vectord̃. Let
(p1, f1) be the optimal solution.

• Verify if the relative difference betweenf0
km andf1

km

is less then a specified tolerance. If so, the procedure
is finished. Otherwise recalculate the branch power loss
for the new solution(p1, f1), and repeat the procedure.

In general, this procedure requires only two iterations of
OAPF or SCOAPF to achieve convergence within a tolerance
of 10−2.

4 SOLUTION TECHNIQUE

For the sake of simplicity, assume that the lower bounds in
Eqs. (6) and (7) are all zero and thatα = β = 1 in Eq. (2).
The dual problem for the security constrained optimal active
power flow model (2)-(7) is given by

rl min d̂ty − f t
maxwf − φ1(f) − (pt

maxwp) − φ2(p)

s.t. Bty + zf − wf − M1f + N ty2 = m2

−Êty + zp − wp − N1p + M ty2 = n2

−y2 − ws + zs = 0

(zp, wp) ≥ 0, (zf , wf ) ≥ 0, (zs, ws) ≥ 0,
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wherezf , zp, andzs are slack variables,B =

(

A
LX

)

,

d̂ =

(

−d
0

)

andÊ =

(

E
0

)

, with 0 being a(l × g) zero

matrix.

The optimality conditions for the primal and dual problems
are given by primal and dual feasibility and complementarity
conditions







F zf = 0, Wf sf = 0,
P zp = 0, Wp sp = 0, and
S zs = 0, Ws ss = 0,

wheresp, sf , andss are slack variables for the bound con-
straints on active power generation, active power flow and
security constraints, respectively. Moreover, the notation
F = diag(f) for diagonal matrices formed by vectors is in-
troduced.

4.1 Primal-Dual Interior Point Methods

Most primal-dual interior point methods can be seen as vari-
ants of the application of Newton’s method to the first or-
der optimality conditions. The following outlines a frame-
work for such methods, wherex = (f, p, sf , sp) and t =
(zf , zp, wf , wp) are used.

Assumey0 and
(

x0, t0
)

> 0. Fork = 0, 1, 2, · · · , do

1. Chooseσk ∈ [0, 1) and setµk = σk
(

γk/n
)

, wheren
is the dimension ofx andγk = (xk)′tk.

2. Compute Newton search directions
(

∆xk, ∆yk, ∆tk
)

.

3. Choose an appropriate step size so that the point re-
mains interior: αk = min(1, τkρk

p, τkρk
d), where

τk ∈ (0, 1), ρk
p = (−1/mini(∆xk

i /xk
i )), andρk

d =

(−1/mini(∆tki /tki )).

4. Compute
(

xk+1, yk+1, tk+1
)

=
(

xk, yk, tk
)

+

αk
(

∆xk, ∆yk, ∆tk
)

.

The step size for both primal and dual variables is the same,
since for quadratic problems, primal variables appear in the
dual problem constraint set. Parametersσ andτ and the start-
ing point will be discussed later. Newton search directions
are defined by the following linear system1.

1From this point on, superscriptk will be omitted for a cleaner notation.























































A∆f − E∆p = −d − Af + p ≡ ri

X∆f = −Xf ≡ rv

∆f + ∆sf = fmax − f − sf ≡ rf

∆p + ∆sp = pmax − p − sp ≡ rp

∆s + ∆ss = smax − s − ss ≡ rs

Bt∆y + ∆zf − ∆wf − M1∆f + N t∆y2 = ry

−Êt∆y + ∆zp − ∆wp − N1∆p + M t∆y2 = rg

−∆y2 − ∆ws + ∆zs = ry2

N∆f + M∆p − ∆s = rss

(11)































Zf∆f + F∆zf = µe − FZfe ≡ rzf

Zp∆p + P∆zp = µe − PZpe ≡ rzp

Zs∆s + S∆zs = µe − SZse ≡ rzs

Wf∆sf + Sf∆wf = µe − SfWfe ≡ rwf

Wp∆sp + Sp∆wp = µe − SpWpe ≡ rwp

Ws∆ss + Ss∆ws = µe − SsWse ≡ rws

(12)

wheree is the column vector consisting exclusively of ones,
ry ≡ m2 − Bty − zf + wf + M1f − N ty2, rg ≡ n2 +
y(p) − zp + wp + N1p − M ty2, ry2 = y2 + ws − zs, and
rss ≡ −Nf − Mp + s + s.

4.2 The Predictor-Corrector Method

For the predictor-corrector (PC) approach (Mehrotra, 1992),
two linear systems must be solved. First,affine directions
(∆x̃, ∆ỹ, ∆t̃) are computed by solving Eqs.(11) and (12) for
µ = 0. The search directions are then given by solving Eq.
(11) and































Zf∆f + F∆zf = µe − FZfe ≡ r̃zf

Zp∆p + P∆zp = µe − PZpe ≡ r̃zp

Zs∆s + S∆zs = µe − SZse ≡ r̃zs

Wf∆sf + Sf∆wf = µe − SfWfe ≡ r̃wf

Wp∆sp + Sp∆wp = µe − SpWpe ≡ r̃wp

Ws∆ss + Ss∆ws = µe − SsWse ≡ r̃ws.

4.3 Implementation Issues

Parametersτ = 0.9995 andσ = n− 1

2 are fixed. For the
predictor-corrector approach, the barrier parameter is given
byµ = (γ̃/γ)2(γ̃/n2), wherẽγ = (x+∆x̃)′(t+∆t̃). In both
versions, however, ifγ < 1 thenµ = (γ/n)2. The following
starting point is suggested:y0 = 0, f0 = s0

f = fmax/2,
p0 = s0

p = pmax/2, z0
f = w0

f = (R + I)e, z0
p = w0

p = e,
w0

s = z0
s = Ie, su = smax − smin, s0 = 2su/3, s0

s = su/3.
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5 LINEAR SYSTEM SOLUTION

Since the two linear systems introduced in Sec. 4.2 share
the same matrix, the following discussion will consider only
the system involving Eqs. (11) and (12). The dimension of
this linear system can be reduced by substitutions involving
various sets of variables without changing the sparse pattern
of the matrix. First, slack variables are eliminated:

∆zf = F−1(rzf − Zf∆f)
∆zp = P−1(rzp − Zp∆p)
∆zs = S−1(rzs − Zs∆s)
∆wf = S−1

f (rwf − Wf∆sf )

∆wp = S−1
p (rwp − Wp∆sp)

∆ws = S−1
s (rws − Ws∆ss)

∆sf = rf − ∆f ; ∆sp = rp − ∆p; ∆ss = rs − ∆s,

reducing Eq. (11) to































A∆f − E∆p = −d − Af + p ≡ ri

X∆f = −Xf ≡ rv

Bt∆y − Df∆f + N t∆y2 = ra

−Êt∆y − Dp∆p + M t∆y2 = rb

−Ds∆s − ∆y2 = rsy2

N∆f + M∆p − ∆s = rss,

(13)

whereDf = F−1Zf + S−1

f Wf + M1, Dp = P−1Zp +

S−1
p Wp +N1, Ds = S−1Zs +S−1

s Ws, ra = ry −F−1rzf +

S−1

f (rwf −Wfrf ), rb = rg −P−1rzp +S−1
p (rwp −Wprp),

andrsy2 = ry2+S−1
s (rws−Wsrs)−S−1rzs. Note that only

the inverse of diagonal matrices are involved. Now the active
power generation and transmission variables in (13) can be
eliminated with∆f = −D−1

f (ra −Bt∆y−N t∆y2), ∆p =

−D−1
p (rb + Êt∆y − M t∆y2), and∆s = −D−1

s (rsy2 +
∆y2), resulting in

Dy2∆y2 = (rys − D−1
s rsy2 + Bt

s∆y) (14)

Dy∆y = r, (15)

whereDy = BD−1

f Bt + ÊD−1
p Êt − BsD

−1

y2 Bt
s, Dy2 =

ND−1

f N t + MD−1
p M t + D−1

s , Bs = −BD−1

f N t +

ÊD−1
p M t, rys = rss + ND−1

f ra + MD−1
p rb − D−1

s rsy2,

andr =

[

ri

rv

]

+ BD−1

f ra − ÊD−1
p rb + BsD

−1

y2 (rys −

D−1
s rsy2).

In order to solve Eq. (14), it is necessary to solve a system
with dimension constituted exclusively by the number of se-

curity constraints, which in practice is much smaller than that
of branches or even buses. The most intensive computational
work is involved in solving Eq. (15).

6 NUMERICAL RESULTS

The proposed SCOAPF model was implemented in Matlab
7.0, running on an Intel Pentium2.0 GHz personal computer
with 2 GB of RAM in a Windows XP Professional environ-
ment. The predictor-corrector IPM approach was tested for
the Brazilian Power System (BPS), a predominantly hydro
system (90%) with 3,535 buses, 4,238 branches, 300 gener-
ators and 157 security constraints involving all three of the
types described in Sec. 3. Three load levels (light, medium,
and heavy) involving slightly different configurations were
considered, as shown in Table 1. Table 2 describe the num-
ber of contingencies of each type (Branch, Generator or Mul-
tiple). All data were provided by the Brazilian Independent
System Operator (ISO).

Table 1: BPS configuration for each load level

Load Level Branches Buses Load [MW]
Light 4238 3535 36,249

Medium 4228 3531 40,239
Heavy 4237 3533 53,467

Table 2: Number of BPS security constraints by type

Type Number
Branch(B) 122
Generation(G) 5
Multiple(M) 30
Total 157

Two case studies with different objective functions were con-
sidered:

• CS1: Minimization of transmission power losses, ef-
fected by settingα = 1, β = 0 andφ1(f) = 1

2
f t R f .

• CS2: Minimization of quadratic deviation from a pre-
defined generation dispatchp∗. This involves setting
α = 0, β = 1 andφ2(p) = 1

2
(p − p∗)t I (p − p∗),

whereI is the identity matrix. Generation dispatchp∗

corresponds, in this case, to the economic dispatch that
minimizes thermal fuel cost in the BPS and is calculated
by the ISO without considering transmission network
constraints.

6.1 OAPF model

An initial set of results is presented in which the proposed
model is evaluated without consideration of security con-
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straints, but considering transmission losses by the procedure
P1 described in Section 4 which demands the use of only two
successive OAPFs. Table 3 summarizes the performance of
the OAPF model in three load scenarios by exposing the total
time spent and the number of iterations for each OAPF.

Table 3: Performance of the OAPF model
Total Time[s](Iter. OPF 1/Iter. OPF2)

Load Level CS1 CS2

Light 14.53 (7/7) 12.54 (10/6)
Medium 16.23 (8/8) 14.76 (14/6)
Heavy 16.79 (8/8) 23.31 (21/8)

The proposed predictor-corrector IPM approach presented an
effective performance in terms of number of iterations and
CPU time, that decreases slightly with the increase in load.
Table 4 shows the power generation for each case study and
load level.

Table 4: Power generation on the OAPF solution

Generation [MW]
Load Level CS1 CS2

Light 36,613 37,633
Medium 40,883 42,171
Heavy 53,995 56,602

As expected, the solution forCS1 provides lower transmis-
sion losses. The transmission power losses for light, medium
and heavy loads were reduced from3.7%, 4.6% and5.5%
for CS2 to 1.0%, 1.6% and0.98% for CS1, respectively.

Table 5 shows the number of security constraints violated by
the optimal solutions of both case studies. It is interesting to
observe that a smaller number of violations occurred for all
load levels inCS1. This can be explained by the network
topology of the BPS, as shown in Figure 1. Most of the load
is located along the east coast (Atlantic ocean), and the most
important hydro plants are located in rural areas, such as the
Itaipu and Tucuruí hydro plants. When economic dispatch
assigns more generation to these distant hydro plants, (CS2),
the long transmission lines that bring this generation to the
load centers operate closer to their capacities and more se-
curity constraints become active. When dispatch is designed
to minimize transmission loss, (CS1), more generation is as-
signed to conventional and nuclear thermal plants which are
closer to the load centers, such as the Angra, Fluminense and
Fortaleza thermal plants, thus reducing the power flow along
the long transmission lines, resulting in less active security
constraints. These shifts in generation are presented in Ta-
ble 6 related to the generating units presented in Figure 1.
These two case studies illustrate the trade-off in the BPS be-
tween optimal dispatch from an “economic” point of view

(which maximizes hydro generation and minimizes thermal
fuel costs) and optimal dispatch from an “electric” point of
view (which minimizes transmission loss).

Table 5: Number of constraints violated by type on the OAPF
solution

Number of violations
Load Level CS1 CS2

B G M Total B G M Total
Light 0 0 0 0 2 0 1 3

Medium 0 0 0 0 5 0 1 6
Heavy 0 0 5 5 16 2 4 22

Table 6: Generation of most important plants for CS1 and CS2

Capacity [MW] Generation [MW]
Plant CS1 CS2

Itaipu 12600 3522 12412
Tucuruí 5625 1859 5510
Angra 2229 2229 1243

Fluminense 1011 1011 104
Fortaleza 391 391 0

Table 7 shows the values for the seven largest of the 22 secu-
rity constraints violated in case studyCS2 (heavy load).

Table 7: Most important violations for CS2 (heavy load)

Violation[MW]
Constraint Type Light Medium Heavy

79 B 0 0 241
84 M 0 0 760
86 G 0 0 714
111 M 0 0 408
135 B 149 534 640
155 B 46 179 274
157 M 0 0 910

Constraint79 (Region 5 in Figure 1) is violated in Heavy
level; it consists of maintaining the transformer shown in Fig.
2 in secure operation. This constraint is responsible for pre-
venting the contingency that one of the three lines will cause
a fault in the transformer that connects the500 kV area and
230 kV area. This situation corresponds to the branch out-
age case mentioned in Section 3; it can be stated mathemati-
cally by the following expression−3100 ≤ 1.00(f235−92 +
f235−93 + f235−94) + 1.00f3965−230 + 1.00f235−230 ≤

3100. (matricial formsmin ≤ Nf ≤ smax). Constraints
135 and155 represent similar situations.

Constraint84 (Region 3 in Figure 1) is necessary to prevent
a power flow inversion from the500 kV area to the440 kV
area, as illustrated in Fig. 3. This situation corresponds to the
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Figure 1: Overview of the BPS grid.

multiple equipment congestion case mentioned in Section 3;
it can be stated mathematically as−8050 ≤ f535−536 +
p500 + p501 + p502 + p503 + p507 + p510 + p513 + p520 ≤

8050. (matricial formsmin ≤ Nf + Mp ≤ smax). Similar
situations are represented by constraints111 and157.

Constraint86 (Region 3 in Figure 1) consists of the pre-
vention of congestion by limiting the maximum power out-
put of the group of generators shown in Fig. 3. This con-
straint can be treated as a special case of multiple equipment
congestion; it can be stated mathematically as−5550 ≤

p501 + p502+ p503 + p510+ p513+ p520 ≤ 5550. (matricial
form smin ≤ Mp ≤ smax).

6.2 SCOAPF model

A second set of numerical results is now presented to evalu-
ate the proposed model when security constraints are consid-
ered. Table 8 summarizes the performance of the proposed
approach, which corresponds in this case to the SCOAPF
model, for a heavy load. The inclusion of security constraints
influenced the performance of the model in relation to the sit-
uation in which these constraints were not considered (Table
3).

The difference in performance between the OAPF and
SCOAPF models can be explained as follows: when no
security constraints are considered, Eq. (14) is no longer
necessary, and an IPM is produced in which each itera-
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Figure 2: Illustration of Constraint 79 of Region 5.

Figure 3: Illustration of constraints 84 and 86 from Region 3.

Table 8: Performance of the SCOAPF model
Time[s](Iter. OPF1/ Iter. OPF2)

Load Level CS1 CS2

Heavy 280(9/9) 998(41/24)

tion is computationally less costly. Moreover, MatrixDy

presents0.2320% of non-zero elements without security con-
straints, whereas the same matrix with security constraints
has0.3122% of non-zero elements (an increase of34.57%
in the number of non-zero elements). Furthermore, the in-
clusion of constraints results in an increase in the number of
iterations.

Since only a few of the security constraints are active in the
optimal solution, one alternative to reduce CPU time would
be to adopt a scheme similar to that found in (Stott e Hob-
son, 1978), in which only the security constraints actually
violated, identified after running the OAPF, are included in
the SCOAPF model. Note that these constraints are here si-
multaneously included in the SCOAPF, although in (Stott e
Hobson, 1978) they were included one at a time. The appli-

cation of this procedure forCS2 and heavy load, where only
22 of the 157 security constraints are violated, reduced the
CPU time of about 30%.

7 CONCLUSION

This paper has presented a new security constrained optimal
active power flow formulation which enables the representa-
tion of three basic constraints: branch outage, generator out-
age and multiple equipment congestion. Quadratic separa-
ble objective functions of active power generation and flows
can be considered, thus allowing the minimization of trans-
mission losses, generation cost or quadratic deviation from a
desired dispatch, or a combination of both. The model was
formulated as a network flow problem with additional linear
constraints and enables the efficient solution using an inte-
rior point method exploiting the specific matricial structure
by sparsity techniques. The model was tested on the Brazil-
ian power system with 3,535 buses, 4,238 branches, and 157
security constraints. The results showed that the technique is
flexible, robust and efficient.
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