Divergioic Acid, a Triterpene from Vochysia divergens

Sonia C. Hess^a, and Franco Delle Monache^b*

^aDepartamento de Morfofisiologia/CCBS, Universidade Federal de Mato Grosso do Sul, C.P. 549, 79070-900 Campo Grande - MS, Brazil;

^bCentro Chimica dei Recettori del C.N.R., Istituto di Chimica, U.C.S.C., Largo Francesco Vito 1, 00168, Roma, Italia

Um novo triterpeno lupânico, ácido divergióico, além de β -sitosterol, ácidos betulínico, serícico e 24-hidroxitormêntico, e o éster (28 \rightarrow 1) β -D-glucopiranosílico do último, foram obtidos a partir da casca do caule de *Vochysia divergens*. A estrutura do ácido divergióico foi elucidada por meio de técnicas espectroscópicas, e caracterizada como sendo o ácido 2α , 3β , 6β -trihidroxi-lup-20(29)-en-28-óico.

A new lupane triterpene, divergioic acid, has been isolated from the stem bark of *Vochysia divergens* together with β -sitosterol, betulinic, sericic and 24-hydroxytormentic acids and the (28 \rightarrow 1) β -D-glucopyranosyl ester of the latter. The structure of divergioic acid was elucidated by spectroscopic techniques and characterized as 2α , 3β , 6β -trihydroxy-lup-20(29)-en-28-oic acid.

Keywords: Vochysia divergens, Vochysiaceae, lupene, divergioic acid

Introduction

Vochysia divergens Pohl (Vochysiaceae) is a tree commonly found in wet soils of the "pantanal" of Mato Grosso do Sul, Brazil, and used in folk medicine against infections and asthma 1 . In previous reports we described the isolation of β -sitosterol, betulinic and sericic acids from the stem bark, as well as the antifungal 2 and antibacterial 3 activities of sericic acid. In this communication we report the structure elucidation of divergioic acid, a novel lupene. 24-Hydroxytormentic acid and its glucopyranosyl ester were also isolated.

Results and Discussion

In addition to β -sitosterol, betulinic and sericic acids, the reinvestigation of the EtOH extract from the stem bark afforded 24-hydroxytormentic acid and its glucopyranosyl ester in high yield (see Experimental), and a new triterpene, which was named divergioic acid (1). The molecular formula $C_{30}H_{48}O_5$ was deduced from the NMR data and the molecular ion (M⁺ at m/z 488) in the mass spectrum. The ¹H-NMR spectrum exhibited signals at δ 4.97 (1 H), δ 4.80 (1H) and δ 1.81 (3 H), characteristic of triterpenes with a lupene skeleton. In addition, five methyl singlets and signals for three methines on hydroxyl bearing carbons (δ 4.86, br s; δ 4.30, dt and δ 3.44, d) were present. By

irradiation at δ 4.30, the signal at δ 3.44 became a singlet. These findings suggested a lup-20(29)-ene gross structure with two OH in position 2 and 3, and an additional hydroxyl. In accordance, the ¹³C-NMR spectra (Table 1) showed the appropriate signals for the isopropylene moiety and for three hydroxylated carbons. Comparison of ¹³C-NMR data of 1 with those of betulinic acid, 2^4 (Table 1) revealed a good agreement of the values for the carbons of rings C/D/E. Furthermore, the signals due to A/B ring carbons were found to be very similar to those of 2α , 3β , 6β , 19-tetrahydroxy-urs-12-en-28 oic acid, 6^5 . Table 2 reportes the main long-range C-H and H-C connectivities found in the long-range HETCOR spectrum and by selective INEPT experiments, respectively, which are in agreemen with the structure proposed for 1. Therefore, divergioic acid (1) was assigned the structure $2\alpha,3\beta,6\beta$ -trihydroxy-lup-20(29)-en-28-oic acid and is the first example of a lupane possessing the rare 6-OH group.

Experimental

Plant material

Vochysia divergens Pohl (Vochysiaceae) was collected in Corumba (Mato Grosso do Sul, Brazil) and identified by G. A. Damasceno Jr. (DAM/CEUC/UFMS) and Arnildo Pott (CPAP/EMBRAPA). A voucher specimen is depos-

Table 1. NMR data of compounds $1, 2^4$ and 6^5 (75 MHz, pyridine-d₅).

-			
Carbon	1	2	6
1	50.2	38.5	50.3
2	68.9	28.2	69.6
3	84.0	78.1	84.7
4	38.5	39.4	38.8
5	56.5	55.9	57.4
6	67.7	18.7	68.8
7	42.5	34.7	41.8
8	40.5	41.0	41.2
9	51.7*	50.9	49.1
10	37.4	37.5	40.3
11	21.4	21.1	24.7
12	26.1	26.0	129.6
13	37.7	39.2	139.4
14	42.9	42.8	42.1
15	30.2	30.2	29.5
16	32.7	32.8	27.8
17	56.5	56.6	49.7
18	51.6*	49.7	55.1
19	47.6	47.7	73.6
20	151.1	151.4	43.1
21	31.1	31.1	26.6
22	37.4	37.4	39.0
23	28.6	28.5	29.0
24	19.1	16.2	16.6
25	18.8	16.3	18.5
26	17.0	16.2	18.8
27	15.0	14.8	24.8
28	178.6	179.0	182.2
29	109.6	110.0	27.1
30	19.3	19.4	18.5

^{*}These values may be interchanged.

ited in the herbarium of the Centro Universitario de Corumba/UFMS (Corumba, MS, Brazil) under number 0500.

Extraction and isolation

The powdered stem bark (4.0 kg) was exhaustively extracted with cold EtOH. After evaporation, a mixture of MeOH/H₂O, 95:5 (250 mL) was added to a part (20 g) of the EtOH extract, and filtered. Evaporation of the soluble portion (14 g) and washing with cold CHCl₃ yielded two fractions, B (soluble, 8 g) and C (insoluble, 6 g). CC of

Table 2. Long-Range NMR connectivities of compound 1.

H-C*		C-H [#]	
Irradiated proton	Connected carbons	Carbon	Connected protons
Me-23	C-3, C-4, Me-24	C-2	H-3
Me-24	C-4, C-5	C-4	Me-24
Me-26	C-9, C-14	C-7	H-6
Me-27	C-8, C-14	C-8	Me-26
Me-30	C-20	C-14	Me-26
H-6	C-4, C-8	C-20	Me-30

^{*}Selective INEPT experiments.

$$R_1$$
 R_2
 R_3
 R_3

 $3 R = OH; R_1 = R_2 = R_3 = H; R_4 = Me$

 $4 R = OH; R_1 = R_2 = R_4 = H; R_3 = Me$

5 R = OH; R₁= R₄ = H; R₂ = Gluc; R₃ = Me

6 R = H; R₁= OH; R₂ = R₄ = H; R₃ = Me

fraction B on SiO₂ yielded β-sitosterol (30 mg), betulinic acid, **2** (300 mg), by elution with a gradient of EtOAc in hexane; impure **1**, a mixture of sericic (**3**) and 24-hydroxytormentic (**4**) acids and the impure glucoside of **4**, **5** (4.2 g) were obtained by elution with a gradient of MeOH in EtOAc. CC of fraction C (SiO₂; gradient of MeOH in EtOAc) gave **2** (20 mg), impure **1** (80 mg) and a mixture (2 g) of **3**, **4** and **5**. Extended chromatography (SiO₂, hexane/EtOAc, 7:3) of the pooled impure **1** afforded divergioic acid (42 mg). Repeated CC (SiO₂; CHCl₃/MeOH/H₂O 19.5:8.5:2.3, and EtOAc/MeOH, 9:1) of the fractions containing impure **3**, **4** and **5** gave pure **3**

^{*}Long-Range HETCOR.

(500 mg), pure **4** (700 mg), a mixture of **3** and **4** (3.2 g) and the (28 \rightarrow 1) β-D-glucopyranosyl ester **5** (300 mg). ¹³C-NMR data for **3** (2α,3β,19α,24-tetrahydroxyolean-12-en-28 oic acid) were not available in the literature, and the signals were attributed by comparison with the respective data for rings A/B of **4** (2α,3β,19,24-tetrahydroxyurs-12-en-28 oic acid)⁶ and for rings C/D/E of arjungenin (2α,3β,19α,23-tetrahydroxyolean-12-en-28 oic acid)⁷. Reaction of **3** with diazomethane afforded the respective methyl ester, ¹H-NMR data were in agreement with data previously published⁸.

Divergioic acid. 1 Mp 155-6 °C; $[\alpha]_D^{20}$ -7° (*c* 3.0, MeOH); ¹H-NMR (300 MHz, Pyridine- d_5), δ: 4.97 and 4.80 (br s, H₂-29), 4.86 (brs, H-6), 4.30 (dt, H-2), 3.57 (m, H-19), 3.44 (d, J = 9.3 Hz; H-3), 2.90 (m, H-13), 2.63 (m, H-16α), 2.27 and 2.25 (m, H-22α and H-21α), 1.81 (s, Me-30), 1.77 (s, Me-25), 1.69 (s, Me-26), 1.60 (s, Me-24), 1.46 (s, Me-23), 1.08 (s, Me-27); ¹³C-NMR (75 MHz, Pyridine- d_5) see Table 1.

Known triterpenes

Sericic acid, 3: $[\alpha]_D^{20} + 33^\circ$ (*c* 0.3, MeOH), Mp 280 °C (dec.), IV and MS data were comprable to those in Ref. 8. ¹³C-NMR (75 MHz, Pyridine- d_5), δ : C-1 47.2; C-2 68.4; C-3 85.6; C-4 43.7; C-5 56.5; C-6 19.2; C-7 33.5; C-8 39.9; C-9 48.3; C-10 38.3; C-11 28.9; C-12 123.5; C-13 144.6; C-14 41.9; C-15 29.1; C-16 28.2; C-17 45.9; C-18 44.6; C-19 81.2; C-20 35.5; C-21 28.2; C-22 33.4; C-23 23.9; C-24 65.4; C-25 17.2; C-26 17.0; C-27 24.6; C-28 180.5; C-29 28.5; C-30 24.7.

<u>24-Hydroxytormentic acid,</u> 4: $[\alpha]_D^{20}$ +24° (c 0.3, MeOH), NMR data in agreement with those previously reported were obtained⁶;

24-Hydroxytormentic acid (281)-D-glucopyranosyl ester, $\underline{\mathbf{5}}$: $[\alpha]_D^{20}$ -9° (c 0.7, MeOH), NMR data in agreement with those previously reported were obtained⁶.

Acknowledgements

The authors are grateful to G.A. Damasceno Jr. and A. Pott for the botanical identification of the plant material. Thanks are due to PROPP/UFMS and CNR/Itália for finantial support.

References

- 1. Pott, A.; Pott, V.J. In *Plantas do Pantanal;* EM-BRAPA; Corumbá, Brasil, 1994.
- 2. Hess, S.C.; Brum, R.L.; Honda, N.K.; Morais, V.M.F.; Gomes, S.T.A.; Lima, E.O.; Cechinel Filho, V.; Yunes, R.A. *Fitoterapia* **1995**, *66*, 549.
- 3. Hess, S.C.; Brum, R.L.; Honda, N.K.; Cruz, A.B.; Moretto, E.; Cruz, R.B.; Messana, I.; Ferrari, F.; Cechinel Filho, V.; Yunes, R.A. *J. Ethnopharm.* **1997**, 47, 97.
- 4. Macias, F.A.; Simonet, A.M.; Estebam, M.D. *Phytochemistry* **1994**, *36*, 1369.
- Gopalsamy, N.; Vargas, D.; Gueho, J.; Ricaud, C.; Hostettman, K. 1988 Phytochemistry 1994, 27, 3593.
- 6. Zhou, X.H.; Kadsai, K.; Ohtami, O.; Tanaka, O.; Nie, R.; Yang, C.; Zhou, J.; Yamasaki, K. *Phytochemistry* **1992**, *31*, 3642.
- 7. Nandy, A.K.; Podder, G.; Sahu, N.P.; Mahato, S.B. *Phytochemistry* **1989**, 28, 2769.
- 8. Bombardelli, E.; Bonati, A.; Gabetta, B.; Mustich, G. *Phytochemistry* **1974**, *13*, 2559.

Received: August 7, 1998