
APPLYING GLOBAL TIME PETRI NET ANALYSIS ON THE EMBEDDED
SOFTWARE CONTEXT

Leticia Mara Peres∗
lmperes@inf.ufpr.br

Luis Allan Künzle∗
kunzle@inf.ufpr.br

Eduardo Todt∗
todt@inf.ufpr.br

∗Departamento de Informática
Universidade Federal do Paraná

Curitiba, Paraná, Brasil

RESUMO

Aplicação da Análise Global de Redes de Petri Temporais
no Contexto de Software Embarcado
Redes de Petri e suas propriedades algébricas são usadas
para modelar e analisar sistemas envolvendo paralelismo,
concorrência e sincronização. Este artigo apresenta uma
aplicação da técnica de Tempo Global (GTT - global time te-
chnique) que é uma abordagem para construir grafos de clas-
ses de redes de Petri temporais baseada nos tempos relativo e
global. Além da construção deste grafo de classes propomos
uma análise de escalonabilidade do tipo temporal quantita-
tiva para polı́ticas de prioridade fixa e earliest deadline first
(EDF). Propomos que a análise de cenários, ou a duração de
itinerários de comportamento, de um sistema pode ser feita
usando esta técnica.

PALAVRAS-CHAVE: Rede de Petri Temporal, Análise Quan-
titativa, Software Embarcado.

ABSTRACT

This paper presents an application of Global Time technique
(GTT) which is an approach to construct class graphs of
Time Petri nets based on relative and global time. Besides the
constructing of GTT class graph we propose a schedulability

Artigo submetido em 10/03/2011 (Id.: 01294)
Revisado em 11/05/2011, 15/07/2011, 15/08/2011
Aceito sob recomendação do Editor Associado Prof. Carlos Roberto Minussi

analysis of quantitative time type for fixed priority policies
and Earliest Deadline First (EDF). We propose that analysis
of scenarios, or behavior itineraries duration of a system, can
be done using this approach.

KEYWORDS: Time Petri Net, Quantitative Analysis, Em-
bedded Software.

1 INTRODUCTION

Petri nets (PN) (Murata, 1989) and their algebraic properties
are used to model and analyze systems involving parallelism,
concurrency and synchronization. Several extensions of ba-
sic formalism have been proposed in order to increase their
modeling capacity. In this work we are interested in Time
Petri nets (TPN), where quantitative time restrictions can be
considered (Merlin, 1974).

TPN are used in different applications of embedded system
verification, scheduling and synthesis methods. Cortes et al.
(Cortes et al., 2000) define a method of modeling and verifi-
cation of embedded software using PRES+, a type of TPN.
After the modeling, the authors outline a set of PN analy-
sis - reachability, time and behavioral analysis. Regarding
time analysis the authors propose translating PRES+ into hy-
brid automata and using symbolic model checking (Clarke
et al., 1999), a qualitative method, to prove the correctness of
the system. Lime and Roux (Lime and Roux, 2003) propose
SETPN to model real-time systems, especially embedded

610 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011

systems. They present a set of PN design patterns to model
tasks with preemptive scheduling and provide a method using
a polyhedron representation and later difference bound ma-
trix. Yet, they describe observers that give a numeric result
for the computation of response times of tasks. In (Lime and
Roux, 2008), the authors use their scheduling TPN design
patterns of (Lime and Roux, 2003) to model tasks and deal
with Fixed Priority and Earliest Deadline First policies, with
the possibility of using round-robin for tasks with the same
priority. In (Cortes et al., 2000) and (Lime and Roux, 2008)
the nets are translated into linear hybrid automata and timed
properties are verified using the symbolic model checking
Hytech tool (Henzinger et al., 1997).

The prevalent technique in the literature of TPN analy-
sis is based on the graph of state classes (Berthomieu
and Menasche, 1983), (Berthomieu and Diaz, 1991) and
(Berthomieu and Vernadat, 2003). This is an enumerative
method which generates a reachable state space using the
behavior of a TPN. In this method, each class is a graph
node and groups the state set with the same marking, and
each time interval encompasses possible firing instants for
each enabled transition in the class. Each enabled transition
can fire in each class once, generating another class, and this
possible firing is an arc graph linking these two classes. This
method finds the relative time interval during which the sys-
tem remains in a particular class.

Wang et al. at (Wang et al., 2000), propose to find the TPN
global time using a class graph based on (Berthomieu and
Menasche, 1982). The global time corresponds to absolute
time of the accumulation of time since the beginning of net
execution, or initial marking, until the observed class, i.e.,
referring time information to the chaining of events repre-
sented by transitions firing sequences. In this method, the
unique time is calculated with no adjustments for concurrent
enabled transitions.

In this paper we propose an application of the Global Time
Technique (GTT). GTT was proposed by Lima et al. in
(Lima et al., 2005), (Lima et al., 2006), and (Lima et al.,
2008), and is an extension of (Berthomieu and Menasche,
1982) and (Wang et al., 2000) methods, and generates a TPN
class graph with two types of time that are useful and usable
in a Petri net simulation: relative and global time. The nov-
elty of the work presented in this paper is propose an algo-
rithm that handles a k-limited TPN and an application which
makes possible verify the schedulability of real-time embed-
ded software. A k-limited TPN is one that its places can
contain at most k tokens, k ≥ 1. GTT computes global time
information using relative time intervals of (Berthomieu and
Menasche, 1982) and adjusting the obtained time consider-
ing the persistence or not of enabled transitions. GTT han-
dles concurrent events reducing the increase of imprecision

when compared to the simple sum of relative times, due to
adjustments of this technique. The global time information
is correct for both limits of time interval of any class, even
when the net represents concurrency among events (Lima
et al., 2006), (Lima et al., 2008) e (Mattar Junior et al., 2007).

This paper is a revised and extended version of a work pub-
lished in Portuguese at XVIII Congresso Brasileiro de Au-
tomática (CBA2010) proceedings (Peres et al., 2010). It con-
cerns the application of global time TPN on the embedded
software context and is a result of studies about TPN analysis
using interval algebra initiated by (Lima et al., 2005), (Lima
et al., 2006), and (Lima et al., 2008). We use some proce-
dures and calculations defined by (Mattar Junior et al., 2007)
which presented studies about firing sequence global time
analysis of 1-limited TPN.

The remainder of this paper is organized as follows. Sec-
tion 2 defines basic concepts of interval operations, TPN and
class graph. Section 3 establishes GTT, gives an algorithm
for computing the GTT class graph, and presents an example
of its application. Section 4 presents an application of GTT
on the context of embedded software verification, while Sec-
tion 5 concludes the article.

2 BASIC CONCEPTS

The Global Time Technique (GTT) is a TPN analysis based
on operations on numeric intervals. In this section we define
the basic concepts used by GTT.

2.1 Numeric Intervals

Definition 1 (Intervals and Operations) Given two rational
numbers, a and b, such that a ≤ b. We denote [a, b] as the set
{x ∈ Q : a ≤ x ≤ b}, defined as a closed interval from a

to b. An interval [c, d] is denoted as not proper when d < c,
with c and d rationals.

Let a, b, c and d be rational numbers, given the intervals [a, b]
and [c, d], proper or not proper, we define the following op-
erations:

[a, b] + [c, d] = [a + c, b + d]

[a, b]− [c, d] = [max{0, a− d},max{0, b− c}]

[a, b]	 [c, d] = [max{0, a− c},max{0, b− d}]

Since irrational numbers are not computable at real comput-
ers, we must use rational numbers instead of real numbers.

Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011 611

2.2 Time Petri nets

Definition 2 (Time Petri Net) A time Petri net is a tuple
TPN = (P, T, Pre, Pos, e) (Berthomieu and Diaz, 1991),
where:

• P is a finite set of places, P 6= ∅,

• T is a finite set of transitions, T 6= ∅,

• Pre is an weight function of arcs from places to transi-
tions, Pre : (P × T)→ N,

• Pos is an weight function of arcs from transitions to
places, Pos : (T × P)→ N,

• M0 is the initial marking, and

• e : T → (Q+ × (Q+ ∪ {∞})) such as e(t) = [a, b],
where t ∈ T and [a, b] is an interval.

A marking is an assignment of tokens to places that defines
the state of the net. The marking of a place p ∈ P is denoted
M(p), such as M : P → N. The initial marking of a TPN is
denoted by M0.

Definition 3 (Enabled transition) A transition t ∈ T is en-
abled in a marking Mk iff for all p ∈ P , Mk(p) ≥ Pre(p, t).

Definition 4 (Firing) If t is an enabled transition in a mark-
ing Mk−1, then t can fire. The firing of t changes de state
of the net and produces a new marking. The new marking
Mk is given by Mk(p) = Mk−1(p)−Pre(p, t)+Pos(t, p),
for all p ∈ P . The firing of t is denoted by Mk−1[t〉Mk. If
the firing of t is succeeded by one or more transition firings,
we say that this sequence of firings form a firing sequence s.
The firing of s in a marking Mj produces a sequence of new
markings ended by Mk, denoted by Mj [s〉Mk.

A TPN has one static time interval e(t) = [a, b], with a ≤ b,
associated to each transition t ∈ T . The limits a and b rep-
resent, respectively, the earliest and the latest possible firing
time of transition t, counted from the instant when t is en-
abled.

Definition 5 (State class) A state class of a TPN is a tuple
ck = (Mk,Wk), where Mk is the marking that defines de
state of the net and Wk is the time information set associ-
ated with this marking. Wk will be further detailed in the
Definition 14.

We say that a transition t ∈ T is enabled (fires) in a class
ck iff t is enabled (fires) in Mk. When a transition t fires in
a certain class ck−1, at level k − 1, the TPN reaches a new
marking and a new class ck at level k.

Definition 6 (State class graph) The state class graph is a
directed graph S = (C,A) where each node c ∈ C is a state
class and each arc a ∈ A connects one class ck−1, at level
k − 1, to an immediately succeeding class ck. Each arc is
labeled with one transition t ∈ T which is fired in ck−1. The
root node of the class graph is the start class c0, that has the
initial marking M0.

The firing of t also produces a new class ck in the graph S

from the class ck−1 and is denoted by ck−1[t〉ck. We say that
class ck−1 is immediately preceding to ck.

One firing sequence s is reflected in the class graph S. The
succeeded firing of one or more transitions in a TPN, from a
class ck to another class ck+n, is represented by ck[s〉ck−n,
where n ≥ 0 is the sequence size.

Definition 7 (Newly enabled transition) A transition t ∈ T ,
enabled in a certain class ck, is a newly enabled transition in
ck if t satisfies one of following:

• t was not enabled in class ck−1; or

• the firing of t originated the class ck, that is, t fired in
the class ck−1 and it was re-enabled in ck.

Definition 8 (Persistent transition) A transition t ∈ T , en-
abled in a certain class ck, is a persistent transition in ck if t

was enabled in a class ck−1, immediately preceding to ck and
t did not fired in ck−1. Persistent is equivalent to not newly
enabled.

3 GLOBAL TIME TECHNIQUE

Particularly for the Global time technique (GTT), the infor-
mation set Wk of class ck has, for each enabled transition,
two types of time information: relative and global. Rela-
tive time information refers to the accumulated time since the
transition had been enabled until reaches the class ck. Global
time information refers to the accumulated time since the ini-
tial marking, or start class c0, until ck (Lima et al., 2005).
Firstly in this section we define GTT elements which com-
pound relative and global time information and then we re-
define the state class and the class graph. We present also an
algorithm to generate GTT state class graph for a k-limited
TPN and definitions of computing total time for a firing se-
quence and the permanence time in a state.

Definition 9 (Relative time interval) Let rk(ti) be the rela-
tive time interval of a transition ti calculated in a class ck

such that ck−1[tf 〉ck, defined as:

rk(ti) =

{

e(ti) case 1,
rk−1(ti)− rk−1(tf) case 2,

612 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011

where cases 1 and 2 are, respectively:

1. ti is newly enabled in ck;

2. ti is persistent in ck.

The relative time interval rk(ti) of the enabled transition ti
of a class ck is used to identify which transitions are firable
at class ck.

Definition 10 (Firable transition) A transition tf with
rk(tf) = [af , bf] is firable in ck iff tf is enabled in ck and
there is no other transition ti with rk(ti) = [ai, bi] enabled
in ck such that bi < af .

Definition 11 (Persistence coefficient) A persistence adjust-
ment coefficient ack(ti) of an enabled transition ti in a class
ck such that ck−1[tf 〉ck, is defined as:

ack(ti) =















rk−1(ti)	 rk−1(tf) case 1,
ack−1(ti)	 rk−1(tf) case 2,
rk−1(ti)	 ack−1(tf) case 3,
ack−1(ti)	 ack−1(tf) case 4,

where cases 1 to 4 are respectively:

1. ti and tf are both newly enabled in ck−1;

2. ti is persistent and tf is newly enabled, both in ck−1;

3. ti is newly enabled and tf is persistent, both in ck−1;

4. ti and tf are both persistent in ck−1.

The persistence adjustment coefficient ack(ti) is used to ad-
just the computing of global time and prevents the increase
of imprecision, as proved by (Mattar Junior et al., 2007).

Definition 12 (Global time interval) A global time interval
gk(ti) of firing of a firable transition ti in a class ck such that
ck−1[tf 〉ck is:

gk(ti) =







e(ti) case 1,
gk−1(tf) + rk(ti) case 2,
gk−1(tf) + ack(ti) case 3,

where cases 1 to 3 are respectively:

1. k = 0;

2. k 6= 0 and ti is newly enabled in ck;

3. k 6= 0 and ti is persistent in ck.

The global time interval gk(tf) of firing of a transition tf in
a class ck is a time interval counted from the initial marking
until the firing instant of tf in the class ck.

However, in order to take a conservative character, supposing
the firing of all firable transitions, it is necessary to adjust the
interval upper bound of gk(ti).

Definition 13 (Upper bound adjustment) Let tf be the fired
transition in a class ck such that ck[tf 〉ck+1. The upper
bound of global time interval gk(tf) = [af , bf] of the fired
transition tf , must be adjusted by the lowest upper bound of
intervals calculated to all ti in the class ck, generating a new
gk(tf), such as:

gk(tf) = [af , b],

where b = min{bi | gk(ti) = [ai, bi], ∀ti firable in ck}.

Definition 14 (GTT state class) A GTT state class ck

of a TPN , is a tuple ck = (Mk,Wk), with Wk =
(H,E, F,R,G), where:

• Mk is the marking of ck;

• H is the enabled transition set in ck;

• E is one tuple 〈E0, E1, E2〉 which contains persistence
information of transitions of class ck where: E0 is the
set of newly enabled transition in ck, E1 is the set of
persistent transitions in ck that was newly enabled in
ck−1, and E2 is the set of persistent transition in the
classes ck that was also persistent in ck−1;

• F is the firable transition set in ck;

• R is the relative domain set which contains relative time
intervals rk(ti) of all enabled transitions ti in ck.

• G is one tuple 〈ack, gk〉which corresponds to the global
time domain of ck, where ack(ti) is the persistence ad-
justment coefficient of all persistent transitions ti in ck

and gk(tj) is the global time interval of all firable tran-
sitions tj in ck.

Definition 15 (GTT state class graph) The GTT state class
graph is a state class graph where each node is a GTT state
class and each arc is labeled with one fired transition, as in
the Definition 6.

3.1 The class graph algorithm

The following algorithm builds a class graph according to
GTT for a k-limited TPN.

Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011 613

3.1.1 The input data

• The net structure, represented by one input incidence
matrix pre = [Pre(p, t), p ∈ P, t ∈ T] and one output
incidence matrix pos = [Pos(t, p), p ∈ P, t ∈ T];

• The static time information e(t), for all t ∈ T , repre-
sented by one array e with size |T |;

• The initial marking of the net represented by one array
M0 with size |P |.

3.1.2 The body

0) define k = 0;

Starting construction of class ck:

1) determine the net marking Mk: if k = 0, Mk ← M0;
else Mk is already determined by the firing of transition
tf at step 7 from previous cycle;

2) determine the set H of enabled transitions ti from Mk,
according to the Definition 3;

3) determine the 〈E0, E1, E2〉 tuple, according to the Def-
inition 14;

4) compute the set R of relative time intervals rk(ti) ∀ti ∈
H , according to the Definition 9;

5) determine the set F of firable transitions ti comparing
elements in R, according to the Definition 10;

6) determine the G tuple, computing: a) ack(ti), ∀ti ∈
{E1∪E2}, according to the Definition 11; and b) gk(ti),
∀ti ∈ F , according to the Definition 12;

Firing of all ti ∈ F of class ck:

7) ∀ti ∈ F execute all following steps: a) adjust interval
gk(ti), according to the Definition 13 being tf = ti
; b) create one successor class c with level k + 1 and
one arc connecting the class ck with the new successor
class ck+1, and label the arc with ti; c) update the new
marking Mk+1 for the TPN, according to the Definition
4; and d) for all new successor classes with level k + 1,
assign the new global time gk+1 = gk(ti);

8) increase k ← k + 1 and ∀ti ∈ F : tf ← ti and execute
steps 1 to 8;

3.1.3 The end

The algorithm is executed until all firable transitions in all
classes have been fired.

3.2 Global time for a firing sequence

The global time of a firing sequence s of c0[s〉ck, according
to the Definition 4, is obtained during construction of GTT
class graph and is the resulting global time interval gk−1(tf),
being tf the last transition fired to reach class ck, that is,
ck−1[tf 〉ck.

3.3 Permanence time in a class

The permanence time in a class refers to the minimum and
maximum time that the system, represented by the TPN, re-
mains in the state represented by the class.

Definition 16 (Permanence time in a class) We consider that
the firing of all firable transitions are mandatory, i.e., each
firable transition must be fired until its upper bound of time
interval has reached. The permanence time of a net in a cer-
tain reachable class ck is given by:

icck
= [a, b]

where a = min{ai | rk(ti) = [ai, bi]} and b =
min{bi | rk(ti) = [ai, bi]}, ∀ti firable in ck.

4 APPLICATION

We propose the application of GTT as an analytical method
for verifying the schedulability of real-time embedded soft-
ware. We based this application on the works of model-
checking verification of Lime and Roux of 2003 (Lime and
Roux, 2003) and 2008 (Lime and Roux, 2008). This last
work defines a special TPN with a scheduling layer and,
among other things, allows mapping each place of Petri net
to an embedded software task in order to verify schedulabil-
ity. We propose to use parts of this layer to model a TPN
and, instead of model-checking qualitative analysis, to use
GTT quantitative analysis. (Lime and Roux, 2003) proposed
associate some kind of embedded software tasks to transi-
tions and places of the net. We propose now to use the struc-
tures of this work as design patterns on the context of our
analytical method. Design patterns are general and reusable
descriptions of problems and solutions of TPN models of
some kind of embedded software tasks (Naedele and Jan-
neck, 1998). Then, from the task models in TPN, we gen-
erate the GTT state class graph and analyze firing sequences
that satisfy “Earliest Deadline First” and “Fixed Priority”
scheduling policies in order to verify schedulability.

614 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011

4.1 Mapping between system tasks and
TPN

Given, according to (Lime and Roux, 2008) and definitions
of section 2:

• τ ∈ Tasks, being Tasks the set of tasks of the embed-
ded system, where there is no task migration between
processors.

• Sched:Procs 7→ {FP,EDF} maps a processor to a
scheduling policy, being FP “Fixed Priority” and EDF
“Earliest Deadline First” ;

• Π: Tasks 7→ Procs maps a task to its processor;

• $: Tasks 7→ N, for Sched(Π(τ)) = FP , gives the
priority of the task on the processor;

• δ: Tasks 7→ (Q+ × (Q+ ∪ {∞})), for Sched(Π(τ)) =
EDF , gives the deadline interval of the task relative to
its activation time;

• γ : P 7→ Tasks ∪{φ} maps each place of the TPN to
a task, where φ denotes that the place is not mapped to
any real task.

For each transition t ∈ T , there is at most one place p such
that p ∈ Pre(t) and γ(p) 6= φ. If ∀p ∈ Pre(t), γ(p) = φ,
then t is not related to any real task and t is part of φ, denoted
by γ(t) = φ. Otherwise, for each transition t, t is part of the
task τ , denoted t ∈ τ , if one of its input places is mapped to
τ : t ∈ τ ⇔ ∃p ∈ Pre(t), such that γ(p) = τ . So, γ(t) is
the task such that t ∈ τ (Lime and Roux, 2008).

Each task τ is modeled by a subnet of the TPN composed
of places mapped to τ by γ and transitions t with static time
e(t), which are parts of τ . At most one instance of each
task is active at a given instant, which is expressed by the
restriction that at most one place mapped to τ by γ is marked
at a given instant (Lime and Roux, 2008).

At Figures 1, 2 and 3 we present examples of design pat-
terns to illustrate how Petri nets are modeled. These figures
present some synchronization service modeling of embedded
software tasks and are 1-limited Petri nets. These examples
are shown just to illustrate the possibility of application of
real time scheduling policies using TPN. More details can be
found in (Lime and Roux, 2003).

We propose, after the TPN modeling, to generate a GTT state
class graph, as presented at section 3.

τ τ1 2

p1

p2

t1
[2,3]

t2
[1,2]

p3

[1,4]
t3

p4

[3,5]
t4

Figure 1: TPN with two concurrent tasks on one processor
(Lime and Roux, 2003).

t1
[1,2]

p1

τ1

(c)

τ1

[1,1]
t0

(b)

t2
[3,3]

p2

p1

p3

t1
[1,2]

p0

τ1

(a)

p0

[3,3]
t0

p2

t1
[1,2]

p1

Figure 2: TPN of activation schemata: (a) periodic activa-
tion schema, (b) delayed periodic activation schema, and (c)
cyclic activation schema (Lime and Roux, 2003).

4.2 Mapping between scheduling policies
and the GTT graph

After to create a GTT state class graph, it is necessary to enu-
merate the graph, i.e. generate paths from the graph where
a path is a firing sequence. We propose to enumerate paths
according some criterion.

Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011 615

τ τ
τ τ21

1 2sync

sync

(a)
(b)

p1

p4

p9p8

p5

p2

p1

p4

p7

t4
[3,5]

t2
[1,2]

t3
[1,4][2,3]

t1

p7

p6
p3

t1
[2,3]

p2

t2
[1,2]

p6

t4
[3,5]

t3
[1,4]

p5

p3

Figure 3: TPN of synchronization: (a) model for memo-
rized events and (b) model for shared resources using a
semaphore (based on Lime and Roux, 2003).

We have established scheduling policy based criteria using
“Earliest Deadline First” and “Fixed Priority” scheduling
policies. For Sched:Procs 7→ {CE}, where CE is “Cyclic
Executive”, the TPN model represents only one task which
is typically realized as an infinite loop in main()(Lime and
Roux, 2003), as shown in the Figure 2(c). Because CE has
not a specific criterion in order to be satisfied, this policy is
achieved only by modeling TPN and it is not necessary to
formalize this function in relation to the path generation of
the GTT state class graph.

4.2.1 Fixed Priority (Sched(Π(γ(t))) = FP)

The function $: Tasks 7→ N guides the enumeration of firing
sequence. The firing sequence consists of firable transitions
tf and the priorities of task executions associated to transi-
tions ti and, for the function $, tf = ti, for all ti with highest
priority. In the case of tasks with the same priority at some
point, one of these criterion can guide the enumeration of the
firing sequence among the processes with the same priority:
a FIFO choice; an earliest deadline first considering the static
time e(ti) for each transition ti, as we present in the follow-
ing section; or a random choice.

At the end of this enumeration, we already have the total time
for a complete or partial firing sequence according to GTT,
as presented in 3.2.

4.2.2 Earliest Deadline First
(Sched(Π(γ(t))) = EDF)

Another type of firing sequence can be enumerated on class
graph, using the Earliest Deadline First scheduling policy.

Then, the function δ: Tasks 7→ (Q+ × (Q+ ∪ {∞})) guides
this enumeration. Our criterion is to choose the transition
which has the lowest deadline given by δ(τ) as following.

Let δ(τ) of a transition ti calculated in a class ck such that
ck−1[tf > ck, and defined as: δ(τ) = LFT (rk(ti)). The
latest firing time (LFT) of the time rk(ti) for each transition
ti is the guide for firing sequence enumeration.

As the FP policy, at the end of enumeration already has the
total time for a firing sequence, as presented in 3.2.

4.3 Examples

The Figures 4, 5, 6, and 7 refer to GTT state class graph of the
Figures 1, 2(a), 2(b), and 3(b), respectively. The format of
GTT state class graph presented in the Figures 4, 5, 6, and 7
is: each node is a rectangle and represents one class ck ∈ C.
Each arc is a transition fired in the class ck and generated
the successor class ck+1. Each node has a data header and
lines with some elements of tuple Wk. The header has the
following data, separeted by colons: the class name in the
format Ck n, where k is the level and n is a class identifier,
and the class global time in the format gk n, where k is the
level and n is a class identifier. The next lines of node present
the time information of all enabled transition ti: the name
of transition ti; its relative time rk(ti); and its global time
gk(ti). Each arc is labeled with one fired transition which is
firable in the class ck. In this article, our graphs are generated
until the fifth level of classes.

Considering the TPN of the Figure 1. The task τ1 has pri-
ority $ = 1 and one preemption point. The task τ2 has
also one preemption point, but priority $ = 2. Then,
$(t1) = 1, $(t2) = 1, $(t3) = 2 and $(t4) = 2. The
TPN class graph according to GTT is presented in the Fig-
ure 4. For Sched(Π(τ)) = FP , the firing sequence is:
t3, t1, t4, t2. It is interesting to note that, according to the
Definition 10, t1 is the only one firable in the class C1 2,
even t4 being enable. The global time of this sequence is
g4 12 = [4, 5]. For Sched(Π(τ)) = EDF , the firing se-
quence can be t1, t2, t3, t4, with global time g4 10 = [6, 9],
or t1, t3, t2, t4, with global time g4 11 = [5, 9].

In the Figure 2(a), the TPN represents one task τ1 has pri-
ority $ = 3 and $(t0) = 3, $(t1) = 3. The correspond-
ing GTT graph is presented in the Figure 5. There is one
possible firing sequence, for both Sched(Π(τ)) = FP and
Sched(Π(τ)) = EDF , because in the classes C1 1 and
C3 3 only t1 is firable when t0 and t1 are enabled.

The same considerations of the previous example can be
made about the Figure 2(b): the TPN represents one task τ1

has priority $ = 3 and $(t0) = 3, $(t1) = 3. The corre-

616 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011

C0_0, g0_0=[0,0]
t1)r=[2,3],g=[2,3]
t3)r=[1,4],g=[1,3]

t1

t3
t3)r=[0,2],g=[2,4]

C1_1, g1_1=[2,3]
t2)r=[1,2],g=[3,4]

C1_2, g1_2=[1,3]
t4)r=[3,5],g=[0,0]
t1)r=[0,2],g=[2,3]

t2

t3

t1

t3)r=[0,1],g=[3,4]

t4)r=[3,5],g=[0,0]
t2)r=[0,2],g=[3,5]

t4)r=[1,5],g=[4,5]
t2)r=[1,2],g=[3,5]

C2_3, g2_3=[3,4]

C2_4, g2_4=[2,4]

C2_5, g2_5=[2,3]

t3

t2

t4

t2

t4

t4

t2

t4

t4)r=[3,5],g=[6,9]

t4)r=[1,5],g=[5,9]

t2)r=[0,1],g=[4,5]

t4)r=[0,4],g=[4,8]

C3_6, g3_6=[3,4]

C3_7, g3_7=[3,5]

C3_8, g3_8=[4,5]

C3_9, g3_9=[3,5]

C4_10, g4_10=[6,9]

C4_11, g4_11=[5,9]

C4_12, g4_12=[4,5]

C4_13, g4_13=[4,8]

Figure 4: GTT state class graph, with 5 levels, of TPN in the Figure 1.

t0C0_0, g0_0=[0,0]
t0)r=[3,3],g=[3,3]

t1
t0)t=[3,3],g=[0,0]
t1)r=[1,2],g=[4,5]

C1_1, g1_1=[3,3]

t0)r=[1,2],g=[6,6]
C2_2, g2_2=[4,5] t0 t1

C3_3, g3_3=[6,6]
t0)r=[3,3],g=[0,0]
t1)r=[1,2],g=[7,8]

C4_4, g4_4=[7,8]

Figure 5: GTT state class graph, with 5 levels, of TPN in the Figure 2(a).

C4_4, g4_4=[5,6]t1
t1)r=[1,2],g=[5,6]
t2)r=[3,3],g=[0,0]t2)r=[1,2],g=[4,4]t1)r=[1,2],g=[2,3]

t2)r=[3,3],g=[0,0]t0)r=[1,1],g=[1,1]
C0_0, g0_0=[0,0] t0 C1_1, g1_1=[1,1] t1 C2_2, g2_2=[2,3] C3_3, g3_3=[4,4]t2

Figure 6: GTT state class graph, with 5 levels, of TPN in the Figure 2(b).

C0_0, g0_0=[0,0]
t1)r=[2,3],g=[2,3]
t3)r=[1,4],g=[1,3]

t2)r=[1,2],g=[3,5]

C1_2, g1_2=[1,3]
t4)r=[3,5],g=[4,8]

t3)r=[1,4],g=[4,9]

C2_4, g2_4=[4,8]
t1)r=[2,3],g=[6,11]

C3_5, g3_5=[4,9]
t4)r=[3,5],g=[7,14]

C3_6, g3_6=[6,11]
t2)r=[1,2],g=[7,13] C4_8, g4_8=[7,13]

C4_7, g4_7=[7,14]C2_3, g2_3=[3,5]C1_1, g1_1=[2,3] t4

t2
t3

t3

t1

t1

t4

t2

Figure 7: GTT state class graph, with 5 levels, of TPN in the Figure 3(b).

sponding GTT graph is presented in the Figure 6 and there is
one possible firing sequence, for both Sched(Π(τ)) = FP

and Sched(Π(τ)) = EDF , and also occurs in the classes
C1 1 and C3 3 only t1 is firable when t1 and t2 are enabled.

For the TPN of the Figure 3(b): the task τ1 has prior-
ity $ = 1 and one preemption point controlled by the
semaphore (place p5). The task τ2 has also one preemption
point, but priority $ = 2. Then, $(t1) = 1, $(t2) = 1,
$(t3) = 2 and $(t4) = 2. The corresponding GTT graph is
presented in the Figure 7. For both Sched(Π(τ)) = FP and
Sched(Π(τ)) = EDF , the firing sequence is: t3, t4, t1, t2
with the global time of this sequence g4 8 = [7, 13].

5 CONCLUSIONS

This paper presents the results of research whose main ob-
jective is to apply the Global Time Technique (GTT) analy-
sis, based on works (Lima et al., 2005), (Lima et al., 2006),
(Lima et al., 2008), and (Mattar Junior et al., 2007) in the
verification of time constraints. We had chosen TPN be-

cause sequencing, timing, communication, and competition
properties in the system can be represented and verified in
this model. The construction of class graph (Berthomieu
and Menasche, 1982), and also GTT state class graph, of a
TPN allows the verification of several net properties, such
as reachability and transitions firing sequences. GTT avoids
the increase of imprecision in time information when ana-
lyzing the time of transition firing sequences (Mattar Junior
et al., 2007) which represent the system behavior itineraries.
This happens when the modeled system presents many con-
current or persistent transitions. Also, GTT state classes de-
scribe intervals in both global, based on the simulation be-
ginning, and relative, based on the class entry moment, time
information. This increases the analysis power of our ap-
proach.

The essence of this approach is to verify scheduling by an-
alyzing scenarios generated using GTT from TPN. We ap-
ply and exemplify the technique by using parts of this layer
to model a TPN and, instead of model checking qualitative
analysis, to use GTT quantitative analysis.

Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011 617

We apply the technique by using some design patterns of
TPN that represent a set of tasks and their interactions in
embedded software. There are patterns of this kind in the
literature representing a set of tasks and their interactions as
proposed by (Lime and Roux, 2003) and may be tasks on
one processor, cyclic tasks synchronized via a semaphore,
semaphore for mutual exclusion and CAN bus access.

We consider this approach useful in embedded software ver-
ification of analysis of scheduling and time properties. The
using of design patterns for the representation of tasks and
their communication permits a rapid modeling that can be
further evolved until software synthesis. Our approach sug-
gests that the scheduling according to Fixed Priority or Ear-
liest Deadline First may be done using GTT and its class
graph. This application returns a time interval that can repre-
sent the release or start time of execution, as first value, and
the deadline time, as second value.

The main contribution of our work is to apply the global
time technique to verify real-time embedded systems based
on tasks with fixed priority and earliest deadline first. The
main limitation of the proposed approach is the endless enu-
meration of classes in cyclic nets, according to the indefinite
increase of the global time. For the application in the context
of verification, this problem is currently treated by limiting
the number of execution cycles of tasks, reflected by the class
levels during the generation of graph. Even with this limita-
tion, the analysis is still useful inasmuch it corresponds to
the repetition of the initial critical instant for real-time sys-
tems based on cyclic tasks. Yet, in order to overcome this
limitation, we are working on the concept of unfolding of
(McMillan, 1995) and (Esparza et al., 1996) and equivalent
classes to perform reachability and firing sequence analysis.
An equivalent class groups classes on which global time is
increased by a constant interval. This interval is the duration
of a regular cycle in the net.

6 ACKNOWLEDGMENTS

This work was supported by CNPq and CAPES, Brazil.

REFERENCES

Berthomieu, B. and Diaz, M. (1991). Modeling and verifi-
cation of time dependent systems using time Petri nets,
IEEE Trans. Softw. Eng. 17(3): 259–273.

Berthomieu, B. and Menasche, M. (1982). A state enumer-
ation approach for analyzing time petri nets, 3rd Eu-
ropean Workshop on Applications and Theory of Petri
Nets, Varenna, Italy.

Berthomieu, B. and Menasche, M. (1983). An enumerative

approach for analyzing time petri nets, IFIP 9th World
Computer Congress, Vol. 9, Paris, pp. 41–46.

Berthomieu, B. and Vernadat, F. (2003). State class construc-
tion for branching analysis of time petri nets, Proceed-
ings of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’2003), Wasaw, Poland.

Clarke, E. M., Grunberg, O. and Peled, D. (1999). Model
checking, The MIT Press, Cambridge, England.

Cortes, L. A., Eles, P. and Peng, Z. (2000). Verification of
embedded systems using a Petri net based representa-
tion, ISSS ’00: Proceedings of the 13th international
symposium on System synthesis, IEEE Computer Soci-
ety, Washington, DC, USA, pp. 149–155.

Esparza, J., Romer, S. and Vogler, W. (1996). An improve-
ment of McMillan’s unfolding algorithm, Tools and
Algorithms for Construction and Analysis of Systems,
pp. 87–106.
URL: citeseer.ist.psu.edu/article/esparza96improvement.html

Henzinger, T. A., Ho, P.-H. and Wong-toi, H. (1997). Hytech:
A model checker for hybrid systems, Software Tools for
Technology Transfer 1: 460–463.

Lima, E. A., Lüders, R. and Künzle, L. A. (2005). Análise de
redes de petri temporais usando tempo global, In: VII
Simpósio Brasileiro de Automação Inteligente - SBAI.

Lima, E. A., Lüders, R. and Künzle, L. A. (2006). Interval
analysis of time Petri nets, In: 4th CESA Multiconfer-
ence 4th CESA Multiconference on Computational En-
gineering in Systems Applications, Beijing - China.

Lima, E. A., Lüders, R. and Künzle, L. A. (2008). Uma
abordagem intervalar para a caracterização de inter-
valos de disparo em redes de petri temporais, SBA
Controle & Automação 19(4): 379. in Portuguese,
http://dx.doi.org/10.1590/S0103-17592008000400002.

Lime, D. and Roux, O. H. (2003). Expressiveness and analy-
sis of scheduling extended time Petrinets, 5th IFAC Int.
Conf. on Fieldbus Systems and Applications,(FET’03),
Elsevier Science, Aveiro, Portugal, pp. 193–202.

Lime, D. and Roux, O. H. (2008). Formal verification of
real-time systems with preemptive scheduling, Journal
of Real-Time Systems 41(2): 118–151.

Mattar Junior, N., Künzle, L. A., Silva, F. and Castilho, M.
(2007). Análise da duração de seqüências de disparos
de transições em redes de Petri temporais, Anais do
SBAI 2007 - VIII Simpósio Brasileiro de Automação In-
teligente, Florianópolis.

618 Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011

McMillan, K. L. (1995). A technique of state space search
based on unfolding, Formal Methods in System Design:
An International Journal 6(1): 45?65.

Merlin, P. (1974). A Study of Recoverability of Computer
Systems, PhD thesis, University of California, Irvine.

Murata, T. (1989). Petri nets: Properties, analysis and appli-
cations, Proceedings of the IEEE 77(4): 541–580.

Naedele, M. and Janneck, J. W. (1998). Design patterns
in petri net system modeling, 4th IEEE International
Conference on Engineering Complex Computer Sys-
tems (ICECCS’98), Monterey, California.

Peres, L. M., Künzle, L. A. and Todt, E. (2010). Aplicação da
análise global de redes de petri temporais no contexto
de software embarcado, In: XVIII Congresso Brasileiro
de Automática (CBA2010), Bonito, Brazil.

Wang, J., Deng, Y. and Xu, G. (2000). Reachability analysis
of real-time systems using time petri nets, IEEE Trans.
on Systems, Man and Cybernetics-Part B : Cybernetics
.

Revista Controle & Automação/Vol.22 no.6/Novembro e Dezembro 2011 619

