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RESUMO

Interpolação virtual de soluções de programação multi-
objetivo discreta com operação probabilística
Apresenta-se, neste trabalho, um novo método para se tratar
a operação em horizonte infinito de uma classe de problemas
de programação multi-objetivo. A abordagem proposta con-
sidera uma operação estocástica e avalia o custo/lucro médio
em horizonte infinito. Para ilustrar a abordagem proposta,
um método de duas fases é proposto para resolver um número
pré-determinado de K problemas multi-objetivos, de modo a
se identificar um conjunto com K pontos pertencentes à re-
gião Pareto-ótima. A segunda fase consiste em se buscar um
conjunto não-dominado de distribuições de probabilidade no
domínio dos K pontos de operação selecionados na primeira
fase, que define a probabilidade de se escolher cada um dos
pontos de operação em todo instante de decisão. Cada dis-
tribuição de probabilidade gera um vetor de funções obje-
tivo no longo prazo e determina-se o conjunto Pareto-ótimo
com respeito às médias dos objetivos. A abordagem proposta
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pode gerar pontos de operação virtuais, com médias de fun-
ção objetivo que não necessariamente correspondem a um
ponto factível de operação. Alguns experimentos numéricos
são desenvolvidos para ilustrar a abordagem proposta.

PALAVRAS-CHAVE: Otimização de Pareto, Operação dinâ-
mica, Otimização discreta

ABSTRACT

This work presents a novel framework to address the long
term operation of a class of multi-objective programming
problems. The proposed approach considers a stochastic
operation and evaluates the long term average operating
costs/profits. To illustrate the approach, a two-phase method
is proposed which solves a prescribed number of K mono-
objective problems to identify a set of K points in the Pareto-
optimal region. In the second phase, one searches for a set of
non-dominated probability distributions that define the prob-
ability that the system operates at each point selected in the
first phase, at any given operation period. Each probability
distribution generates a vector of average long-term objec-
tives and one solves for the Pareto-optimal set with respect
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to the average objectives. The proposed approach can gener-
ate virtual operating points with average objectives that need
not have a feasible solution with an equal vector of objec-
tives. A few numerical examples are presented to illustrate
the proposed method.

KEYWORDS: Pareto-optimality, Dynamic operation, Dis-
crete optimization

1 INTRODUCTION

Humans have to choose among a finite number of alternatives
to make decisions according to some criterion or objective.
However, many real-world problems do not involve a single
objective. Rather, they have multiple, possibly conflicting
objectives to be optimized simultaneously. The wide range
of problems in this category motivated the development of
the field of Multiple Criteria Decision Making (MCDM),
also known as Multi-Objective Programming (MOP). This
field dates back to the early works by PARETO (1897a) and
PARETO (1897b) that introduced the concept of corporative
equilibrium. A survey about the history and social motiva-
tions for the development of this equilibrium concept is pre-
sented by STADLER (1979); it covers the interval between
1776 and 1960. CHANKONG and HAIMES (1983) present
a formulation of the MOP problem in the space of the objec-
tives, as well as some definitions of Pareto-optimality con-
cepts that are used in most of the existing MOP methods.

As the term suggests, MCDM is a branch of Operational Re-
search (OR) primarily concerned with decision problems in-
volving multiple objectives, e.g. (ZIONTS, 1992). The fun-
damental guidelines regarding the decision making in multi-
objective problems can be found in the work by KEENEY
and RAIFFA (1976). An effort is conducted by REID and
CITRON (1971) to establish some basic properties of the
noninferior surface in general multi-objective problems. In
another line of research, conditions for the existence of a
single optimal solution to multi-objective problems were
investigated in (ATHANS and GEERING, 1973; SALUK-
VADZE, 1974). A study on sensitivity analysis tools, de-
signed to investigate the influence in the output of any given
change in the input, was presented by INSUA (1990).

One way to tackle MOP problems involves defining a map-
ping from the set of feasible solutions to function space.
Such a mapping is often called utility function and allows
a complete ordering of the set of feasible solutions. There-
fore, the knowledge of the utility function makes it possible
to reformulate a MOP as an ordinary mono-objective opti-
mization problem with the utility function acting as the ob-
jective. However, in many situations it is not possible to
identify or assess a utility function. In those cases, a par-
tial ordering of the feasible solutions in terms of the values

of the individual objective functions can be used. Under such
an ordering, one can identify particular solutions that cannot
be thoroughly improved, i.e. solutions such that no other
solution exists that improves all objective functions simulta-
neously. Any solution of this type is called nondominated,
and multi-objective programming methods are developed to
identify the set of nondominated solutions, also known as the
Pareto-optimal set or Pareto front (or subsets of it). After a
set of nondominated solutions is identified, it is handed in to
the decision maker and she is assigned the task of choosing
a particular solution from this set.

KIM and de WECK (2006) try to map the Pareto front by
using a linear combination of neighbor points, which are ob-
tained by a traditional weighted sum method for multiobjec-
tive optimization. This method is called adaptive weighted
sum because it does not allow two or more different weight
vectors to achieve the same point in the Pareto front. The
optimality conditions to some dynamic multiobjective pro-
gramming problems cannot be applied, and ESOGBUE et al.
(2006) define alternative conditions for this kind of prob-
lems. For problems with non-mensurable objective func-
tions, evolutionary computation has arisen as a good alter-
native to obtain a satisfactory Pareto front within a resonable
time window. Some evolutionary algorithms for MOP prob-
lems can be found in (DEB, 2001; COELLO et al., 2002).
For a survey about concepts and specific methods to solve
multiobjective optimization problems, we refer to MARLER
and ARORA (2004) and (CHINCHULUUN and PARDA-
LOS, 2007). These methods, which can be divided in three
main categories: (i) a-Priori methods, (ii) a-Posteriori meth-
ods, and (iii) interactive methods, can be exact or heuris-
tic. Exact methods use concepts such as differentiability to
reach the optimal solution, whereas heuristic methods, such
as evolutionary algorithms, sweep a selected part of the do-
main in their search for a satisfactory solution. A disad-
vantage of heuristic methods is that they are not guaranteed
to find the optimal solution. Nevertheless, heuristics typi-
cally run faster and are less computationally demanding. A
wide range of difficult real-world multiobjective problems
have been dealt with by means of evolutionary computa-
tion. CARDOSO et al. (2009) develop an evolutionary ap-
proach to control biological pests in soybeans crop. EVER-
SON and FIELDSEND (2006) apply an evolutionary strat-
egy in safety related systems, which monitor the location of
airplanes by radars and send alert messages to the flight con-
trollers. ABIDO (2006) applies evolutionary algorithms in
electrical power dispatch problems. AMORIM et al. (2009)
propose an evolutionary algorithm called AEMO and apply
it to a study on the decentralization of the Brazilian elec-
trical energy system. In (DIAS et al., 2008) a memetic al-
gorithm is applied in multiobjective dynamic location prob-
lems, whereas in (TRALHÃO et al., 2010) a variation of the
facility location problem is presented whose goal is to de-
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termine a set of waste collection points for different sorts of
waste in a urban region.

Even though the MOP formulation of any given system is
static, it can be related to the dynamic operation of the sys-
tem. Think, for instance, of a multi-objective allocation prob-
lem in which clients are allocated to existing facilities first
thing in the morning on every business day. If the decision
maker criterion does not change during a given stretch of
time, the same allocation is selected every single day during
that time interval. In such a problem, a vector comprised of
the averages of all objective functions during the selected in-
terval (which in this case coincides with the vector of objec-
tive functions at the selected operating point) can be used as
an alternative objective function. It is worth pointing out that,
although the MOP literature is rich and vast, there are not, to
the best of our knowledge, works dealing with the dynamic
or probabilistic operation of systems and multi-objective cri-
terion. It is the probabilistic selection of operating points for
the dynamic operation of MOP systems that we address in
this work.

The contribution of this paper is to introduce a novel
framework for dynamic multiple criteria decision making
(MCDM). The paper proposes a probabilistic selection of the
operating point for systems with static or slowly changing
decision making criteria. The proposed framework can be
viewed as a generalization of the classical static MOP frame-
work. Under the former, one is concerned with selecting an
operating point for the system under multiple (possibly con-
flicting) optimization criteria. The latter, on the other hand,
deals with the dynamic operation of the system. This in-
volves selecting different operating points and establishing
rules that govern the switch between any two of the selected
operating points.

The paper is organized as follows. Section 2 presents the
mathematical formulation and the basic concepts of multi-
objective programming. Section 3 describes and motivates
the proposed probabilistic approach to multi-objective pro-
gramming. Section 4 features a procedure for selecting of op-
erating points and establishing transition probabilities among
these points. Section 5 presents a numerical simulation for a
facility location problem and an analysis of the obtained out-
comes. Finally, concluding remarks can be found in Section
6.

2 TRADITIONAL MATHEMATICAL FOR-
MULATION

A classical multi-objective problem can be formulated as fol-
lows:

Minimize F(x)
Subject to x ∈ Ω (1)

where F = [ f1, f2, . . . , fm]T , (m ≥ 2) is a vector of objectives
and Ω is the set of feasible solutions.

Often the objectives are conflicting and there exists no feasi-
ble solution that minimizes all objectives simultaneously. To
tackle this problem, one uses the concept of non-dominated
solutions. This concept was introduced in Vilfredo Pareto’s
classical works (PARETO, 1897a; PARETO, 1897b). A so-
lution x∗ ∈Ω is said to be non-dominated (or Pareto-optimal,
or efficient) if there exists no alternative solution in Ω that is
best or equal in all objectives simultaneously and that strictly
improves at least one objective.

For any pair x,y ∈ Ω, x 6= y, define the following partial or-
dering in terms of the objectives in Problem (1):

F(x) ≤ (≥)F(y) if fi(x) ≤ (≥) fi(y), ∀i ∈ {1, . . . ,m}

F(x) < (>)F(y) if F(x) ≤ (≥)F(y) and F(x) 6= F(y) (2)

When F(x) < F(y) we say that x dominates y. On the other
hand, if F(x) > F(y), we say that x is dominated by y. Note
that, when a feasible solution dominates another one, it is
certainly a better solution to (1) than its counterpart; when it
is dominated by the counterpart, it is certainly a worse solu-
tion to (1). Based on the relations in (2) one can construct
the following sets for any point x0 ∈ Ω

Ω<(x0) , {x : F(x) < F(x0)}

Ω≥(x0) , {x : F(x) ≥ F(x0)}

Ω∼(x0) , {x : F(x) � F(x0) e F(x) � F(x0)},

(3)

Observe that:

1. Ω = Ω<(x0)
⋃

Ω≥(x0)
⋃

Ω∼(x0).

2. Ω<(x0) and Ω≥(x0) denote, respectively, the set of
points in Ω that dominate and are dominated by x0.

3. Ω∼(x0) lists every point in Ω which cannot be compared
to x0 according to the partial ordering employed.

4. For any global (efficient) solution to x∗ ∈ Ω to (1), Ω∩
Ω<(x∗) = /0.

A local (locally efficient) solution to (1) can also be defined
in terms of the sets introduced above. We say that x∗ is a
local solution to the problem in question whenever

B(x∗,ε)∩Ω<(x∗) = /0,

for some scalar ε > 0, where B(x∗,ε) = {x∈Ω : ‖x−x∗‖<
ε}; ‖ · ‖ denotes the Euclidean norm.

Specific methods to solve multi-objective programming
problems were addressed in (CHANKONG and HAIMES,
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1983; MARLER and ARORA, 2004; CHINCHULUUN and
PARDALOS, 2007). These methods are classified according
to the instant the decision maker applies their criteria. Three
methods are proposed: (i) a-Priori method, where the de-
cision maker assigns preferences to the objective functions
a priori, thus obtaining a single mono-objective criterion;
(ii) a-Posteriori method, where the decision maker strives to
create a set of (locally) efficient solutions to choose from a
posteriori; and (iii) interactive methods, where the decision
maker informs their preferences during the search for an ef-
ficient solution. The first category is used when the deci-
sion maker has preferences concerning the objectives. In this
category, one can highlight the lexicographic method, which
requires a list of objectives in decreasing order of preference
and the bounded objective function method, that selects a sin-
gle most preferred objective function and transforms the re-
maining objectives into constraints with fixed bounds chosen
by decision maker. The second category aims at generat-
ing a set of non-dominated solutions to be chosen from at
a later stage by the decision maker. This category features
the weighted method, which obtains each point in the non-
dominated set as a solution to a transformed single objective
problem, where the objective is a convex combination of the
original objective functions, and the ε-constrained method,
which is similar to the bounded objective function, but where
the bounds are not flexible. The last category obtains the de-
cision maker’s preferences during the run of the algorithm,
with a view of generating a desirable operating point. Un-
der this framework, one can highlight the STEP method,
which is exact and the evolutionary algorithm GENOCOP,
e.g, (SAKAWA and YAUCHI, 1998). It is worth pointing
out that evolutionary algorithms are used to seek solutions in
all three categories. However, they are typically classified as
a-Posteriori methods.

The traditional formulation described above will help us in-
troduce in the next section the motivation of this work. We
shall work with a generalized dynamic approach that re-
sults in a multi-objective linear formulation, regardless of the
structure of the objective functions in (1). The classical for-
mulation serves as a reference for comparison, and can also
be used to generate the operation points to be used in the
dynamic operation of the system being optimized.

3 THE PROPOSED PROBABILISTIC FOR-
MULATION

For systems with a dynamic, repetitive operation, one can di-
vide the time horizon in discrete periods and redefine Prob-
lem (1) in terms of the long term average cost of the objective
functions. Let Xk, k ≥ 0, denote the operating point in period

k and define the following problem in

Minimize lim
K→∞

1
K

K

∑
k=0

F(Xk)

Subject to Xk ∈ Ω
(4)

Note that problem (1) can be viewed as a specialized version
of the proposed problem (Eq. (4)), with Xk = x, ∀k ≥ 0.

In the proposed approach, we assume that at each discrete
period k ≥ 0, the system operates in a given point x ∈ Ω with
probability µ(x) ∈ [0,1]. In such a setting, Xk, k ≥ 0 be-
comes an homogeneous Markov chain (BRÉMAUD, 1999)
with transition matrix P = pxy, with pxy = µ(y),∀x,y ∈ Ω
and problem (4) becomes

Minimize lim
K→∞

1
K

K

∑
k=0

F(Xk) = ∑
y∈Ω

µ(y)F(y), (5)

where the last equality is a consequence of the strong law of
large numbers (BRÉMAUD, 1999). The last equality also
follows by noting that µ : Ω → [0,1] is a stationary distribu-
tion for process Xk, k ≥ 0, e.g. (BRÉMAUD, 1999, Theorem
3.4.1).

Note that, although Problem (5) can be viewed as a gener-
alization of Problem (1), once the operating points are set,
it becomes a linear programming problem, regardless of the
definitions of the objective functions fi, i ∈ {1, . . . ,m}. In
contrast, the latter (static) problem is only linear when all
objective functions are linear. Hence, the solution to the gen-
eralized Problem (5) can be, in fact, easier to find than the
solution to Problem (1).

This paper addresses systems with static or slowly changing
decision making criteria. Such systems yield long time inter-
vals of operation under the same criterion. In that scenario,
we can assume that the length of the operating window under
a given decision criterion, denoted here as K, tends to infin-
ity. At each window, one is faced with an static problem of
selecting a probability distribution µ in the set Π of feasible
distributions from Ω to the interval [0,1] and the objective is
to find the set of non-dominated distributions with respect to
the vector of average objectives

F(µ) = ∑
x∈Ω

µ(x)F(x), µ ∈ Π, (6)

where F = [ f1 f2 . . . fn]
T is the vector of objective functions;

the superscript T denotes the transpose of a vector.

Note that, regardless of the functional form of the objectives
fi : Ω → R, the expected objective function F : Π → R is
linear. Therefore, the proposed probabilistic approach can
significantly simplify the original problem depending on the
functional forms of the objective functions fi.
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3.1 Selection of a Finite Set of Operating
Points

Within the general proposed framework, one applies Eq.
(6) to find a probability distribution that shall determine the
probability of selecting each x ∈ Ω as the operating point at
a given period. An obvious simplification is to select a finite
set of operating points in Op ⊂ Ω and make the system op-
erate exclusively within this set. This is equivalent to setting
µ(x) = 0, ∀x /∈ Op. It opens the possibility of selecting op-
erating points within the static Pareto-optimal set. It is this
approach that we will further exploit in the next section.

Note that the proposed approach is founded in the repetitive
operation of a given system. The operation of the system
can be divided in discrete periods and, at the onset of each
period, the decision maker chooses the operation point to be
utilized in that period. Any operating point x ∈ Op can be
selected with probability µ(x) ≥ 0. At each new period this
process is repeated, and the long term average operating cost
of the system can be assessed with the help of Eq. (6), where
µ(x) = 0, if x /∈ Op.

3.2 Motivations and Discussions

To illustrate the proposed approach, consider the follow-
ing hypothetic two-objective optimization problem with only
two feasible solutions, as depicted in Fig. 1.

PSfrag replacements

f1(x)

f2(x)

F(a)

F(b)

Figure 1: Operating Points in a Multi-Objective Problem

Using the traditional static MOP approach, the decision
maker would choose either a or b as the operating point
for the MOP problem and the long term average cost
would be either F(a) or F(b). It is worth noting that
F(a) = [ f1(a) f2(a)]T and F(b) = [ f1(b) f2(b)]T are two-
dimensional vectors comprising both objective functions.

By setting a probability distribution µ : {a,b} → [0,1] and
applying formulation (5), one can emulate a relaxed version

of the problem with an expanded operating region. While
the static formulation must choose to operate either at point
a, paying a long term average cost F(a) or at point b, paying
F(b), the dynamic formulation allows one to select any con-
vex combination of F(a) and F(b) as the long time operating
cost of the system. It can be argued that each probability dis-
tribution generates a virtual operating point c, with average
long term cost

F(c) = µ(a)F(a)+ µ(b)F(b)

It is worth noting that a real operating point d ∈ Ω, with
F(d) = F(c) need not exist. Hence, the proposed approach
can, in fact, expand the operating region by generating vir-
tual operating points whose objective function cannot be em-
ulated by any point within the feasible set Ω.

Observe in Fig. 2 that virtual operating points with aver-
age operating costs in the line connecting F(a) and F(b) can
be generated by setting appropriate probability distributions.
The virtual operating point c is only an example correspond-
ing to an specific probability distribution µ̂ . In Fig. 2, the
values fi(c) = µ̂(a) fi(a)+ µ̂(b) fi(b), i = 1,2. Observe also
that the virtual operating region expands the operating region
from the discrete set Ω = {a,b} to a continuous set, whose
objective function vectors are depicted in Fig. 2.

PSfrag replacements

f1(x)

f2(x)

f1(c)

f2(c)

F(a)

F(b)

F(c)

Virtual operating region

Figure 2: Feasible Solutions in a Multi-Objective Problem

As illustrated in Fig. 2, one possible application of the pro-
posed approach is to expand the operating region of multi-
objective problems with sparse feasible solutions, providing
the decision maker with more alternatives to choose from.
One obvious example is Integer Multi-Objective Program-
ming (IMOP). By defining a set of feasible operating points
(vertices) in Ω and defining a probability distribution in that
set, the proposed approach can emulate any long term av-
erage objective vector within an hypercube whose vertices
comprise the objective vectors at each selected operating
point. That may generate a larger operating region than the
classical Pareto-optimal set, as illustrated in the example.
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Observe that the generation of a virtual probabilistic oper-
ating point that does not have an equivalent solution in Ω is
possible and it does not involve operation outside of Ω.

Another possible application of the proposed formulation is
to facilitate the management of the system operation in the
long run. With system operation being constrained to a small
number of vertex points - such as a few points selected from
the Pareto-optimal set, also known as the Pareto front - the
setup (transition) costs and times tend to decrease as time
elapses, creating a very specialized environment. Moreover,
to change virtual operating points one only needs to alter the
probability distributions µ : Ω → [0,1], which does not dis-
turb the operation of the system by adding unexperienced op-
erating points. This can be advantageous, since the Pareto-
optimal region often contains an infinite number of points
and any change in the operating point within the original
MOP framework will very likely involve a transition to an
operating point never experienced before. The lack of expe-
rience with such a transition may render the operation trou-
blesome and expensive in terms of setup time and cost.

The proposed probabilistic approach can also be employed as
a method to manage customer dissatisfaction. It may be used
to add flexibility to the operation of the system in the long run
and help managing marginal costs which may be difficult to
model precisely, such as the cost of customer dissatisfaction.
You may alternate solutions, so that the time operating un-
der unattractive solutions is mitigated for selected classes of
clients. Such a measure may help maintain clients with con-
flicting preferences reasonably satisfied with the long term
operation of some given service that they share.

As presented, the probabilistic approach we introduce, with
the long run average cost as the performance function, gen-
eralizes the classical MOP framework and provides new de-
grees of freedom in the management of the system. More-
over, the original problem becomes a linear MOP problem
regardless of the structure of the objective functions. For il-
lustration purposes, we suggest in the next section a special-
ized version of the approach in which a finite set of operating
points is selected a priori.

4 PROPOSED METHOD

The proposed method uses two phases to solve the proposed
dynamic multi-objective programming problem. In the first
phase, we make use of a conventional technique aimed at
dealing with Problem in (1) . This technique, which is called
weighted global criterion method (MARLER and ARORA,
2004; CHINCHULUUN and PARDALOS, 2007), makes use
of the following problem

Minimize 〈w,F(x)〉
Subject to x ∈ Ω.

(7)

where w is an m−dimensional vector of weights satisfying
∑m

i=1 w(i) = 1; and F is the m−dimensional objective vector.
It builds the Pareto-optimal region as the set of the outcomes
of Problem (7) for all possible values of w ∈ Rn that satisfy
the constraints in (7) .

The first phase of the method here proposed solves Problem
(7) for K possible values of w ∈ Rm, where K ≥ m. This re-
sults in K points in the Pareto-optimal set which are then se-
lected as the possible operating points of the dynamic proba-
bilistic MOP formulation (5). These K points add up to form
the operating point set Op, defined in Section 3.1. Hence, the
probability of selecting any operating point {x ∈ Ω : x /∈ Op}
is nill.

In order to solve Problem (7) for a given value of w,
one needs to find a point x ∈ Ω that satisfies the Karush-
Kun-Tucker optimality conditions (BAZARAA et al., 1993;
NEMHAUSER and WOSLEY, 1999). The obtained solu-
tions satisfy

x∗i = arg minx∈Ω 〈w,F(x)〉 , i = {1, . . . ,m}. (8)

Before we proceed to the second phase, we point out that
each solution x∗i in (8) is an efficient solution to Problem (1).
To check that, it suffices to verify that Ω∩Ω<(x∗) = /0, where
Ω<(x∗) is defined in (3).

In the second phase, the rationale is to search for solutions
whose long term average cost lie in the polytope generated
by the set of operating points

Op = {F(x∗i ), i = 1, . . . ,K}, (9)

where vector F is defined in (1). One way to accomplish that
is to solve the problem

Minimize
K

∑
j=1

µ jF(x∗j)

Subject to
K

∑
j=1

µ j = 1

(10)

where µ j is the probability that the system is operating in x∗j
at any given time instant. Note that the set of operating points
is SO = {x∗1,x

∗
2, . . . , x∗K}. It is clear to see that Problem (10)

is linear and we can use the multiobjective simplex method
to solve it, as described in (EHRGOTT et al., 2007).

Remark 1 Note that Problem (10) is always linear and, as a
result, convex. Hence, whereas the form of the Pareto front

384 Revista Controle & Automação/Vol.22 no.4/Julho e Agosto 2011



of the static formulation depends on the of the structure of
the objective functions and the set Ω in (1), the Pareto front
of the proposed formulation is always convex.

The proposed application of the probabilistic approach in-
troduced in Section 3 is related to the classical weighting
method to solve MOP problems, e.g. (CHANKONG and
HAIMES, 1983; KEENEY and RAIFFA, 1976). The differ-
ence is that, whereas the latter method fixes the weights a pri-
ori and generates a single mono-objective solution to be used
as the operating point (for each possible convex combination
of weights, a single mono-objective solution can be gener-
ated), the proposed formulation fixes the operating points in
Ω a priori and solves for the non-dominated set of probabil-
ity distributions D = {µx, x ∈ Op}. Note that each proba-
bility distribution can be viewed as a convex combination of
weights. Thus, any non-dominated solution to Problem (10)
assigns weights to each mono-objective solution in (7).

The goal is to minimize the summation
∑K

j=1 µ j [ f1(x j), f2(x j), . . . , fn(x j)] by using a probabil-
ity distribution function. We call the response virtual
solution, because the expected values of the objectives may
not correspond to the objective vector of any feasible point
x ∈ Ω. That happens because of the well know fact that the
expected value of a random variable need not be part of the
sample space (ROSS, 2009).

Note that the proposed method is merely one possible imple-
mentation of the probabilistic approach introduced in Section
3. It serves to illustrate the benefits and shortcomings of ap-
proach. In principle, the choice of the set of operating points
Op can be extended to the whole set of feasible operating
points (Ω) or any subset of it. Hence, the probabilistic ap-
proach in Section 3 has the potential to completely emulate
(and extend) the classical Pareto-optimal region.

In the numerical examples in the Section 5, the set of vertices
were generated as in (9). The experiments illustrate the ap-
plication of the proposed probabilistic approach in an integer
MOP problem.

4.1 Computational Issues

The proposed approach is founded in selecting a finite set of
operating points Op, to be employed for solving (10). The
first phase of the method comprising of selecting the set Op,
while the second phase involves finding the Pareto front of
Problem (10).

As mentioned in Section 4, each point in the finite set Op

can be found as a solution to Problem (7): a mono-objective
version of the original static formulation in (1). Hence, the
computational cost of finding the operating points in Op is a

function of both the cardinality of the set Op and the com-
putational cost of Problem (7), which depends on the nature
of the problem being solved. For example, if Problem (1)
happens to be NP-hard, such as a multi-objective traveling
salesman problem, then finding Op also becomes NP-hard.
Otherwise, the first phase of the proposed approach can be
concluded in polynomial time.

A typical approach to solving (10) in the second phase, here
employed, is to find a finite set of points belonging to an
arbitrarily fine discretized grid of the Pareto front. Hence, the
computational burden depends on the number of points in the
selected grid. Observe that, since Problem (10) is linear, each
point in its Pareto front can be found in polynomial time,
regardless of the nature of the original static problem. Hence,
the second phase of the proposed approach can always be
concluded in polynomial time.

5 NUMERICAL EXPERIMENTS

Following (FERNÁNDEZ and PUERTO, 2003), we used
combinations of mono-objective uncapacitated plant loca-
tion problems to illustrate the proposed method. The
individual problems, which are defined on three dif-
ferent groups labeled p1, . . . . p6, are extracted from
the web source (http://www-eio.upc.es/~elena/
sscplp/index.html). These groups are divided by num-
ber of clients, M, and plants, N. The capacity constraints
of the source problems are ignored. We solved three
two-objective problems generated as combinations of prob-
lems p1, . . . , p6, each with 20 clients and 10 plants,
and two three-objective problems generated as combinations
of p26, p27, p28, each with 50 clients and 20 plants, and
p50, p51, p52, each with 90 clients and 30 plants.

The points that comprise the Pareto front of each prob-
lem solved in this work were obtained by means of the a-
posteriori weighted method. Each point corresponds to the
solution of a mono-objective problem whose objective is a
convex combination of the original objective functions. Ev-
ery point was found by means of the BINTPROG function,
which solves a binary integer programming problem, and is
part of the optimization toolbox built in the MATLABr 7.8.0
program.

The computational experiments were all performed in a PC
with 2.26GHZ Intelr CoreTM 2 Duo processor, 4GB RAM
running Ubuntu 10.10 operational system.

5.1 Formulation of the plant location
problem

The multicriteria uncapacitated plant location problem (MU-
PLP) is among the most visited binary integer programming
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problems. Its binary decision variables are

xi j =

{

1, if client j is assigned to plant i,
0, otherwise.

y j =

{

1, if plant j is open,
0, otherwise.

The MUPLP can be formulated in the following way:

Minimize z1 = ∑
j∈N

f 1
j y j + ∑

i∈M
∑
j∈N

c1
i jxi j

. . .

Minimize zp = ∑
j∈N

f p
j y j + ∑

i∈M
∑
j∈N

cp
i jxi j

subject to ∑
j∈N

xi j = 1, ∀ i ∈ M,

xi j,y j ∈ {0,1} ∀ i ∈ M, j ∈ N,

(11)

where M = {1, . . . ,m} represents the set of indices for clients
and N = {1, . . . ,n} denotes the set of indices for plants. f r

i
and cr

i j, respectively, are the set-up cost and allocation cost
for any r ∈ {1, . . . , p}, i ∈ M, j ∈ N, and p is the dimension
of the objective vector. The constraints are to insure that each
client is assigned to only one plant and to guarantee that no
client is unattended.

Some elements of the Pareto front of Problem (11) can be se-
lected and the proposed probabilistic formulation becomes:

Minimize
K

∑
j=1

µ jZ
∗
j

Subject to
K

∑
j=1

µ j = 1

(12)

where µ j is the probability that the system is operating at
some given element Z∗

j , j = 1, . . . ,K, within the Pareto front.
The K elements from the Pareto front can be obtained by
means of the a-posteriori weighted method.

5.2 Experimental results

We applied the probabilistic approach to three example prob-
lems with two objectives, labeled Example 1 to Example 5.
Example 1 is the combination of the instances p1 and p2 in
the web source; Example 2 combines p3 and p4 and Exam-
ple 3 combines p5 and p6 Example 4 combines p26, p27, and
p28; Example 5 combines p50, p51, and p52. We applied the
method in Section 4 and selected two solutions belonging to
the Pareto front, i.e. K = 2, in the first example as the pos-
sible operating points for the probabilistic operation. For the
second example, three solutions have been selected that be-
long to the Pareto front, while five solutions from the Pareto

front have been selected for the third example.. Finally, we
present two problems with three objective functions ant ten
solutions have been selected from the Pareto front in both.
Figures 3 to 7 contain the numerical results.
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Figure 3: Operating Region for Example 1

Note that the extreme points in each figure correspond to the
individual solutions to Problems (7) and belong to the orig-
inal Pareto-optimal region. Observe that, the more evenly
distributed the probability distribution is, the closer the cor-
responding virtual operating point gets to the center of the
virtual operating region, which is formed by the convex com-
bination of the K extreme points. Observe also that the vir-
tual operating points between the extreme points are always
dominated by some point in the original Pareto-optimal re-
gion. However, as we increase K, the Pareto front of the
proposed probabilistic approach gets closer to that of the tra-
ditional static formulation. One can see in Fig. 5 that the
Pareto front of the proposed approach, with K = 5 operating
points, almost coincides with the Pareto front of the original
formulation.

Finding a function that maps the Pareto front can be very
involving. Hence, the classical methods that solve multiob-
jective problems obtain a limited Pareto-optimal set and it
is very sparse sometimes. In such problems, a probabilistic
operation can be expand the operating region, providing an
infinite number of solutions to choose from, and thus adding
flexibility and additional trade-offs for the decision maker.

In Figure 3, two extreme points were selected and the prob-
abilistic operating region is obtained as the set of all pos-
sible convex combinations of the extreme points. One can
easily see that, in this case, the virtual interpolation front,
i.e. the Pareto-optimal region for the probabilistic operation,
coincides with the probabilistic operating region itself. In
other words, each point in the probabilistic operating region
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Figure 4: Operating Region for Example 2

is Pareto-optimal within the proposed formulation. The com-
putational time required to find the static Pareto front was
11.6070s, while the two points of the virtual interpolation
front were found in 0.1930s.

For Example 2, we select a middle point in addition to the
extreme points in the static Pareto front to compose the oper-
ating set Op. The resulting probabilistic operating region is
depicted in Fig. 4. Note that the Pareto front of the pro-
posed formulation gets closer to that of the static formu-
lation. This illustrates that even a small subset of operat-
ing points can render the performance of the probabilistic
method almost equivalent to the performance of the classical
approach. Moreover, as observed above, the range of possi-
bilities for the decision maker to choose from increases dra-
matically by applying the probabilistic approach. The com-
putational time required to find the static Pareto front was
15.6160s, while the three points of the virtual interpolation
front were found in 0.3480s.

For Example 3, we select five points to generate the proba-
bilistic operating region. In this example, the virtual interpo-
lation front is even closer the Pareto front than in Example
2. The results are depicted in Figure 5. Observe that, the
more we increase the number of operating points in Op, the
closer the probabilistic Pareto front gets to the static front.
Naturally, there is a compromise between the cardinality of
the selected set of extreme points and the computational ef-
fort needed to identify those points. It is worth noting that
the proposed examples suggest that a modest number of op-
erating points can result in a performance which closely ap-
proximates that of the original static formulation, while pro-
viding extra flexibility and additional trade-offs for the deci-
sion making process. The computational time required to the
static Pareto front was 9.4340s, while the five points of the

virtual interpolation front were found in 0.4830s.
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Figure 5: Operating Region for Example 3

Observe also that one can assign to the probabilistic operat-
ing set Op the whole classical Pareto-optimal set. Hence, it
is not difficult to see that the proposed probabilistic approach
is a generalization of the static MOP formulation.

For Example 4, we select ten points to generate the proba-
bilistic operating region. The results are depicted in Figure 6.
The blue points form Pareto front and they were divided into
layers to better represent the frontier uncover the virtual in-
terpolation front, which is green, while the operating region
is yellow. Note that the Pareto front of the proposed formu-
lation gets very close to that of the static formulation. The
computational time required to find the static Pareto front
was 28.7020s, while the ten points of the virtual interpola-
tion were found in 4.4490s.

For Example 5, we select ten points to generate the proba-
bilistic operating region. The results are depicted in Figure
7. The computational time required to reach find the static
Pareto front was 101.8310s, while the ten points of the vir-
tual interpolation were found in17.3220s.

6 CONCLUDING REMARKS

This work presents a novel dynamic approach to a class of
static MOP problems. The approach involves a probabilis-
tic selection of the operating point at each discrete operation
period. The objective is to minimize the long term average
multi-dimensional objective vector. The approach is applied
in the case where a set of points in the original MOP Pareto-
optimal region is selected, and one is concerned to selecting
the Pareto-optimal set of probability distributions over the set
of operating points.
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Figure 6: Operating Region for Example 4
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Figure 7: Operating Region for Example 5

The proposed approach can add flexibility to the decision
maker by creating a new, expanded set of virtual operating
points, each corresponding to a given probability distribu-
tion. Moreover, a careful selection of a finite set of operating
points can render the probabilistic Pareto-optimal region al-
most equivalent to the original MOP Pareto front. This limits
the number of operating points, rendering the long term oper-
ation more efficient and specialized, while also maintaining
the performance requirements.

One possible drawback of the method is that, although it
can limit the number of operating points to be found in the
static Pareto front, the cost of finding each such point still
depends on the problem at hand, and one may be forced to
seek approximate solutions in the case of NP-hard and/or
large-scale problems. Future research directions involve con-
trasting the proposed method with purely stochastic formu-
lations, such as multi-objective Markov decision processes,
as well as studying the effect of the proposed formulation
in non-convex MOP problems. A conjecture that remains to
be verified is that the probabilistic Pareto front on the latter

problems can, in fact, dominate some solutions in the static
Pareto front.
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