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RESUMO

Arquitetura de hardware compacta e eficiente para redes
neurais artificiais do tipo múltiplas camadas
Em termos computacionais, uma rede neural artificial (RNA)
pode ser implementada em software ou em hardware, ou
ainda de maneira híbrida, combinando ambos os recursos. O
presente trabalho propõe uma arquitetura de hardware para a
computação de uma rede neural do tipo perceptron com múl-
tiplas camadas (MLP). Soluções em hardware tendem a ser
mais eficientes do que soluções em software. O projeto em
questão, além de explorar fortemente o paralelismo das redes
neurais, permite alterações do número de entradas, número
de camadas e de neurônios por camada, de modo que diversas
aplicações de RNAs possam ser executadas no hardware pro-
posto. Visando a uma redução de tempo do processamento
aritmético, um número real é aproximado por uma fração de
inteiros. Dessa forma, as operações aritméticas limitam-se a
operações inteiras, executadas por circuitos combinacionais.
Uma simples máquina de estados é demandada para contro-
lar somas e produtos de frações. A função de ativação usada
neste projeto é a sigmóide. Essa função é aproximada me-
diante o uso de polinômios, cujas operações são regidas por
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somas e produtos. Um teorema é introduzido e provado, per-
mitindo a fundamentação da estratégia de cálculo da função
de ativação. Dessa forma, reaproveita-se o circuito aritmé-
tico da soma ponderada para também computar a sigmóide.
Essa re-utilização dos recursos levou a uma redução drás-
tica de área total de circuito. Após modelagem e simula-
ção para validação do bom funcionamento, a arquitetura pro-
posta foi sintetizada utilizando recursos reconfiguráveis, do
tipo FPGA. Os resultados são promissores.

PALAVRAS-CHAVE: Redes neurais artificiais, hardware para
redes neurais, sigmóide, paralelismo, FPGA.

ABSTRACT

There are several neural network implementations using ei-
ther software, hardware-based or a hardware/software co-
design. This work proposes a hardware architecture to im-
plement an artificial neural network (ANN), whose topol-
ogy is the multilayer perceptron (MLP). In this paper, we
explore the parallelism of neural networks and allow on-the-
fly changes of the number of inputs, number of layers and
number of neurons per layer of the net. This reconfigurabil-
ity characteristic permits that any application of ANNs may
be implemented using the proposed hardware. In order to re-
duce the processing time that is spent in arithmetic computa-
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tion, a real number is represented using a fraction of integers.
In this way, the arithmetics is limited to integer operations,
performed by fast combinational circuits. A simple state ma-
chine is required to control sums and products of fractions.
Sigmoid is used as the activation function in the proposed
implementation. It is approximated by polynomials, whose
underlying computation requires only sums and products. A
theorem is introduced and proven so as to cover the arith-
metic strategy of the computation of the activation function.
Thus, the arithmetic circuitry used to implement the neuron
weighted sum is reused for computing the sigmoid. this re-
source sharing decreased drastically the total area of the sys-
tem. After modeling and simulation for functionality vali-
dation, the proposed architecture synthesized using reconfig-
urable hardware. The results are promising.

KEYWORDS: Artificial neural networks, hardware for neural
networks, sigmoid, parallelism, FPGA.

1 INTRODUCTION

An artificial neural network (ANN) is an attractive tool for
solving problems such as pattern recognition, generaliza-
tion, prediction, function approximation, optimization and
non–linear system behavior mapping. When dealing with
an ANN implementation, systems based on hardware are
usually faster than software alternatives (Zurada, 1992; Ro-
jas, 2010; Zhu and Sutton, 2003; Dias et.al, 2004; Omondi
and Rajapakse, 2008).

When a particular task does not require so much speed, a
software-based neural network system can be sufficient and
satisfactory in running the task, through a PC or a general-
purpose processor. ANN systems based on software do not
demand much design effort. On the other hand, ANNs pro-
vide an adequate research field for applying the parallel com-
putation and, of course, this parallelism can be best explored
in a hardware-based implementation (Chen, 2003; Omondi
and Rajapakse, 2008). So, a hardware architecture can be
devised in order to use the massive parallelism provided in
the neuron–layer computation. Circuit components can be
designed and adequately mapped to exploit details from both
the arithmetic computation and control process.

The Hardware designed, in this work, can be used by any
neural network applications. It supports ANNs with different
number of layers, neurons per layer and inputs. This is one
of the proposed hardware main features: flexibility through
and on-the-fly reconfigurability. To perform a multilayer per-
ceptron neural network (MLP), the hardware requires the fol-
lowing parameters:

1. The number of inputs of the network. Let imax be this
number;

2. The number of layers of the network. Let lmax be this
number;

3. The number of neurons per layer. Let ni be this number,
where i represents the ith layer: i = 1, 2, . . . , lmax;

4. If at least one neuron of a certain layer is going to op-
erate with a bias, parameter bias of such layer must be
on.

A neural network usually has more than one layer. Nev-
ertheless, the proposed hardware provides only one single
physical layer, a hardware layer, which performs the entire
computation due to all the layers of the ANN by reusing the
neurons of this unique physical layer. In this context, the
neural network layers are named virtual layers. Note that
this is done without loss of performance as the computation
due to the ANN layers are data-dependent, and thus need to
be executed sequentially. This strategy reduces the designed
circuit area. Note that there exists an overhead due to the re-
quired control to use a single physical layer. However, the
time spent is minimal and so has a very little impact on the
overall performance of ANN hardware. The time spent com-
puting the weighted sum and activation function is far longer
than that spent controlling the layers computation. Moreover,
the neurons of the physical layer operate in parallel to per-
form the required computation. For instance, weighted sums
are computed by all hardware neurons at the same time, and
so is the case of the computation of the activation function.
Hence, the overall processing time of the ANN is also re-
duced.

Whenever a digital hardware is designed with some simi-
lar circuit blocks, it reveals a feature which is very attrac-
tive to an implementation in Field Programmable Gate Array
(Wolf, 2004). Since all hardware neurons are digital circuits
that are literally equal, the synthesis of the hardware layer in
a FPGA is easily and best achieved.

In this work, a real number is represented as a fraction of in-
tegers (Santi-Jones and Gu, 2008). Floating-point represen-
tation based on the IEEE-754 standard (Tanenbaum, 2007)
is not used here. Mathematic operations, such as sums and
multiplications, using floating-point numbers require specific
routines and, in terms of hardware design, a circuit that needs
very large silicon area to be implemented. Also, long com-
puting time is also demanded (Nedjah et al., 2008).

This work aims at optimizing arithmetic computation for
compact yet efficient implementation of ANNs. A sum or
multiplication of two fractions of integers can be split into
simple operations operating over integer numbers. Integer-
based operations are achieved using combinational circuits
(Uyemura, 2002). Thus, a less-complex yet more efficient
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hardware is used and a simple finite state machine would rule
those integer operations.

A neuron weighted sum is a set of sums and multiplications
of fractions. The activation function used in this work is the
logistic sigmoid, which is approximated by quadratic poly-
nomials. These are derived from a curve-fitting method: least
mean squares. This is done, in contrast with using a lookup
table, which is known to compromise the neuron rendered re-
sult. The quadratic polynomial-based approximation yields
a far more precise result.

Provided that the sigmoid is approximated by second-degree
polynomials, only sums and multiplications are needed to
get the final result. Thereby, the circuit, once designed to
compute weighted sums, can be reused for computing the
sigmoid function, without extra effort or cost. This strategy
spared unnecessary circuit, which lead to area extension and
motivated by increasing the precision of the neuron rendered
results (Martins et al., 2009).

This paper is organized as follows: First, in Section 3, we
describe the data representation used in this design as well
most arithmetic operations. Then, in Section 4, we describe
the sigmoid computation. Subsequently, in Section 5, the
overall hardware architecture and controllers are presented.
Thereafter, in Section 5.1, The hardware neuron layer is de-
picted and discussed. Next, in Section 5.1.1, we show and
comment on the neuron circuit design. After that, in Section
6, we report some simulation and synthesis result and discuss
them. Finally, in Section 7, we draw some conclusion about
the reported work and point out some future directions and
improvements.

2 RELATED WORK

Research in the area of neural networks have been ongo-
ing for over two decades now and hence the are many
related work published. There are many work surveys
published (Moerland and Fiesler, 1997; Lindsey and Lind-
blad, 1994; Rojas, 2010). In (Zhang and Pal, 2002.), the au-
thors report on an efficient systolic implementation of ANNs.
In (Kung, 1988; Kung and Hwang, 1989), the authors de-
scribe a novel scheme for designing special purpose systolic
ring architectures to simulate feed forward stage is artificial
neural networks. In (Kung, 1988), the authors present in-
teresting results on implementing the back propagation al-
gorithm on CMU Warp. In (Ferrucci, 1994), the author de-
scribes a multiple chip implementation of ANNs, using basic
building blocs, such as multipliers and adders. In (Nedjah
et al., 2009), the authors also take advantages of MAC (mul-
tiply and Accumulate) hard cores implemented into the fab-
rics of the FPGA to implement efficiently sums and prod-
ucts that are necessary in the ANN underlying computa-

tions. In (Beuchat et. al., 1998), the authors developed
an FPGA platform, called RENCO - a REconfigurable Net-
work COmputer. In (Bade and Hutchings, 1994; Nedjah and
Mourelle, 2007), the authors report an implementation of
stochastic neural networks based on FPGAs. Both imple-
mentations result in a very compact circuit. In (Zhang et.
al., 1990), the author presents an efficient implementation of
the back propagation algorithm on the connection machine
CM-2. In (Botros and Abdul-Aziz, 1994), the author intro-
duce a system for feed forward recall phase and implement
it on an FPGA. In (Linde et. al., 1992), the authors describe
REMAP which is an implementation of whole neural com-
puter using only FPGAs. In (Gadea et. al., 2000), the au-
thors report on a pipelined implementation of an on-line back
propagation network using FPGA. In (Canas, et al., 2008),
the authors propose a hardware implementation of ANNs,
where the activation function is discretized and stored in a
lookup table.

Many analog hardware implementations of ANNs have also
been reported in the literature. In general, the implementa-
tion are very fast, dense and low-power when compared to
digital ones, but they come along with precision, data stor-
age, robustness and learning problems, as shown in (Holt and
Baker, 1991; Nedjah et al., 2011; Choi et. al., 1996). It is an
expensive and not flexible solution, as any ASIC (Montalvo
et. al., 1997).

3 NUMERIC REPRESENTATION

A neural network operates with real numbers. Fixed–point
representation implies a great accuracy loss. Floating–point
notation (IEEE-745) offers good precision, but requires a
considerable silicon area and a considerable time for arith-
metic computing.

Searching for speed and circuit area trade-off, the alternative
chosen to represent a real number was the Fractional Fixed
Point, where a Fraction of integers is used to represent a real
number (Santi-Jones and Gu, 2008). This model is depicted
in Figure 1, showing the binary structure of a general frac-
tion. This piece of data has 33 bits. 17th bit of the least
significant bits is for the algebraic sign of the fraction.

Numerator (
N
)
 Denominator (
D
)


15..0
16
32..17


17 bits
16 bits


Sign Bit


N


D


Figure 1: Binary representation of a fraction
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A real float number converted to a fraction is shown in Eq. 1.
Such fraction in its binary structure is also shown in Figure
2.

−0, 003177124702144560 7→
12

−3777
(1)

N

a
 
= 12
 D


a

 = 
−
3777


17 bits
16 bits


Sign Bit


0000000000001100
 0000111011000001
1


Figure 2: Example of number represented using a fraction

Regarding a and b real numbers, Equations 2, 3 and 4 display
most of the arithmetic operations performed by the hardware.
Neuron weighted sum and sigmoid computing are based on
sums or subtractions and multiplications of fractions.

a + b 7−→
Na

Da

+
Nb

Db

=
Na ×Db + Da ×Nb

Da ×Db

(2)

a− b 7−→
Na

Da

−
Nb

Db

=
Na ×Db −Da ×Nb

Da ×Db

(3)

a× b 7−→
Na

Da

×
Nb

Db

=
Na ×Nb

Da ×Db

(4)

There is an advantage of using fractions: a sum or a mul-
tiplication of two fractions is achieved through a mere se-
quence of integer operations, which require simple combina-
tional circuits (Uyemura, 2002).

A sum of two fractions, for instance, demands 3 multiplica-
tions and 1 addition of integers: an unsophisticated finite–
state machine is used to command the combinational com-
puting sequence. Combinational Adder and multiplier pro-
vide attractive response timing and are easily allocated on
FPGAs (Wolf, 2004).

3.1 Adaptive number framing technique

A fraction that results from a sum or product of two other
fractions might require a bit range that exceeds the width of
the binary structure of Figure 1. Repeated fraction operations
would demand unlimited number of bits to keep up with the
highest result precision. This is certainly impracticable. One
possible and common solution is a truncation.

0000000000000110
1101110111100111 = 450023

0000000000000110 = 6


0000000000010011
1000010000110110 = 1279030

0000000000010011 = 19


Figure 3: Direct framing

For instance, consider two fractions which fit into the binary
structure of Figure 1, so that their multiplication results into
the fraction Num

Den
= 450023

1279030 . Neither the numerator nor the
denominator would fit in the Figure 1 notation as 450023 >

65535 and 1279030 > 65535. Therefore, such fraction must
be adjusted to fit into the binary limitation imposed in the
hardware implementation.

The multiplication of two fractions (each one in the form of
Figure 1) generates a fraction of 64 bits, in general, whose
numerator and denominator are of 32 bits. The proposed
hardware does not support this bit length and a framing tech-
nique must be thought of, aiming at minimizing the loss of
accuracy.

An easy truncation or framing that could be done on 450023
1279030

would be to take only the least–significant sixteen bits from
numerator and from denominator – as Figure 3 displays –
named direct framing (the simplest one).

The framing depicted in Figure 3, performed over fraction
450023
1279030 = 0.35184. . . , yields 6

19 = 0.31578. . . . This tech-
nique implies a high precision loss. In this work, an adaptive
framing technique is used, where successive one-bit right-
shifts of the binary representations of both the numerator and
denominator, until the fraction under consideration is framed
into the width of the representation of Figure 1, which is the
fraction default binary length.

Algorithm 1 describes the steps of the proposed framing
technique. It performs the adjustment of Num

Den
to produce

N
D

that fits in the default structure used in this design. Note
that Num is a natural of α > 16 bits and Den 6= 0 is an
integer of β > 17 bits. Recall that the MSB of Den is the
fraction sign bit. Numerator N has 16 bits e denominator D

has 17 bits; The bit MSB of D is the sign bit of the resulting
fraction. Note that the largest number that can be represented
is

{

− 65535
1 , . . . , 0

1 , · · ·+ 65535
1

}

. Hence, when the framing
operation reaches an all-zero denominator, the largest possi-
ble integer is used (see lines 10 and 11 of Algorithm 1.

Adaptive framing of the fraction 450023
1279030 is illustrated in Fig-

ure 4. In this fraction, both the numerator and denominator
go through five right shifts of one bit in order to frame the
fraction within the binary structure of Figure 1, i.e. a numer-
ator of 16 bits and denominator of 17 bits, including a sign
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Algorithm 1 Framing technique

Require: α; β; Num[α− 1..0]; Den[β − 1..0];
Ensure: N [15..0]; D[16..0];

1: auxN [α− 1..0]← Num[α− 1..0];
2: auxD[β − 2..0]← Den[β − 2..0];
3: repeat
4: if Or(auxN [(α − 1)..16]) || Or(auxD[(β − 2)..16])

then
5: EndFraming← false;
6: RightShift auxN [α− 1..0];
7: RightShift auxD[β − 2..0];
8: if Nor(auxD[β − 2..0] then
9: EndFraming← true;

10: auxN [15..0]← 1111..11; //216 − 1
11: auxD[15..0]← 0000..01; //1
12: end if
13: else
14: EndFraming← true;
15: end if
16: until EndFraming;
17: N [15..0]← auxNum[15..0];
18: D[15..0]← auxDen[15..0];
19: D[16]← Den[β − 1];
20: return N [15..0], D[16..0]

bit. This method is worthwhile because it minimize the loss
of accuracy. Note that, fraction 450023

1279030 , which evaluates pre-
cisely to 0.3518471028, results in 0.3157894736 with a di-
rect standard framing while when it yields 14063

39969 using adap-
tive framing, which is equivalent to 0.3518476819. Note that
an overall evaluation of precision loss throughout the com-
putational process depends on the specific composition of
the bits that are being shifted out from the numerator and
denominator.

3.2 Precision of the adaptive framing

The loss of precision that is occasioned by a single iteration
of the framing procedure described in Algorithm 1 depends
on the the bit that is shifted out from the numerator and the
corresponding in the denominator. Considering one framing
iteration, there 4 possible cases as described below.

1. Both the numerator and denominator are even. i.e.
Num = 2×N+0×20 and Den = 2×D+0×20. Thus,
we have no loss of precision as explained in Equation
5, wherein E00 is the error introduced by right-shifting
both the numerator and denominator:

E00 =
2N

2D
−

N

D
= 0 (5)

450023


1279030


225011


639515


112505


319757


56252


159878


28126


79939


14063


39969


Figure 4: Adaptive framing

2. Both the numerator and denominator are odd. i.e.
Num = 2×N+1×20 and Den = 2×D+1×20. Thus,
we have a loss of precision as explained in Equation
6, wherein E11 is the error introduced by right-shifting
both the numerator and denominator:

E11 =
2N + 1

2D + 1
−

N

D
=

D −N

D(2D + 1)
(6)

3. The numerator is even, i.e. Num = 2×N +0×20 and
denominator are odd, i.e. Den = 2×D+1×20. Thus,
we have a loss of precision as explained in Equation
7, wherein E01 is the error introduced by right-shifting
both the numerator and denominator:

E01 =
2N

2D + 1
−

N

D
=

−N

D(2D + 1)
(7)

4. The numerator is odd, i.e. Num = 2×N + 1× 20 and
denominator are even, i.e. Den = 2×D+0×20. Thus,
we have a loss of precision as explained in Equation
8, wherein E10 is the error introduced by right-shifting
both the numerator and denominator:

E10 =
2N + 1

2D
−

N

D
=

1

2D
(8)

Therefore, assuming that it is 0s and 1s are evenly distributed
in a binary representation, the average error introduced by a
single shift can be evaluated as shown in Equation 9.

Eavg =
4D − 4N + 1

8D(2D + 1)
(9)

The proposed adaptive framing technique provides an ad-
equate accuracy for the purpose of this work. The pro-
posed hardware has to be equipped with a right-shifter to per-
form fraction adjustment. A one-bit right-shift is an integer-
divide-by-2 operator. This property is also useful in the sig-
moid computation as the strategy used for computing the sig-
moid was forged in order to take advantage of the shifter al-
ready included in the hardware. This will be explained in the
next section.

4 ACTIVATION FUNCTION

There are many functions, commonly used, which map neu-
ron output. The most common are functions ramp as de-
scribed in Equation 10, hyperbolic tangent as defined in
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f
 = 
ϕ
(
v
)


v


1


1
1

2
 2


+


1

2


+


(a) Ramp

f
 = 
ϕ
(
v
)


−
1


+1


v
0


(b) Hyperbolic tangent

f
 = 
ϕ
(
v
)


+1


v
0


+0,5


a 
= 0,5


a 
= 1


a 
= 2


(c) Sigmoid

Figure 5: Common activation functions

Equation 11 and sigmoid as described in Equation 12. The
curves of these three activation functions are shown in Figure
5.

y = ϕ(v) =























1 if v ≥ b

1
b−a

v − a
b−a

if a < v < b

0 if v ≤ a

(10)

ϕ(v) = b ·
eav − e−av

eav + e−av
, (11)

wherein a 6= 0 and b 6= 0.

ϕ(v) =
1

1 + e−av
(12)

The sigmoid is widely used in multilayer-perceptron neural
networks (Haykin, 1999). The hardware, presented in this
paper, computes sigmoid of Equation 13, where parameter a

is set to 1 and v is the neuron weighted sum (including bias).
Initially, through least mean squares, 3 quadratic polynomi-
als are obtained, which fit into the curve e−v . Each polyno-
mial approximates e−v in a certain range of the domain v, as
Figure 6 and Equation 14.

ϕ(v) =
1

1 + e−v
(13)

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

exp(−x)

Quadratic Polynomial in [0,2]

Quadratic Polynomial in [2,4]

Quadratic Polynomial in [4,8]

Figure 6: Curve–fitting: quadratic polynomials and e
−v, for

v ≥ 0

exp(−v) ∼=







































P00(v) if v ∈ [0, 2[

P01(v) if v ∈ [2, 4[

P10(v) if v ∈ [4, 8[

P11(v) = 0 if v ∈ [8,+∞[

(14)

In Figure 6, the approximation method generates the
quadratic polynomial of (15) for exp(−v), wherein F[x,y[(v)
is a fractional function in v ∈ [x, y[:







































f[0,2[(v) = 0.1987234v2 − 0.8072780v + 0.9748092

f[2,4[(v) = 0.0268943v2 − 0.2168304v + 0.4580097

f[4,8[(v) = 0.0016564v2 − 0.0235651v + 0.0840553

f[8,+∞[(v) = 0
(15)

We know that the ANN hardware operates with fractions,
whose representation is depicted in Figure 1. So, it will be
better to express the polynomial of (15) in the hardware rep-
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0 1 2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 7: Error introduced by the activation function approxi-
mation

resentation. This is shown in (16):























































f[0,2[(v) ≈ 12858
64703

(

Nv

Dv

)2

+ 11691
−14482

Nv

Dv
+ 56072

57521

f[2,4[(v) ≈ 1046
38893

(

Nv

Dv

)2

+ 13883
−64027

(

Nv

Dv

)

+ 12560
27423

f[4,8[(v) ≈ 63
38032

(

Nv

Dv

)2

+ 581
−24655

(

Nv

Dv

)

+ 456
5425

f[8,+∞[(v) ≈ 0
1

(16)
As an example, P01(v) refers to the polynomial which
fits into e−v for v ∈ [2, 4[. This hardware deals only
with binary structures which represent fractions. Thus,
P01(v) is best expressed in the following form: P01(

Nv

Dv
) =

Nv

Dv

[

1046
38893

(

Nv

Dv

)

+ 13883
−64027

]

+ 12560
27423 . Weighted sum param-

eter is in evidence to save 1 multiplication.

Using polynomials, e−v is computed performing only mul-
tiplications and sums of real numbers – which are the basic
operations of neuron weighted sum. So, weighted sum digi-
tal circuit is reused to compute e−v .

The achieved precision is proportional to the highest degree
of the exploited polynomial. Nevertheless, with higher de-
gree polynomials, the required computation becomes more
complex and thus the response time becomes longer. A
second degree polynomial provides reasonable accuracy (on
each range of Equation 14) and yet does not slow down the
hardware. The error imposed by this approximation was plot-
ted and the result is shown in Figure 7.

Domain ranges, in Equation 14, were chosen based on based
on the fact that borderline values of each range are powers
of 2. A right-shifter (discussed previously) is used to frame
a fraction into the binary structure of Figure 1. During acti-
vation function computation, the same right-shift register is
reused in the selection of the adequate polynomial to com-

pute e−v , taking into account a certain range of v ≥ 0. In
order to explain the polynomial selection procedure, non–
negative weighted sums are considered initially: v ≥ 0.

Let Nv

Dv
be the fraction notation of a neuron weighted sum.

The hardware first checks Nv

Dv
< 2. This comparison is

equivalent to Nv

2 < Dv , since Nv

Dv
is non–negative. The one-

bit right-shifter is responsible for performing Nv div 2 and a
combinational comparator provides the boolean result of Nv

div 2 < Dv .

If Nv is odd, then Nv div 2 6= Nv

2 . Nonetheless, Theorem 2
ensures that when we have Nv div 2 < Dv then it immedi-
ately follows that Nv

2 < Dv and vice-verça.

If Nv div 2 < Dv is valid, then P00 is the selected polyno-
mial, because the weighted sum v ∈ [0, 2[. Otherwise, the
hardware checks Nv

Dv
< 4, which is has the same results of

comparison Nv

4 < Dv . Two right-shifts are required to get
Nv div 4 and another comparison is done: Nv div 4 < Dv .
Theorem 2 still ensures that Nv div 4 < Dv ⇔

Nv

4 < Dv .

If Nv div 4 < Dv is valid, then P01 is the selected polyno-
mial as the weighted sum v ∈ [2, 4[. Otherwise, other shifts
are performed until the adequate polynomial is reached, tak-
ing into account the corresponding range of v.

For the sake of clarity, before proving Theorem 2, we first
prove Theorem 1, which establish that for P odd, we have P

div 2 = P
2 − 0, 5 < Q is equivalent to P

2 < Q.

Theorem 1 ∀P,Q ∈ ℵ∗, wherein P is odd, we have P div
2 < Q⇔ P

2 < Q.

Proof: P is odd, then it follows that P div 2 = P
2 −

1
2 .

Therefore, P div 2 < Q is equivalent to P
2 −

1
2 < Q as

P div 2 = P
2 − 0.5.

P div 2 =
P

2
−

1

2
< Q⇔

P

2
< Q+

1

2
⇔ P < 2Q+1 (17)

P

2
< Q⇔ P < 2Q (18)

Considering Equation 17 and Equation 18, we need to prove
that, for P odd, we always have P < 2Q + 1 ⇔ P < 2Q.
Assuming Q 6= 0, we need to prove the following: P <

2Q + 1→ P < 2Q and P < 2Q→ P < 2Q + 1.

1. P < 2Q + 1 → P < 2Q: Q 6= 0, then 2Q + 1 is
odd. For Q = 1, we have P < 3 → P < 2. As P is
odd, then P < 3 ensures that P < 2, as the largest odd
integer smaller than 3 is P = 1. For Q > 1, the largest
odd integer smaller than 2Q + 1 is P = 2Q + 1 − 2.
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Hence, for P = 2Q + 1 − 2 = 2Q − 1, we have P =
2Q−1 < 2Q. Finally, for any P such that P < 2Q−1,
we have P < 2Q, as P < 2Q − 1 < 2Q. Therefore,
P < 2Q + 1→ P < 2Q holds.

2. P < 2Q → P < 2Q + 1: It is clear that, if P < 2Q,
then P < 2Q + 1, as P < 2Q < 2Q + 1. This proves
that P < 2Q→ P < 2Q + 1 holds.

2

Theorem 2 ∀ P, Q ∈ ℵ∗, we have P div 2s < Q ⇔ P
2s <

Q, wherein s ∈ ℵ∗.

Proof: The result of P div 2s can be formulated in terms
of P

2s as shown in Equation 19, wherein P mod 2s is the
remainder of the integer division of P by 2s.

P div 2s = P
2s −

P mod 2s

2s
(19)

1. For s = 1, Equation 19 reduces to P div 2 = P
2 −

P mod 2
2 . In this case, for P even, we have P div

2 = P
2 −

0
2 = P

2 and, thus, P div 2= P
2 < Q⇔ P

2 < Q,
∀P,Q ∈ ℵ∗. For P odd, Theorem 1 ensures that
P div 2= P

2 −
1
2 < Q⇔ P

2 < Q; ∀P,Q ∈ ℵ∗.

2. For s > 1, we need to prove that, ∀P,Q, s ∈ ℵ∗,
wherein s > 1, Equation 20 holds.

P div 2s = P
2s −

P mod 2s

2s < Q⇔ P
2s < Q (20)

Using P div 2s = P
2s −

P mod 2s

2s = γ, where γ ∈ ℵ,
we have (21).

P = 2sγ + P mod 2s (21)

Comparing (21) to (20), The equivalence of Equation
20 can be expressed as in Equation 22.

γ < Q⇔
2sγ + P mod 2s

2s
< Q (22)

∀P,Q, s ∈ ℵ∗, wherein s > 1 and γ ∈ ℵ. We know that
P mod 2s ∈ {0, 1, 2, . . . , 2s−1}, i.e. 0 ≤ P mod 2s <

2s. Using δ = P mod 2s, we have δ ∈ ℵ and 0 ≤ δ <

2s. Replacing δ in Equation 22, we then have Equation
23.

γ < Q⇔
2sγ + δ

2s
< Q (23)

∀P,Q, s ∈ ℵ∗, where s > 1, γ ∈ ℵ and {δ ∈ ℵ | 0 ≤
δ = P mod 2s < 2s}.

Observing the comparison operations in Equation 23,
we get to Equation 24 and Equation 25.

γ < Q⇔ Q− γ > 0 (24)

2sγ + δ

2s
< Q⇔ δ < 2s(Q−γ)⇔ Q−γ >

δ

2s
(25)

Based on Equation 24 and 25, the required proof (equiv-
alence of Equation 23) would be completed if the propo-
sitions Q − γ > 0 → Q − γ > δ

2s and Q − γ >
δ
2s → Q − γ > 0 hold; That is, with the premisses
∀P,Q, s ∈ ℵ∗, where s > 1, γ ∈ ℵ and {δ ∈ ℵ | 0 ≤
δ = P mod 2s < 2s}.

(a) Q−γ > 0→ Q−γ > δ
2s : Q is a non-zero natural

and γ is natural. So, Q − γ is an integer. As δ

is a natural such that 0 ≤ δ < 2s, there follows
0 ≤ δ

2s < 1. If Q− γ is positive, then Q− γ ≥ 1

and, therefore Q − γ > δ
2s , since 0 ≤ δ

2s < 1.
So, Q − γ > 0 ensures that Q − γ > δ

2s , i.e
Q− γ > 0→ Q− γ > δ

2s holds.

(b) Q−γ > δ
2s → Q−γ > 0: Assuming 0 ≤ δ

2s < 1,
it is clear that Q−γ > δ

2s ensures Q−γ > 0. Any
integer Q − γ larger than {0, 1, 2, . . . , 2s − 1} is
with no doubt positive (Q−γ > 0). There follows
that Q− γ > δ

2s → Q− γ > 0 holds.

2

Once the suitable polynomial is selected from Equation 14,
the hardware computes it and returns the resulting fraction
Nfe

Dfe
, which represents the fraction value of e−v , for v ≥ 0.

Thus, e−v ∼=
Nfe

Dfe
, where v ≥ 0. Replacing Nfe

Dfe
in the

sigmoid (from Equation 13), it easily comes to Equation 27.

ϕ(v) ∼=
1

1 +
Nfe

Dfe

if v ≥ 0 (26)

ϕ(v) ∼=
Dfe

Dfe
+ Nfe

if v ≥ 0 (27)

Whenever the weighted sum is negative, v < 0, a sigmoid
property can be used: ϕ(v) = 1− ϕ(−v), v ∈ <. This way,
through Equation 27, ϕ(v) is finally solved for v < 0, as
Equation 28 and Equation 29 show.

ϕ(v) ∼= 1−
Dfe

Dfe
+ Nfe

if v < 0 (28)

ϕ(v) ∼=
Nfe

Dfe
+ Nfe

if v < 0 (29)

Note that using the same approximation, we can exploit any
of the commonly used activation functions that are based
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on the exponential function, such as hyperbolic tangent, de-
scribed earlier. The nice properties of the exponential func-
tion would be taken advantage of so as to reduce the neces-
sary overall computation. The ramp function can also be eas-
ily used. It does not require any approximation. The under-
lying computation requires a multiplication followed by an
addition, in the general case. Two comparisons are needed to
determine whether these this computation is necessary. Oth-
erwise, either constants 0 or 1 are used instead. In order to
accommodate a new activation function, the controlling se-
quence of the stage within the hardware must be slightly re-
adjusted.

5 HARDWARE ARCHITECTURE

The proposed architecture consists of two subsystems: the
load and control system (LCS) and the ANN computing
hardware (ANNCH). Component LCS loads and stores the
data needed for an neural network application. The ANNCH
includes the digital circuit that implement the neuron’s hard-
ware, which include logic and arithmetic computations as
well as the underlying control flow. The block diagram of
the overall hardware is depicted in Figure 8.

The load and control system LCS, in Figure 8, includes three
memories: one for ANN inputs, another for weights and bi-
ases and a third memory, for the polynomial coefficients that
allow to compute the neuron activation function. Since the
hardware is able to adapt it-self to different MLP topologies,
the number of inputs, weights and biases may be altered on–
the–fly, enabling the hardware to perform different ANN ap-
plications.

The hardware synthesis in FPGA requires the exact sizing of
the LCS memories. For instance, weight (and bias) memory
is sized as Equation 30.

(imax + 1)n + n(n + 1)(lmax − 1) (30)

where imax is the maximum number of inputs, n is the max-
imum number of neurons per layer that the hardware is able
to support. This is actually the number of neurons in the
physical layer. Parameter lmax is the maximum number of
layers the actual ANN configuration can include so as to be
implemented in the proposed hardware. Activation function
memory stores nine coefficients: three for each polynomial.
Note that, because of this parameter modeling, the proposed
ANN hardware can accommodate any ANN topology that
exploits at most cmax neurons in any of its layers. The sole
modification that is required for different topologies consists
of the size of the three data memories managed by compo-
nent LCS.

LCS also controls the ANN application operation in AN-
NCH. A 33–bit data bus enables the necessary data flow to

the ANNCH unit. A control bus is also available and estab-
lishes the communication between LCS and ANNCH. The
LCS is the master controller the data bus. It sends the re-
quired data upon ANNCH’s requests.

In Figure 8, ANNALU is the ANNCH arithmetic and logic
unit and includes the digital neurons, whereby the weighted
sums and sigmoid are computed. Neurons within the same
layer of such an ANN application are performed by the hard-
ware in parallel.

The control unit, ANNCU in Figure 8, commands the digital
neuron arithmetics only. This is executed by ANNALU and
includes the weighted sum and activation function computa-
tion. A clock generator synchronizes the communication be-
tween ANNCU and ANNALU. The LCS as master triggers
ANNCU, and the latter leads the whole computation corre-
sponding to the current layer until neuron outputs are ready.
Afterwards, LCS restarts ANNCU to compute another ANN
application layer – this process goes on until the neural net-
work outputs are available on yi data buses. In the following,
i.e. Section 5.1 and Section 5.2, we describe the architecture
and operation of ANNALU and ANNCU respectively.

5.1 Hardware layer: ANNALU

As mentioned previously, the hardware architecture is de-
signed with only one physical layer. This is a set of dig-
ital hardware neurons that work in parallel and define the
ANNALU, as shown in Figure 9. Whenever an ANN is per-
formed, the physical layer is reused for computing all the lay-
ers of the application neural network. If the hardware layer
has nmax neurons, so the number of neurons in all the ANN
layers must not exceed nmax.

For instance, assuming that the kth layer of such an ANN
application has 3 neurons, the LCS activates only hardware
neurons 1, 2 and 3 of Figure 9, to compute the kth layer.
Next, when the (k + 1)th is going to be computed, outputs
y1, y2 and y3 from neurons 1, 2 and 3, respectively, are fed
back through registers Regyi, buffers and multiplexers. For
instance, assuming that layer (k+1)th has two neurons, then
only hardware neurons 1 and 2 would be switched on. Still
in Figure 9, neural network inputs flow via the same data
bus and are sent to digital neurons through x1, x2, . . . , xn.
Registers Regwi stores weights and biases, also provided by
LCS via data bus.

When computing a certain ANN application layer, the input
is shared with all hardware neurons, but each neuron has its
own weight (for the same input), as Figure 10 presents – for
a three-neuron-layer example. First product of Figure 10 is
computed, at the same time, for all hardware neurons, and
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this happens to the whole weighted sum and also to the acti-
vation function computing.

5.1.1 Hardware neuron model

The neuron architecture is illustrated in Figure 11. As seen
previously, the weighted sum and sigmoid computing require
only sums and multiplications of fractions. These operations,
in turn, consist of other simpler operations: sums and multi-
plications of integers, which are performed by the combina-
tional circuits MULTIPLIER and ADDER, respectively, as
Figure 11 shows.

The two shift registers (ShiftReg1 and ShiftReg2) are in-
cluded so as to adjust the fraction, that results from a mul-
tiplication of two other fractions. This adjustment refers to
the adaptive framing explained in Section 3.1. ShiftReg1
shifts the numerator while ShiftReg2 shifts the denominator
of such a fraction.

In Figure 11, ShiftReg3 is another shift-register that shifts
the fraction numerator which results from an addition of two
other fractions. ShiftReg2 is also used for shifting the de-
nominator of such a fraction. The neuron weighted sum is
accumulated in ShiftReg3 used for the numerator and Reg4
for the denominator.

The combinational circuits TwosComple1 and Twoscom-
ple2, when needed, perform the two’s complement
(Tanenbaum, 2007) on signed integers stored in ShiftReg1
and ShiftReg2, respectively. During an addition of two frac-
tions, there is an sum or subtraction of two signed integers:
one stored in ShiftReg1 and the other in ShiftReg2.

A combinational Comparator is necessary to select the ad-
equate polynomial for computing sigmoid function, as ex-
plained in Section 4. The arithmetic signals of Xi and Wi are
processed by component ASPU (Arithmetic Signal Process-
ing Unit) of Figure 12) in order predict the signal of the frac-
tion obtained from multiplying or adding two given fractions.
The ASPU also decides if an Adder operand will go through
the two’s complement (TwoCompl1 and/or TwoCompl2 of
Figure 11). The Adder component is responsible for the ad-
ditions of the neuron’s weighted sum. RShiftReg3 and Reg4
are assigned to accumulate the weighted sum as a fraction:
numerator in RShiftReg3 and denominator in Reg4.

In Figure 12, component NTC (Negative transition Con-
troller) releases the negative transition of Clk1 to the Flip-
Flop D, whenever signal E is set. ASPU works in par-
allel with multiplications and additions of fractions during
weighted sum and activation function computation. All Neu-
rons of Figure 9 work in parallel. When the computation of
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a given layer is being performed, the one related to the next
layer is being initialized. As soon as the computation of all
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Figure 12: Arithmetic signal processing unit to predict the
fraction signal obtained from a sum or product of two other
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layers has been completed, ANNALU sends a signal to the
ANNCU, informing that the output of the Neural Network is
available. So, the latter informs the software sub-system that
the whole computation is done.

During weighted sum, for instance, register Reg1 is used
for storing a neuron input and registers Reg1 and Reg2
store, respectively, numerator and denominator of the synap-
tic weight related to that input. Figure 11 displays fraction
sign bit from Reg1 (input data) and fraction sign bit from
Reg3 (denominator of a weight) injected to the ASPU unit.

5.2 Control Unit: ANNCU

A general view of the control unit ANNCU is depicted in
Figure 13. Processing an application neural network starts by
obtaining the required data via the control block DI. The fi-
nite state machine (FSM) within this block is responsible for
requesting to component LCS the inputs xi of the net. These
data are then stored into specific registers in ANNALU. The
state machine within block WSC controls the computation of
the weighted sum through fraction sums and products using
the provided components in the neuron hardware described
earlier.

Once the weighted sum yielded, the state machine within
block AFC initiates the control of the same components
available in the hardware layer so as to compute the activa-
tion functions of the neurons. Once this is done, the compu-
tation due to the current neuron layer has been achieved. If
the current layer is not the last in the net, then the FSM imple-
mented in block AFC sends the control to that implemented
by block DI to iterate the process once more. Otherwise, the
output results are ready and therefore, the control unit enters
state End and waits for a reset trigger.

LSW: Loading

Synaptic Weights


 

LSW in parallel with WSC


WSC: Weighted

Sum Computation


End


Reset = 0


ANNCU


Reset = 0

Reset = 1


Start

DI: Data Input


AFC: Activation

Function Computation


Reset = 1


Figure 13: Control flow within ANNCU

As shown in Figure 13, the control unit ANNCU includes
two FSMs: primary and secondary. The primary FSM con-
sist of blocks DI, WSC, AFC as well as states start and End.
The secondary FSM is defined solely by the control within
block LSW. which is responsible for preparing the synap-
tic weights for the next layer, if any, while and in parallel
with the computation of the weighted sums due to the current
layer. The current layer synaptic weights are stored in reg-
isters within the neuron hardware, allowing for the kind of
parallelism. (Details of the FSMs description can be found
in (Martins, 1996). These were not included here as this kind
of detailed description is not necessary for understanding the
overall behavior of the control unit.)

5.3 Clock generator

The macro architecture of Figure 8 include a clock generator,
which yields two signal Clk1 and Clk2. Both these signals
implement the synchronization of the general activities of the
ANNCH, which also interferes in both included units: AN-
NALU and ANNCU. The time diagram of the clock signals
is shown in Figure 14.

Component ANNCU consists mainly of a state machine the
controls the operations performed by ANNALU. The state
transitions in this machine occur during the positive transi-
tions of clock signal Clk1. The time period tH1 is the re-
quired time for the stabilization of the output signals. The
right-shift register used in the neuron micro-architecture op-
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ANNCH

erates in synchrony with the negative transition fo clock sig-
nal Clk2. Note that during one clock cycle with respect to
Clk1, four shifting operation may take place. This acceler-
ates the the time spent in shifting operations. Shifting opera-
tions are required so as to frame the results of additions and
multiplications within the fractional data representation. The
use of faster clock Clk2 is only possible thanks to the reduced
time of a shifting operation with respect to that required by
the more complex operations performed by ANNALU.

6 PERFORMANCE RESULTS

The architecture is entirely described in VHDL. It was sim-
ulated in ModelSim XE 6.3c. The detailed VHDL code
can be found in (Martins, 1996). Simulation snapshots
accompanied by detailed explanations of the computations
done throughout a layer of the ANN hardware are given in
(Martins, 1996).

The VHDL specification of the ANN proposed hardware
was synthesized for the Xilinx Virtex-5 XC5VFX70T FPGA,
through Xilinx XST Synthesis tool (ISE Design Suite
11.1). This synthesis tools allows for integration of soft-
ware/hardware co-designs. The ANN hardware sub-system
was implemented through automatic synthesis and the soft-
ware sub-system was implemented in C language and exe-
cuted by a MicroBlaze processor. The MicroBlaze (Xilinx,
2008) is a RISC microprocessor IP from Xilinx TM, which
can be synthesized in reconfigurable devices. Although we
had access to an embedded PowerPC core, only the MicroB-
laze offers a low latency point-to-point communication link,
known as Fast Simplex Link (FSL) (Xilinx, 2009), which
allows the connection of a component, identified as co-
processor, to the microprocessor. Therefore, the MicroBlaze
is connected to the ANN hardware co-processor through an
FSL channel and provides the necessary input data, as shown
in Figure 15. The C program, executed by the microBlaze,
provides the parameter and coefficient settings for the LCS
three memories via the from-microBlaze FSL FIFO, then af-
ter a while receives the results, which are sent by the co-

processor via the to-microBlaze FSL FIFO. The C program
is also responsible of printing the received results on the ter-
minal via the available UART (Universal Asynchronous Re-
ceiver/Transmitter). The timer is used to measure the number
of elapsed cycle during the ANN hardware operation.

UART
 Timer


ANN Hardware


Fast Simplex Link

FSL


Peripheral Local Bus

PLB


Figure 15: The MicroBlaze processor connected to the ANN
hardware co-processor

In Table 1, we report the hardware area required by a single
neuron for different numbers of inputs, as well as that needed
to implement to whole network, considering the maximum
number of inputs allowed (imax), the maximum number of
neuron per layer (nmax) and the maximum number of lay-
ers (lmax). The required area is given in terms of slices.
Virtex-5 FPGA slices are organized differently from previ-
ous generations. Each Virtex-5 FPGA slice contains four 6-
input lookup tables and four flip-flops. We compare these
figures to those imposed by the binary-radix straightforward
design and the stochastic computing-based design (Nedjah
and Mourelle, 2007) and a previous MAC-based design, re-
ported in (Nedjah et al., 2009).

The used FPGA has 11,200 slices. Therefore, a rough ap-
proximations, given the data presented in Table 1, we can
expect possible implementations of ANNs of a hundreds
of neurons per layer for virtually infinite number of layers.
However, only the actual mapping of the hardware with such
number of neurons would provide exact figures, as the re-
quired area depends on the how the synthesis tool would op-
timize the hardware resources via sharing vs. duplication.

In Table 2, we show the net delay imposed in compari-
son with those imposed by the implementations reported in
(Nedjah and Mourelle, 2007) and (Nedjah et al., 2009).

From the performance results given in Table 1 and Table 2, it
can be observed that in the proposed architecture both the
area and computation time are reduced and so the perfor-
mance factor, which is defined as 1

area×time
, was improved,

as depicted in the chart of Figure 16. The comparison indi-
cates that the trade-off between area and time is improved for
the proposed implementation as the net size increases.
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Table 1: Area requirements of one neuron and network for different number of inputs and net size

imax nmax lmax
Neuron area (#Slices) Net area (#Slices)

BIN1 STO2 MAC3 FFP4 BIN1 STO2 MAC 3 FFP4

2 6 3 116 8 4 6 98 21 8 11
4 9 5 212 12 8 9 574 75 25 41
8 13 7 436 20 11 15 780 421 57 129

1Binary-radix based (Nedjah and Mourelle, 2007) 2Stochastic (Nedjah and Mourelle, 2007)
3MAC-based floating-point (Nedjah et al., 2009) 4Fraction-based proposed

Table 2: Time delay of a network and performance factor for different number of inputs and net size

imax nmax lmax
Net delay (ns) Performance factor (×10−3)

BIN1 STO2 MAC3 FFP4 BIN1 STO2 MAC 3 FFP4

2 6 3 3.45 5.85 3.67 3.33 2.498751 21.3675 68.1198 53.2481
4 9 5 4.92 7.09 5.11 4.71 0.958736 11.7536 24.461 28.1293
8 13 7 11.32 19.87 11.79 9.05 0.202613 2.5163 8.4817 13.3779

1Binary-radix based (Nedjah and Mourelle, 2007) 2Stochastic (Nedjah and Mourelle, 2007)
3MAC-based floating-point (Nedjah et al., 2009) 4Fraction-based proposed

Figure 16: Comparison of the performance factor yield by the
neural network hardware proposed here and those reported
in the literature

For a testbed application, we use the MLP that implements
word recognition of a given speech. The neural network re-
quires 220 data as input nodes and returns 10 results as out-
put nodes. The network input consists of 10 vectors of 22
components obtained after preprocessing the speech signal.
The output nodes correspond to 10 recognizable words ex-
tracted from a multi-speaker database (Waibel et. al., 1989).
After testing different architectures (Canas, et al., 2003), the
best classification results, which achieved a 96.83% of cor-
rect classification rate in a speaker-independent scheme, have

been yielded using 24 nodes in a single hidden layer, with full
feed forward connectivity. Thus the MLP has two layers of
24 and 10 neurons respectively, as shown in Figure 17, which
was taken from (Canas, et al., 2008).

The FPGA implementation of the MLP of Figure 17 has been
first used in (Canas, et al., 2008), wherein the activation func-
tion is implemented using lookup table after discretization
and the handled data are all of 8 bits. Three alternative ar-
chitectures has been investigated based on how the required
memories that store the input data, the weights and biases as
well as the lookup tables used to implement the activation
functions are implemented. The implementation alternatives
are: distributed memory blocks (DRAM) or embedded mem-
ory blocks (BRAM). In the former, the flip-flops available
within the configurable logic blocks (CLBs) are used while
in the latter specific blocks of RAM are used. Note that,
in general, the delay due to the memory access of DRAM
blocks is much shorter than that due to BRAM.

Table 3 shows the number of slices required to implement
the described MLP, the number of clock cycles that are nec-
essary to accomplish a whole net computation through all
layers, together with the corresponding minimal clock pe-
riod. The product of the number of clock cycles times the
duration of one cycle defines the evaluation time, given in
the last column of Table 3. These figures are reported for
three different implementation alternatives: in alternative
(a), only distributed RAM for the whole designs is used;
in alternative (b), the weights associated with synaptic sig-
nals together with the biases are stored in BRAM, while
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Figure 17: Testbed application MLP

the remaining data are stored in DRAM; in alternative (c),
BRAMs are used to implement all required memories. In this
testbed MLP, input data memory requires a total of 220 en-
tries, the weight and biases memory needs to accommodate
220×24+24×10 = 5520 words and the activation function
table, which in our case requires only 9 fractions. However,
in the implementation reported in (Canas, et al., 2008), this
memory requires much more that this. The authors did not
specify how many entries they used to digitize the sigmoid
activation function. It is worthwhile noting that a memory
entry in our design is of 32 bits while in (Canas, et al., 2008),
it is of 8 bits only. Also, the design of (Canas, et al., 2008)
was mapped using Virtex-E 2000 FPGA device is used. This
family of FPGAs is based on 4-input LUTs.

The chart of Figure 18 illustrate the comparison of the per-
formance factor achieved by the proposed design and that
obtained for the design using lookup table for the activation
function, as reported in (Canas, et al., 2008). The chart shows
that our design always wins, i.e. with respect to the investi-
gated alternatives for the implementation of the data memo-
ries. Our design always requires less hardware area due to re-
use of circuitry by both weighted sum and activation function
computation. Furthermore, despite the fact that the proposed
design requires mores clock cycles to complete the needed
computation, it does so at a higher operation frequency.
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Figure 18: Comparison of the performance factor for the
testbed application

7 CONCLUSIONS

In this paper, we presented a novel hardware architecture for
processing an artificial neural network, whose topology con-
figuration can be changed on-the-fly without any extra effort.
An extra effort was undertaken to implement efficiently arith-
metic and computing models. Furthermore, the model mini-
mizes the required the silicon area as it uses a single physical
layer and re-uses by feedback it to perform all the compu-
tation executed by all the layers of the net. This is done
so without deteriorating the neural network inference time.
The IEEE Standard for Floating-Point Arithmetic (IEEE-
754) was not used. Instead, the search for simple arithmetic
circuits and which require less silicon area motivated the use
of fractions to represent real numbers.

The model was specified in VHDL, simulated to validate its
functionality. We also synthesized the system to evaluate
time and area requirements. The comparison of the perfor-
mance result of the proposed design was then compared to
three similar implementations: the binary-radix straightfor-
ward design, the stochastic computing based design and the
MAC-based implementation with floating-point operations.
Furthermore, the design performance was compared to a sim-
ilar one that uses a look-up table to implement the activation
function. The proposed design has been proven superior in
many aspects.

The next stage of this work is to implement all the adjust-
ments to accommodate some learning techniques, so that the
hardware could be able to infer the weights depending on the
data training set presented by the user.
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Table 3: Performance comparison of the proposed design with a design that uses a lookup table as activation function

MLP Design Alternative #Slices #BRAM Clock (ns) #Cycles Time (ms) Performance factor

(Canas, et al., 2008)
(a) 6321 0 58.162

282
16.402 2.59

(b) 4411 24 59.774 16.856 4.73
(c) 4270 36 64.838 18.284 3.80

Proposed
(a) 3712 0 49.341

356
17.565 6.05

(b) 2988 13 51.003 18.157 4.25
(c) 2192 20 54.677 19.465 8.80
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