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RESUMO

Estabilizabilidade de plantas instáveis de fase não mí-
nima com multiplicidade arbitrária através de canais
AWGN
Neste artigo, obtemos a relação sinal-ruído ínfimo (SNR)
necessário para a estabilizabilidade de um laço linear saída
de realimentação ao longo de um canal de Gaussian aditivo
branco ruído (AWGN) em forma fechada. O foco em canais
AWGN nos permitirá, então, definir a capacidade do canal
mínima exigida para estabilizabilidade. Finalmente, o SNR
ínfimo para estabilizabilidade também nos permitem identi-
ficar em closed-formar o relacionado estabilização solução
positiva Hermitiana semidefinida para a equação de Riccati
de tempo contínuo algébrica de controle LQ com desaparecer
o peso do Estado e autovalores repetidos.

PALAVRAS-CHAVE: Controle sobre redes; sinal-ruído ín-
fimo; Canal de ruído gaussiano aditivo branco ; pólos instá-
veis repetidos ; zeros de fase não minimos repetidos; Tempo
de atraso; capacidade de canal; equação algébrica de Riccati
contínua no tempo

.

ABSTRACT

In the present paper we obtain the infimal signal-to-noise
ratio (SNR) required for the stabilizability of a linear out-
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put feedback loop over an additive white Gaussian noise
(AWGN) channel in closed-form. The focus on AWGN
channels allow us to then define the minimal channel capac-
ity required for stabilizability. Finally, the infimal SNR for
stabilizability also allow us to identify in closed-form the re-
lated stabilizing Hermitian positive semidefinite solution to
the continuous-time algebraic Riccati equation of LQ control
with vanishing state weight and repeated eigenvalues.

KEYWORDS: Control over networks; Infimal signal-to noise
ratio; Additive white Gaussian noise channel; Repeated un-
stable poles; Repeated nonminimum phase zeros; Time de-
lay; Channel capacity; Continuous-time algebraic Riccati
equation.

1 INTRODUCTION

The main objective of control design is to direct the output
of a system to a given desired target. It is well known that if
the system, or plant model, is stable then a simple open loop
configuration can potentially suffice. However, in practice,
the use of feedback control is advised since it allow us to
reject disturbances, deal with plant model uncertainties, and
to include the case of unstable plant models.

Early on in the development of control theory it has been rec-
ognized that the design of a feedback control configuration
is subject to unavoidable limitations, also known as funda-
mental limitations. Seminal results in this research area are
the work by (Bode, 1945) and (Horowitz, 1963), followed
more recently by results from (Freudenberg e Looze, 1985),
(Looze e Freudenberg, 1991), (Middleton, 1991). For the
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linear time invariant (LTI) case it is thus well understood that
the cause of such limitations resides on the presence and in-
teraction of unstable poles, nonminimum phase (NMP) zeros
and time-delay (see for example (Seron et al., 1997) and ref-
erences therein).

In the last decade, the study of fundamental limitations has
been extended to design problems of control over commu-
nication networks. The authors of (Braslavsky et al., 2007)
and (Braslavsky et al., 2005) obtained the expression for the
infimal SNR required to stabilize a finite dimensional un-
stable LTI plant over a memoryless additive white Gaus-
sian noise (AWGN) channel when considering unstable plant
poles, NMP zeros and plant time-delay. On the other hand,
the additive colored Gaussian noise channel with memory
has been studied for example in (Rojas, 2011), whilst perfor-
mance limitations have also been considered for example in
(Rojas, 2009c), (Silva et al., 2010) and (Wang et al., 2011).
Here, motivated by the potential insights that can be gained,
we retake the AWGN channel approach focusing on output
feedback stabilizability of plant models with repeated NMP
zeros.

Our first contribution in this paper is to present the infimal
SNR required for output feedback stabilizability of a plant
with time delay, repeated unstable poles and NMP zeros over
an AWGN channel. This result differs from (Rojas, 2009b,
Theorem 4) in that we explicitly solve the Laplace variable
derivative left stated in (Rojas, 2009b). This simple fact al-
low us to investigate in more depth the implications stem-
ming from the closed-form infimal SNR solution as shown
by our other results reported here. Our second contribution,
based on the known fact that the capacity of an AWGN chan-
nel does not increase with feedback, is to restate the infimal
SNR result into a necessary and sufficient condition on the
channel capacity.

Riccati equations (Lancaster e Rodman, 1995; Abou-Kandil
et al., 2003), in particular algebraic Riccati equations
(AREs), are a recurrent and important feature in many the-
oretical control design results, (Goodwin et al., 2001). The
infimal SNR problem, here solved in closed-form, can also
be addressed numerically as an LQ control problem by solv-
ing a continuous-time algebraic Riccati equation with van-
ishing state weight, see for example (Rojas, 2009a). It is then
perhaps not entirely surprising that our third contribution,
based on the equivalence of the infimal SNR result developed
here with the result presented in (Braslavsky et al., 2005), is
a closed-form characterization of the stabilizing Hermitian
positive semidefinite solution to the continuous-time alge-
braic Riccati equation with vanishing state weight that lays
behind the infimal SNR problem. To the best knowledge
of the author such closed-form solution is novel and differs

from (Rojas, 2010a) in that repeated unstable poles are ex-
plicitly considered.

The paper is organized as follows: In Section 2 we introduce
the assumptions for the present work. In Section 3 we present
the infimal SNR for stabilizability result. In Section 4 we
discuss the implications in terms of the channel capacity and
connect the infimal SNR for stabilizability result to the sta-
bilizing Hermitian positive semidefinite solution in closed-
form of a related class of continuous-time algebraic Riccati
equations with vanishing state weight. Finally, in Section 5,
we give concluding remarks for the present work. A prelimi-
nary version of the present results has been communicated in
(Rojas, 2010d).

Terminology: let C denote the complex plane. Let C−, C̄−,
C+ and C̄+ denote respectively the open left-plane, closed
left-plane, open right-plane and closed right-plane of C. Let
R denote the set of real numbers, R+ the set of positive real
numbers, R+

o the set of non-negative real numbers and R−

the set of real negative numbers. Let Z+ denote the set
of positive integers. A continuous-time signal is denoted
by x(t), and its Laplace transform by X(s), s ∈ C. The
expectation operator is denoted by E . A rational transfer
function of a continuous-time system is minimum phase if
all its zeros lie in C̄−, and is nonminimum phase if it has
zeros in C+. The RH∞ space consists of all proper and
real rational stable transfer functions. The norm of a system
P (s) in H∞ is given by ∥P∥∞ = supω∈R |P (jω)|, where
j =

√
−1. Define L2 as the space of functions f : jR → C

such that ∥f∥22 = 1
2π

∫∞
−∞ |f(jω)|2dω < ∞. Define H2

as the space of functions f : C+ → C such that ∥f∥22 =
supσ>0

1
2π

∫∞
−∞ |f(σ + jω)|2dω < ∞. The H2 space is a

(closed) subspace of L2 with functions f(s) analytic in C+.
Finally define also H⊥

2 as the space of functions f : C− → C
such that ∥f∥22 = supσ<0

1
2π

∫∞
−∞ |f(σ+jω)|2dω < ∞. The

H⊥
2 space is the orthogonal complement of H2 in L2, that is

the (closed) subspace of functions in L2 that are analytic in
C−.

2 PRELIMINARIES

The assumptions for the closed loop system shown in Fig-
ure 1 are for the continuous-time plant with time-delay to be
defined as

G(s) = Go(s)e
−sτ ,

where Go(s) is a nonminimum phase, rational transfer func-
tion with relative degree ng ≥ 1, containing m distinct un-
stable poles pi ∈ C+, i = 1, · · · ,m each with multiplicity
ni and q distinct NMP zeros ζj ∈ C+, j = 1, · · · , q each
with multiplicity oj , also distinct of each and every unsta-
ble pole. We further assume that the transfer function Go(s)
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can be alternatively represented by a state-space description
(A,B,C, 0) that satisfies:

(1) (A, B, C, 0) is a minimal realization of Go(s) such
that

A =

[
Au 0
0 As

]
, B =

[
Bu

Bs

]
, C =

[
Cu Cs

]
,

(1)
where A ∈ Cn×n, B ∈ Rn×1, C ∈ R1×n, Au ∈
Cnu×nu with nu =

∑m
i=1 ni, Bu ∈ Rnu×1, Cu ∈

R1×nu .

(2) The eigenvalues of Au are all in C+.

(3) Au is block-diagonal,

Au = diag{Ai},∀i = 1, · · · ,m,

with

Ai =



pi 1 0 · · · 0 0
0 pi 1 · · · 0 0
0 0 pi · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · pi 1
0 0 0 · · · 0 pi


∈ Cni×ni ,

and Bu =

B1

...
Bm

 with BT
i = [0 · · · 1︸ ︷︷ ︸

ni

]T for all i =

1, · · · ,m.

(4) The eigenvalues of As are all in C−.

Assumption (1) implies that the pair (Au, Bu) is control-
lable, (Kailath, 1980). Also notice that, in order to sat-
isfy Assumption (3) for Au, we are implicitly assuming for
any original real coefficients system to be transformed into
the equivalent system with A diagonal, (potentially) con-
taining complex conjugate coefficients. This can always be
achieved by means of the transformation matrix collecting all
the eigenvectors as explained in, for example, (Strang, 1988).
As depicted in Figure 1 the channel model is a memoryless
AWGN channel with the additive noise process n(t) assumed
to be an i.i.d. zero-mean Gaussian white noise process with
power spectral density Φ.

3 INFIMAL SNR FOR STABILIZABILITY

We further consider C(s) such that the closed loop system is
stable in the sense that, for any distribution of initial condi-
tions, the distribution of all signals in the loop will converge
exponentially fast to a stationary distribution.

Channel b
--- ?-−

C(s)

n(t)

+

+

G(s)
r(t) y(t)s(t)u(t) b

Figure 1: LTI continuous-time control system with control ac-
tion over a memoryless AWGN channel.

The channel input power ∥u∥2Pow, under reasonable station-
arity assumptions (Åström, 1970, §4.4), can be computed by
means of its spectral density Su (ω) as follows

∥u∥2Pow =
1

2π

∫ ∞

−∞
Su (ω) dω.

In turn the power spectral density Su (ω) can be obtained as
Su(ω) = |Tun(jω)|2Φ, where the transfer function Tun(s)
maps the closed-loop from the channel noise n(t) to channel
input u(t) and is equal to

Tun(s) = − C(s)G(s)

1 + C(s)G(s)
. (2)

If the feedback system is stable, then the power of the chan-
nel input signal is thus given by ∥u∥2Pow = ∥Tun∥22 Φ. The
channel input power P is then lower bounded by ∥u∥2Pow.
This fact can then be restated as a constraint imposed on the
transfer function (2) by the admissible channel SNR

P

Φ
> ∥Tun∥22 .

Denote the Blaschke products containing the unstable poles
and NMP zeros of G(s) (that is the poles and zeros in C+)
by

Bp(s) =

m∏
i=1

(
s− pi
s+ p̄i

)ni

, Bζ(s) =

q∏
j=1

(
s− ζj
s+ ζ̄j

)oj

.

We follow-up next with what is the first contribution of the
present work.

Proposition 1 (Continuous-time Infimal SNR for Stabi-
lizability) Consider the output LTI feedback presented in
Figure 1 with G(s) a nonminimum phase, rational transfer
function with relative degree ng ≥ 1, containing m distinct
unstable poles pi ∈ C+, i = 1, · · · ,m each with multiplic-
ity ni, and containing q distinct NMP zeros ζj ∈ C+, j =
1, · · · , q each with multiplicity oj , also distinct from each
and every unstable pole. The necessary and sufficient memo-
ryless AWGN channel SNR P

Φ that guarantees stabilizability
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for the closed loop satisfies

P

Φ
>

m∑
i=1

ni∑
l=1

ni−l+1∑
k=1

ri,l,k

m∑
j=1

nj∑
z=1

nj−z+1∑
w=1

(
z+l−2

z−1

)
r̄j,z,w(−1)z+l−2

(pi + p̄j)z+l−1

τ (k+w−2)

(k−1)!(w−1)!
e(pi+p̄j)τ , (3)

where

ri,l,k =
1

(ni − l − k + 1)!

dni−l−k+1

dsni−l−k+1

(
(s− pi)

niB−1
p (s)B−1

ζ (s)
)∣∣∣

s=pi

. (4)

Proof: From (Rojas, 2009b, Theorem 4) we have that

P

Φ
>

m∑
i=1

ni∑
l=1

ri,l
(l − 1)!

m∑
j=1

nj∑
z=1

dl−1

dsl−1

(
(−1)z−1r̄j,ze

(pi+p̄j)τ

(s+ p̄j)z

)∣∣∣∣
s=pi

,

(5)

with

ri,l =
1

(ni − l)!

ni∑
k̃=l

ni − l

k̃ − l

 τ k̃−l·

· dni−k̃

dsni−k̃

(
(s− pi)

niB−1
p (s)B−1

z (s)
)∣∣

s=pi
.

Notice first that ri,l can be rewritten as

ri,l =

ni∑
k̃=l

1

(k̃ − l)!(ni − k̃)!
τ k̃−l·

· dni−k̃

dsni−k̃

(
(s− pi)

niB−1
p (s)B−1

z (s)
)∣∣

s=pi
.

Introduce now a change of variable such that k = k̃ − l + 1
so that we have

ri,l =

ni−l+1∑
k=1

1

(k − 1)!(ni − k − l + 1)!
τk−1·

· dni−l−k+1

dsni−l−k+1

(
(s− pi)

niB−1
p (s)B−1

z (s)
)∣∣

s=pi
,

which can again be rewritten as

ri,l =

ni−l+1∑
k=1

ri,l,k
τk−1

(k − 1)!
, (6)

with ri,l,k as in (4). Similar steps can be applied to rj,z to
observe that

rj,z =

nj−z+1∑
w=1

rj,z,w
τw−1

(w − 1)!
. (7)

We now focus on the term

1

(l − 1)!

dl−1

dsl−1

(
(−1)z−1r̄j,ze

(pi+p̄j)τ

(s+ p̄j)z

)∣∣∣∣
s=pi

=

(−1)z−1r̄j,ze
(pi+p̄j)τ

(l − 1)!

dl−1

dsl−1

(
1

(s+ p̄j)z

)∣∣∣∣
s=pi

.

We explicitly develop the differentiation on s to obtain

(−1)z−1r̄j,ze
(pi+p̄j)τ

(l − 1)!

dl−1

dsl−1

(
1

(s+ p̄j)z

)∣∣∣∣
s=pi

=

(−1)z−1r̄j,ze
(pi+p̄j)τ

(l − 1)!

(−1)l−1(z + l − 2) · · · (z)
(pi + p̄j)z+l−1

.

Now we complete the factorial in the numerator and observe
the resulting combinatorial number

(−1)z+l−2r̄j,ze
(pi+p̄j)τ

(l − 1)!

(z + l − 2)!

(pi + p̄j)z+l−1(z − 1)!
=(

z+l−2

z−1

)
(−1)z+l−2r̄j,ze

(pi+p̄j)τ

(pi + p̄j)z+l−1
. (8)

We finally conclude by replacing (6), (7) and (8) into (5) and
obtain as a result (3), which concludes the proof. 2

The expression in (3) extends the result in (Rojas, 2009b,
Theorem 4) for a memoryless AWGN channel (see (Rojas,
2009b) for more details) in two directions: first it explicitly
develops the derivative left implicit in (Rojas, 2009b) and
second it clarifies the impact of the plant time delay τ on the
infimal SNR, this time through the residue factors ri,l.

Example 1 : Consider here the case of three unstable poles
p1 ∈ [0, 4] with multiplicity n1 = 2 and p2 =

√
2 with

multiplicity n2 = 1. The residue coefficients ri,l,k predicted
by (4) (with i = 1, 2, l = 1, 2 and k = 1, 2) are

r1,1,1= 2
(p1 + p̄1)(p1 + p̄2)

(p1 − p2)
− (p1 + p̄1)

2(p2 + p̄2)

(p1 − p2)2
,

r1,1,2=
(p1 + p̄1)

2(p1 + p̄2)

(p1 − p2)
= r1,2,1,

r2,1,1=
(p2 + p̄1)

2(p2 + p̄2)

(p2 − p1)2
.
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The channel SNR sufficient for stabilizability is then lower
bounded by the quantity

P

Φ
>

2∑
i=1

ni∑
l=1

ni−l+1∑
k=1

ri,l,k

2∑
j=1

nj∑
z=1

nj−z+1∑
w=1

(
z+l−2

z−1

)
r̄j,z,w(−1)z+l−2

(pi + p̄j)z+l−1

τ (k+w−2)

(k−1)!(w−1)!
e(pi+p̄j)τ ,

which can be further specified as

P

Φ
> r1,1,1

2∑
j=1

nj∑
z=1

nj−z+1∑
w=1

r̄j,z,w(−1)z−1

(p1 + p̄j)z
τ (w−1)

(w−1)!
e(p1+p̄j)τ

+ r1,1,2

2∑
j=1

nj∑
z=1

nj−z+1∑
w=1

r̄j,z,w(−1)z−1

(p1 + p̄j)z
τ (w)

(w−1)!
e(p1+p̄j)τ

+ r1,2,1

2∑
j=1

nj∑
z=1

nj−z+1∑
w=1

zr̄j,z,w(−1)z

(p1 + p̄j)z+1

τ (w−1)

(w−1)!
e(p1+p̄j)τ

+ r2,1,1

2∑
j=1

nj∑
z=1

nj−z+1∑
w=1

r̄j,z,w(−1)z−1

(p2 + p̄j)z
τ (w−1)

(w−1)!
e(p2+p̄j)τ .

Notice that if τ = 0 then the residue factor r1,1,2 will not
play a role on the infimal SNR required for stabilizability.

4 IMPLICATIONS OF THE INFIMAL SNR
RESULT

The result from Proposition 1 gives insight into the funda-
mental limitations in a control over networks setting by es-
tablishing the presence of a lower bound on the channel SNR.
The choice of AWGN channel model can be criticized as
highly idealized, however it is useful in clarifying what are
the causes of the SNR limitation, namely the plant unstable
poles, nonminimum phase zeros and time delay. The inter-
play between these elements allow us, for example, to ob-
serve that

1) As the real part of the unstable poles tends to zero, the
value of the infimal SNR for stabilizability will tend to
zero.

2) As the value of any unstable pole, independent of its
multiplicity, approaches the value of any given nonmin-
imum phase zero the infimal SNR required for stabiliz-
ability will tend to infinity. This can be interpreted as
the onset of instability.

3) The presence of the time-delay increases the infimal
SNR required for stabilizability, and its effect is wors-
ened by the multiplicity of the unstable poles.

The above observations are in line with classical results,
such as (Freudenberg e Looze, 1985), (Looze e Freuden-
berg, 1991), (Middleton, 1991). However Proposition 1 is
novel in that it characterizes the fundamental limitation in
terms of a communication channel feature, the SNR, instead
of a closed-loop relationship like the sensitivity function.

Another option is to quantify the fundamental limitation im-
posed by the presence of the AWGN channel in terms of
its channel capacity. The channel capacity for a memory-
less AWGN channel in continuous time is given by C =
(log2 e)

P
2Φ (see (Cover e Thomas, 1991, §10) or (Braslavsky

et al., 2007)). Direct substitution of infimal SNR result into
this definition gives

Ĉ =
(
log2

√
e
) m∑
i=1

ni∑
l=1

ni−l+1∑
k=1

ri,l,k

m∑
j=1

nj∑
z=1

nj−z+1∑
w=1

(
z+l−2

z−1

)
r̄j,z,w(−1)z+l−2

(pi + p̄j)z+l−1

τ (k+w−2)

(k−1)!(w−1)!
e(pi+p̄j)τ ,

where Ĉ is the channel infimal capacity for stabilizabil-
ity. Observe that, of course, the SNR limitation is directly
“mapped” into a channel capacity limitation, whilst the dif-
ference from one to another is given by only the constant
factor (log2sqrte).

For the very simple case of one unstable pole p1 ∈ R+ we
then have

n1 Ĉ
1 (log2

√
e) p1e

2p1τ

2 (log2
√
e) p1e

2p1τ
(
2 + 4p1τ + 4p2τ2

)
3 (log2

√
e) p1e

2p1τ(
3 + 12p1τ + 24p21τ

2 + 16p31τ
3 + 4p41τ

4
)

From the above results and Proposition 1 we have that the ef-
fect of the time delay is a polynomial in p1τ of order 2n1−2,
whilst for the very simple case of τ = 0 we obtain (see
(Rojas, 2010c) for the details on the simplifying argument)
C > p1n1 (log2

√
e), thus the channel capacity limitation (as

the SNR limitation) grows linearly with the value of the un-
stable pole and its multiplicity, as observed in (Braslavsky
et al., 2007).

We follow up the discussion in the present section by using
the infimal SNR for stabilizability result of Proposition 1 to
study the continuous-time algebraic Riccati equation solu-
tion that lays behind the infimal SNR solution.
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4.1 Continuous-time Algebraic Riccati
Equation

Another rather unexpected implication that we derive from
the main result developed in the previous section is the char-
acterization in closed-form of the related continuous-time al-
gebraic Riccati equation (Kailath, 1980)

PA+ ĀTP+Q = PBR−1BTP, (9)

with vanishing state weight, that is Q = ε2I with ε → 0.
Under the assumptions for A and B, with R ≥ 0, there
is a unique Hermitian positive semidefinite solution to (9),
such that A − R−1BTP has all its eigenvalues in the open
left half-plane. The unique stabilizing Hermitian positive
semidefinite solution of (9) satisfies the following lemma.

Lemma 2 (Adapted from (Braslavsky et al., 1999,
Lemma 2)) Under the proposed assumptions the variance
of the state satisfies the unique stabilizing Hermitian positive
semidefinite solution of (9) satisfies

P =

[
Pu 0
0 0

]
,

where Pu is the stabilizing Hermitian positive semidefinite
solution to the algebraic Riccati equation

PuAu + ĀT
uPu = PuBuR

−1BT
uPu. (10)

We now present the closed-form characterization of the non-
trivial solution Pu to the continuous-time algebraic Riccati
equation with vanishing state weight in (10).

Proposition 3 (Closed-Form Solution for R = 1) The
closed-form P̂u matrix that solves the continuous-time al-
gebraic Riccati equation with vanishing state weight in (10)
is given by the i-row, j-column block matrix Pij

P̂u = [Pij ] , ∀i, j = 1, · · · ,m. (11)

In turn, each block matrix Pij is defined by the ε-row, η-
column element

Pij =[
ε∑

l=1

r̄i,l,ni+1−ε

η∑
z=1

(
z + l − 2
z − 1

)
rj,z,nj+1−η(−1)z+l−2

(p̄i + pj)z+l−1

]
,

∀ε = 1, · · ·ni

∀η = 1 · · ·nj
, (12)

and ri,l,k as in (4) under a minimum phase assumption for
the plant model, that is with Bζ(s) = 1.

Proof: We begin this proof by evaluating the expression

BT
u e

ĀT
u τ P̂ue

AuτBu.

Upon replacing P̂u as in (11), together with Au and Bu as
in Assumption (3), we obtain

BT
u e

ĀT
u τ P̂ue

AuτBu = [BT
1 · · · BT

m]e
ĀT

1 τ · · · 0
...

. . .
...

0 · · · eĀ
T
mτ

 [
Pij

] e
A1τ · · · 0
...

. . .
...

0 · · · eAmτ


B1

...
Bm

 .

We now replace Pij as in (12) to obtain

BT
u e

ĀT
u τ P̂ue

AuτBu =[
τn1−1

(n1−1)!e
p̄1τ ··· ep̄1τ ··· τnm−1

(nm−1)!e
p̄mτ ··· ep̄mτ

]
[∑ε

l=1

∑η
z=1

(
z+l−2

z−1

)
r̄i,l,ni+1−εrj,z,nj+1−η(−1)z+l−2

(p̄i+pj)z+l−1

]
[

τn1−1

(n1−1)!e
p1τ ··· ep1τ ··· τnm−1

(nm−1)!e
pmτ ··· epmτ

]T
,

and perform explicitly the matrix multiplication between the
last two matrices on the RHS. By replacing η = nj + 1− w

and noticing that the sum
∑nj−w+1

z=1

∑nj

w=1 can be equally
expressed as

∑nj

z=1

∑nj−z+1
w=1 , we obtain

BT
u e

ĀT
u τ P̂ue

AuτBu =[
τn1−1

(n1−1)!e
p̄1τ ··· ep̄1τ ··· τnm−1

(nm−1)!e
p̄mτ ··· ep̄mτ

]
[∑ε

l=1

∑m
j=1

∑nj

z=1

∑nj−z+1
w=1

(
z+l−2

z−1

)
r̄i,l,ni+1−εrj,z,w(−1)z+l−2

(p̄i+pj)z+l−1
τw−1

(w−1)! e
piτ

]
. (13)

We now perform the matrix multiplication between the two
remaining matrices on the RHS of (13). We simultaneously
substitute ε with k, such that k = ni + 1 − ε, and notice
that the sum

∑ni−k+1
l=1

∑ni

k=1 can be equivalently expressed
as

∑ni

l=1

∑ni−l+1
k=1 . As a result we then obtain

BT
u e

ĀT
u τ P̂ue

AuτBu =

m∑
i=1

ni∑
l=1

ni−l+1∑
k=1

m∑
j=1

nj∑
z=1

nj−z+1∑
w=1

(
z+l−2

z−1

)
r̄i,l,krj,z,w(−1)z+l−2

(p̄i + pj)z+l−1

τw+k−2

(k−1)!(w−1)!
e(p̄i+pj)τ ,

which, upon taking conjugate on the RHS, matches the result
in (3) (since the SNR lower bound is itself a positive real
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number). For any arbitrary vector w ∈ Cnu we have

w̄TBT
u e

ĀT
u τ P̂ue

AuτBuw =

w̄T

 m∑
i=1

ni∑
l=1

ni−l+1∑
k=1

m∑
j=1

nj∑
z=1

nj−z+1∑
w=1

(
z+l−2

z−1

)
r̄i,l,krj,z,w(−1)z+l−2

(p̄i + pj)z+l−1

τw+k−2

(k−1)!(w−1)!
e(p̄i+pj)τ

)
w.

Observe that the RHS of the above expression is positive
since the sum is a squared H2 norm and wTw is a quadratic
expression. Let us introduce the notation v = eAuτBuw
and notice that since w is an arbitrary vector in Cnu , then
also v is an arbitrary vector in Cnu . As a result we have that
P̂u satisfies

v̄T P̂uv ≥ 0,

and thus proved that P̂u is a positive semidefinite matrix.

Let us consider now the lower bound to the channel SNR for
LTI stabilizability stated in (Braslavsky et al., 2005), which
is under the plant minimum phase assumption a result equiv-
alent to the one presented in equation (3), and is given by

P
Φ

>
m∑
i=1

2Re{pi}ni + δ, (14)

with δ =
∫ τ

0
BTPeAtBBT eĀ

T tPBdt and P
the stabilizing Hermitian positive semidefinite so-
lution of (9). From Lemma 2 we have that
δ =

∫ τ

0
BT

uPue
AutBuB

T
u e

ĀT
u tPuBudt. Also we no-

tice from (Rugh, 1995, Exercise 7.12, p.217) that

δ = BT
u e

ĀT
u τPue

AuτBu −BuPuBu,

whilst from (Braslavsky et al., 2007, Proof of Theorem 2.1)
we have that

BuPuBu =
m∑
i=1

2Re{pi}ni.

Thus the RHS of (14) reduces to BT
u e

ĀT
u τPue

AuτBu. In
summary we have that:

- The results in (3) and in (14) are equivalent under the
plant minimum phase assumption.

- The result in (14) can be restated as
BT

u e
ĀT

u τPue
AuτBu where Pu is the stabilizing

Hermitian positive semidefinite solution of (10).

- P̂u satisfies the restated form of (14), it is an Hermitian
matrix by its definition and it is also a positive semidef-
inite matrix.

0 1 2 3 4
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Figure 2: Numerical error for the solution of the continuous-
time algebraic Riccati equation with vanishing state weight
computed by MATLAB(Version 7.0.0.19920 (R14)), solid line,
and by use of Proposition 3, dashed line.

- The stabilizing Hermitian positive semidefinite solu-
tion of a continuous-time algebraic Riccati equation is
unique, (Lancaster e Rodman, 1995).

As a result of the above facts we conclude that P̂u = Pu,
that is, the proposed closed-form solution P̂u is indeed the
unique stabilizing Hermitian positive semidefinite solution to
the continuous-time algebraic Riccati equation with vanish-
ing state weight, which concludes the proof. 2

Notice that the choice of R = 1 is without loss of generality
since the closed-form solution Pλ for R = λ can be stated as
Pλ = λP̂. We follow up by presenting a suitable example.

410 Revista Controle & Automação/Vol.23 no.4/Julho e Agosto 2012



Example 2 : Let us consider the same case as in Example 1.
The overall closed-form solution for Pu is then given by

P̂u =


r̄1,1,2r1,1,2
(p̄1+p1)

r̄1,1,1r1,1,2
(p̄1+p1)

− r̄1,2,1r1,1,2
(p̄1+p1)2

r̄2,1,1r1,1,2
(p̄2+p1)

r̄1,1,2r1,1,1
(p̄1+p1)

− r̄1,1,2r1,2,1
(p̄1+p1)2

r̄1,1,1r1,1,1
(p̄1+p1)

− r̄1,1,1r1,2,1
(p̄1+p1)2

− r1,1,1r̄1,2,1
(p̄1+p1)2

+
2r̄1,2,1r1,2,1
(p̄1+p1)3

r̄2,1,1r1,1,1
(p̄2+p1)

− r̄2,1,1r1,2,1
(p̄2+p1)2

r̄1,1,2r2,1,1
(p̄1+p2)

r̄1,1,1r2,1,1
(p̄1+p2)

− r̄1,2,1r2,1,1
(p̄1+p2)2

r̄2,1,1r2,1,1
(p̄2+p2)

 .

In Figure 2 we observe a comparison between the above
closed-form solution and the solution obtained with the Mat-
lab command care. For matters of comparison we introduce
the following error function

eP =
∑
i,j

(
PuAu + ĀT

uPu −PuBuB
T
uPu

)2
,

where the sum is over each row and column element quanti-
fying the numerical mismatch between the LHS and RHS of
(10). In Figure 2 we show the plot of 10log10(eP ) as a func-
tion of p1 for both the closed-form solution and the algorith-
mic solution implemented by the command care. We observe
that the closed-form solution, for this example, is slightly su-
perior in terms of numerical precision to the one obtained
with Matlab. Notice also that as p1 approaches

√
2 we ap-

proach a loss of controllability in the system under study.
This can be directly verified since the A and B matrices in
this example are

A =

p1 1 0
0 p1 0
0 0 p2

 , B =

01
1

 ,

and the controllability matrix results in

[
B AB A2B

]
=

0 1 2p1
1 p1 p21
1 p2 p22

 .

Thus we observe that as p1 → p2 the above matrix loses full
rank, controllability is lost and the terms in the closed-form
solution tend to infinity due to the definition of the residue
factors ri,l,k (see Example 1).

4.1.1 Transformed Solution

The result from Proposition 3 can readily be extended in
many directions. Consider, for example, the closed-form so-
lution P̄ for R = 1 subject to a state-space transformation
T =

[
T1 T2

T3 T4

]
. The transformed closed-form solution can

then be obtained as

P̄ =

[
TT

1

TT
2

]
P̂u

[
T1 T2

]
. (15)

We make use of the above result to show how the closed-
form continuous-time algebraic Riccati equation solution
presented in (Rojas, 2010a) links to Proposition 3.

4.1.2 Rapprochement to Previous Continuous-
Time Algebraic Riccati Equation Results

The result in (Rojas, 2010a) does not account for multiplic-
ities greater than one for the unstable eigenvalues. To better
frame the present discussion we introduce the closed-form
solution as stated in (Rojas, 2010a) for two different unsta-
ble eigenvalues p1 and p2, both with multiplicity 1 and both
in R+

P̂ =

(
p1 + p2
p1 − p2

)2
[

2p1 − 4p1p2

p1+p2

− 4p1p2

p1+p2
2p2

]
.

Notice that as p1 → p2, or viceversa, the above solution di-
verges due to the factor p1 − p2 in the denominator of each
term. Observe that, under the assumption that p1 ̸= p2 the
same result is obtained from Proposition 3. However, we can
also use an ϵ argument to obtain a solution arbitrarily close in
value to the one for repeated eigenvalues. More so, to avoid
the explicit problem imposed by the factor p1 − p2, and as
suggested by the result in (15), we can make use of the trans-
formation

T =

[
p1 − p2 1

0 1

]
,

which gives, in turn, the following transformed closed-form
solution

P̄ =

[
2p1(p1 + p2)

2 2p1(p1 + p2)
2p1(p1 + p2) 2p1 + 2p2

]
.

Now, as p1 → p2, the above solution converges to the value[
8p3

2 4p2
2

4p2
2 4p2

]
, which is the result predicted by Proposition 3 for

an unstable pole with multiplicity 2. We thus have shown that
the result in Proposition 3 and (Rojas, 2010a) agree under
both scenarios that is p1 ̸= p2 and p1 = p2, for example by
invoking a particular non-singular transformation T.

4.1.3 Extension to the Multivariable Case

The plant model representation discussed in Section 2 is re-
stricted to a single-input single-output (SISO) system. We
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illustrate the point by using the simple case of one real un-
stable pole with multiplicity 2

G(s) =C (sI−A)
−1

B

=
[
c1 c2

] [ 1
s−p

1
(s−p)2

0 1
(s−p)

] [
0
1

]
=

c1
s− p

+
c2

(s− p)2
,

where we have dropped the u-subindex for clarity. Notice
that the choice of BT =

[
0 1

]
is without loss of gen-

erality since we can always choose C =
[ c1
b2

c2
b2

]
. The

same applies to the case of a single-input multiple-output
(SIMO) system. The situation for a multiple-input single-
output (MISO) system is different. Let us consider again the
simple case of one real unstable pole with multiplicity 2, such
a system would then be described by

G(s) =C (sI−A)
−1

B

=
[
c1 c2

] [ 1
s−p

1
(s−p)2

0 1
(s−p)

][
0 0
b2 b4

]
=
[
c1b2
s−p + c2b2

(s−p)2
c1b4
s−p + c2b4

(s−p)2

]
.

Given the dimensions of B we can extend our focus to the
multiple-input multiple-output (MIMO) case

G(s) =C (sI−A)
−1

B

=

[
c1 c2
c3 c4

] [ 1
s−p

1
(s−p)2

0 1
(s−p)

] [
b1 b3
b2 b4

]

=

[
c1b1+c2b2

s−p + c1b2
(s−p)2

c1b3+c2b4
s−p + c1b4

(s−p)2
c3b1+c4b2

s−p + c3b2
(s−p)2

c3b3+c4b4
s−p + c3b4

(s−p)2

]
.

For both the MISO and MIMO case the change in dimen-
sions of B renders the approach of Proposition 3 unsuitable.
More so, the amount of residue coefficients does not allow
any element of B to be 1 without loss of generality as in
the SISO and SIMO cases. The question is thus, can we deal
with a B matrix with dimensions n×r with r > 1?. A partial
answer can be found by observing the continuous-time alge-
braic Riccati equation with vanishing state weight in (10).
Let us define

P−1
u , Y, BuR

−1BT
u , V.

If we multiply (10) by Y from the left and right we obtain

AY +YĀT = V, (16)

where again we have dropped the u-subindex for clarity. No-
tice that equation (16) is a Lyapunov equation which can be
solved in closed-form since each i − j component of Y is
given by

Yi,j =
Vi,j − Yi+1,j − Yi,j+1

2p
,

with Yi+1,j = 0 if i = n and Yi,j+1 = 0 if j = n. For the
simple case of one real unstable pole with multiplicity 2 the
closed-form solution Ŷ to the Lyapunov equation is then

Ŷ =


V1,1

2p − V1,2

2p2 +
V2,2

4p3

V1,2

2p − V2,2

4p2

V1,2

2p − V2,2

4p2

V2,2

2p

 .

We then have, for the limited 2×2 case that the inverse of Y
is given by

P̂ =

 8p3 V2,2

V 2
2,2+4p2(V1,1V2,2−V 2

1,2)

4p2

(
V2,2−2pV1,2

V 2
2,2+4p2(V1,1V2,2−V 2

1,2)

)

4p2

(
V2,2−2pV1,2

V 2
2,2+4p2(V1,1V2,2−V 2

1,2)

)

4p

(
2p2V1,1−2pV1,2+V2,2

V 2
2,2+4p2(V1,1V2,2−V 2

1,2)

)
 .

Thus, applying the above result to the MIMO case with B =[
b1 b3
b2 b4

]
with R =

[
λ1 0
0 λ2

]
gives

P̂ =


8p3λ1λ2(λ1b24+λ2b22)

(λ1b24+λ2b22)
2+4p2λ1λ2(b1b4−b2b3)2

4p2λ1λ2(λ1b4(b4−2pb3)+λ2b2(b2−2pb1))

(λ1b24+λ2b22)
2+4p2λ1λ2(b1b4−b2b3)2

4p2λ1λ2(λ1b4(b4−2pb3)+λ2b2(b2−2pb1))

(λ1b24+λ2b22)
2+4p2λ1λ2(b1b4−b2b3)2

4pλ1λ2(λ1(p2b23+(pb3−b4)2)+λ2(p2b21+(pb1−b2)2))
(λ1b24+λ2b22)

2+4p2λ1λ2(b1b4−b2b3)2

 .

We then have that the answer to the question “can we deal
with a B matrix with dimensions n×r with r > 1?” is in the
positive and a closed-form solution to the continuous-time
algebraic Riccati equation can still be found. At the same
time we notice that the closed-form solution for such a B
matrix is not a direct implication of the result in Proposition 1
and thus it is outside the scope of the present work.

4.2 Beyond Stabilization

The infimal SNR for stabilization result in Proposition 3
minimizes the power at the channel input. Therefore intu-
ition suggests that performance should impose a greater SNR
lower bound. This has been verified for a disturbance re-
jection type of performance in (Rojas, 2009c). Performance
can also be introduced by modifying the convex functional
as to find a stabilizing controller that minimizes the chan-
nel input power and simultaneously, for example, the plant
output power. Such modification can be directly handled
in the LQG/LTR setting, as suggested in (Rojas, 2009a), or
through an LMI setting, as in turn suggested in (Elia, 2005).
We expect that the resulting continuous-time algebraic Ric-
cati equation will now include a non-vanishing state weight
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as in (9). Notice that performance subject to constrained
SNR is also the focus, in a slightly different setting, of (Silva
et al., 2010).

5 CONCLUSION

In this paper we have presented the infimal SNR for LTI
stabilizability in closed-form when the plant LTI model has
repeated unstable poles, repeated nonminimum phase zeros
and time-delay. We then followed by presenting the solu-
tion in closed-form to the related class of continuous-time
algebraic Riccati equations with vanishing state weight and
repeated unstable eigenvalues. This result extends on the
previously reported result for distinct unstable eigenvalues,
(Rojas, 2010a). Future research should consider recent de-
velopments in the study of SNR limitations for MIMO sys-
tems (Shu e Middleton, 2011), as well as extending the class
of continuous-time algebraic Riccati equations to the case of
non vanishing state weight (as suggested by the preliminary
results developed in (Rojas, 2010b)).
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