©2001 Soc. Bras. Química 0103 - 5053 \$6.00+0.00

Short Report

Molecular Structure of Heterocycles: 6. Solvent Effects on the ¹⁷O NMR Chemical Shifts of 5-Trichloromethylisoxazoles

Marcos A. P. Martins^{a*}, Rogério A. Freitag^b, Nilo E. K. Zimmermanna, Adilson P. Sinhorin^a, Wilson Cúnico^a, Giovani P. Bastos^a, Nilo Zanatta^a and Helio G. Bonacorso^a

^aDepartamento de Química, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil

^bDepartamento de Química Orgânica - I.Q., Universidade Federal de Pelotas, Pelotas - RS, Brazil

Com o objetivo de elucidar e quantificar os efeitos do solvente sobre os deslocamentos químicos de ¹⁷O de três 5-triclorometilisoxazóis [(1a) não-, (1b) 3-metil- e (1c) 4-metil-substituído] foi realizada uma análise de regressão multilinear, utilizando os parâmetros solvatocrômicos de Kamlet-Abboud-Taft (KAT). Os deslocamentos químicos do átomo de oxigênio do anel, O1, dos compostos **1a-c** mostraram dependências (em ppm) em função da polaridade-polarizabilidade do solvente de -4.8 π *, -3.2 π *, -8.9 π *, em função da acidez do solvente (HBD) de 0.9 α , -0.2 α , -2.7 α e em função da basicidade do solvente (HBA) de -0.4 β , 1.9 β , 0.9 β , respectivamente. Os dados de carga líquida de O1 e de momento de dipolo, obtidos por cálculos de orbitais moleculares (AM1), são comparados com os parâmetros de efeitos do solvente determinados para os compostos **1a-c**.

A multilinear-regression analysis using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the ¹⁷O chemical shifts of three 5-trichloromethylisoxazoles [(**1a**) non-, (**1b**) 3-methyl- and (**1c**) 4-methyl-substituted] is reported. The chemical shifts of ring oxygen atom, O1, of compounds **1a-c** show dependencies (in ppm) on the solvent polarity-polarizability of $-4.8\pi^*$, $-3.2\pi^*$, $-8.9\pi^*$, on the solvent hydrogenbond-donor (HBD) acidities 0.9α , -0.2α , -2.7α and the solvent hydrogen-bond-acceptor (HBA) basicities -0.4β , 1.9β , 0.9β , respectively. The data of net charges of O1 and dipole moment, obtained from MO calculations (AM1), are compared with the solvent effect parameters obtained for compounds **1a-c**.

Keywords: ¹⁷O NMR, solvent effects, isoxazoles, MO calculations

Introduction

Several papers have been devoted to the empirical and theoretical studies of solvent effect on the ¹⁷O chemical shifts in different organic compounds^{1,2}. Special attention has been devoted to the study of solvent effects in amides, where the ¹⁵N and ¹⁷O nuclei are observed². Recently we applied a multilinear-regression analysis using the Kamlet-Abboud-Taft (KAT)³ solvatochromic parameters in order to elucidate and quantify the solvent effects on the ¹⁷O chemical shifts of 1,1,1-trichloro-4-methoxy-3-alken-2-ones⁴ and 5-hydroxy-4,5-dihydroisoxazoles^{5a}. According to the KAT formalism, the observed chemical shift of compound X at infinite dilution in solvent Y, δ^{X}_{Y} , would be given by the relationship³ shown in Equation 1.

$$\delta^{X}{}_{Y} = \delta^{X}{}_{CH} + s^{X}\left(\pi^{*}{}_{Y} + d^{X}\delta_{Y}\right) + a^{X}\alpha_{Y} + b^{X}\beta_{Y}$$
(1)

The solvent effects are described by the solvent parameters δ^{X}_{CH} , π^{*}_{Y} , δ_{Y} , α_{Y} and β_{Y} . The π^{*}_{Y} scale is an index of solvent dipolarity/polarizability, which measures the ability of the solvent to stabilize a charge or a dipole due to its dielectric effect. The $\alpha_{\rm Y}$ scale of solvent hydrogenbond-donor (HBD) acidities describes the ability of the solvent to donate a proton in a solvent-to-solute hydrogen bond. The $\beta_{\rm V}$ scale of hydrogen-bond-acceptor (HBA) basicities measures the ability of the solvent to accept a proton (i.e., to donate an electron pair) in a solute-to-solvent hydrogen bond. The $\delta_{\rm Y}$ parameter is a polarizability correction term for polychlorinated ($\delta_{y} = 0.5$) and aromatic $(\delta_{\rm Y} = 1.0)$ solvents. The coefficients $s^{\rm X}$, $a^{\rm X}$ and $b^{\rm X}$ in Equation 1 define the sensitivity of $\delta^{X}{}_{Y}$ to solvent dipolarity/ polarizability, acidity and basicity, respectively. The product of coefficients $s^{X}d^{X}$ defines the sensitivity of $\delta^{X}{}_{Y}$ for the

^{*}e-mail: mmartins@base.ufsm.br ; http://www.ufsm.br/nuquimhe

polarizability correction term. The term δ^{X}_{CH} is the chemical shift of substrate X measured in cyclohexane since this reference solvent does not form hydrogen bond ($\alpha_{CH} = \beta_{CH} = 0$) and was selected to define the origin of $\pi^{*}{}_{Y}$ scale ($\pi^{*}{}_{CH} = 0$). The term $s^{X} (\pi^{*}{}_{Y} + d^{X} \delta_{Y})$ accounts for the difference between the contribution to $\delta^{X}{}_{Y}$ in solvent Y and in cyclohexane from the solute-solvent interactions other than hydrogen bonding. The terms $a^{X}\alpha_{Y}$ and $b^{X}\beta_{Y}$ represent the contributions from hydrogen bonds of substrate X with solvents HBD and HBA, respectively.

As a part of our research program we have studied the synthesis⁶⁻⁹, structure⁵ and the multi-nuclear NMR chemical shifts¹⁰ of 5-, 6- and 7-membered heterocycles. The aim of this work is to elucidate and quantify the solvent effects on the ¹⁷O chemical shifts of 5-trichloromethyl-isoxazoles **1a-c** using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters³ (Scheme).

Experimental

Compounds

The synthesis of compounds 1a-c was developed in our laboratories^{6a}.

NMR spectroscopy

The ¹⁷O NMR spectra were recorded on a Bruker DPX 400 at 54.25 MHz. The sample temperature was set at 323 ± 1 K. The instrumental settings were as follows: spectral widths 38 KHz (705 ppm), 8K data points, pulse width 12 μ s (90°), acquisition time 54 ms, preacquisitions delay 10 ms, 16000-90000 scans, LB of 100 Hz, sample spinning 20 Hz. The spectra were recorded with a RIDE (RIng Down Eliminate) sequence¹³ for suppression of acoustic ringing. The general reproducibility of chemical shift data is estimated to be better than ± 1.0 ppm (± 0.2 within the same series). The half-height widths were in the range 150-800 Hz. All spectra were acquired in a 10mm tube, at natural abundance, in acetone, methanol, acetonitrile, dimethyl-sulfoxide, toluene, chloroform and dichloromethane as solvents. The concentration of the samples used in these experiments was 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0 mol L^{-1} , and the signals were referenced to external H_2O (in a capillary coaxial tube).

Semiempirical MO calculations

The MO calculations were carried out by the Austin Model 1 (AM1) semiempirical method¹¹, implemented in the HyperChem 6.03 package (1999)¹². Geometries were completely optimized without fixing any parameter, thus bringing all geometric variables to their equilibrium values. The energy minimization protocol employs the Polak-Ribiere algorithm, a conjugated gradient method^{11,12}. Convergence to a local minimum is achieved when the energy gradient is < 0.01 kcal mol⁻¹. The calculations were performed on a PC Pentium IV 1.4 GHz computer equipped with a printer.

Results and Discussion

The ¹⁷O chemical shifts of 5-trichloromethylisoxazoles **1a-c** in various solvents are listed in Table 1. These values were determined by extrapolation to infinite dilution from spectral data obtained in several concentrations (0.5 to 6 mol L⁻¹) relative to external water, at 323 K (see experimental). The Kamlet-Abboud-Taft (KAT) solvatochromic parameters (π^*_Y , α_Y , β_Y and δ_Y) used in the present work are also given in Table 1. Considering the ¹⁷O NMR chemical shifts of the oxygen atom of the heterocyclic ring (O1) of compounds **1a-c** and according to the KAT formalism, we can re-write Equation 1 as Equation 2 (where X = O1).

$$\delta^{O1}{}_{Y} = \delta^{O1}{}_{CH} + s^{O1} (\pi^{*}{}_{Y} + d^{O1} \delta_{Y}) + a^{O1} \alpha_{Y} + b^{O1} \beta_{Y}$$
(2)

Table 2 presents the least-squares-fitted solute (**1a-c**) estimates using Equation 2. The chemical shifts of ring oxygen atom, O1, of compounds **1a-1c** show dependencies (in ppm) on the solvent polarity-polarizability of $-4.8\pi^*$, $-3.2\pi^*$, $-8.9\pi^*$, on the solvent hydrogen-bond-donor (HBD) acidities 0.9α , -0.2α , -2.7α and on the solvent hydrogen-bond-acceptor (HBA) basicities -0.4β , 1.9β , 0.9β , respectively.

Preliminary comparison shows that the response values of the oxygen chemical shifts to the solvent-solute dipolarity-polarizability (s^{O1}) are of shielding effect for O1. The response to the solvent HBD acidities (a^{O1}) is of deshielding for O1 of **1a** and shielding for **1b** and **1c**.

Table 1. ¹⁷O NMR chemical shifts of compounds **1a-c** at infinite dilution^a and solvent parameters^b used in Equation 2.

Solvent		Compound	l	So	Ivent P	aramete	ers
Y	1a	1b	1c				
	01	01	01	π^*	α	β	δ
Me ₂ C=O	340.42	332.60	346.00	0.62	0.08	0.48	0.0
MeOH	340.96	332.56	343.15	0.60	0.93	0.62	0.0
MeCN	339.85	331.77	343.84	0.66	0.19	0.31	0.0
Me ₂ SO	338.08	331.79	342.41	1.00	0.00	0.76	0.0
PhÑe	342.03	335.39	348.06	0.49	0.00	0.11	1.0
CHCl ₃	340.90	333.10	345.17	0.69	0.44	0.00	0.5
CH ₂ Cl ₂	340.85	332.56	343.61	0.73	0.30	0.00	0.5
^a See experimental: ^b From references 2.3.							

Table 2. Least-square-fitted solute 1a-c parameters for Equation 2.							
Compd.	δ ⁰¹ CH	s ⁰¹	sd ^{O1}	d^{O1}	a^{O1}	b^{O1}	r
1a	343.32	-4.850	1.209	-0.249	0.896	-0.456	0.989
1b	333.47	-3.190	3.305	-1.036	-0.192	1.978	0.991
1c	350.67	-8.946	1.843	-0.206	-2.724	0.890	0.949

The influence of the solvent hydrogen-bond-acceptor (HBA) basicities (b^{O1}) is of shielding effect for **1a** and deshielding for **1b** and **1c**.

The contributions (in ppm) to the ¹⁷O chemical shifts of O1 for compounds 1a-c from the terms of Equation 2 are listed in Table 3. The contribution of solvent-solute dipolarity-polarizability ($s^{O1}\pi^*$) shows a shielding effect for chemical shift of O1 groups (1a-c) in all solvents, in the following order: dimethylsulfoxide > dichloromethane > chloroform > acetonitrile > acetone > methanol > toluene. The contribution of solvent HBD acidities $(a^{O1}\alpha)$ shows a negligible (< 1.0 ppm) deshielding (1a) or deshielding (1b and 1c) effect on the chemical shift of O1, except for methanol and chloroform in compound 1c. The contribution response to the solvent HBA basicities $(b^{O1}\beta)$ show a negligible (< 1.0 ppm) shielding (1a) or deshielding (1b and 1c) effect for chemical shift of O1 oxygen atom, except for methanol and dimthylsulfoxide in compound 1b.

Considering that the terms s^{O1} , a^{O1} and b^{O1} are a measurement of the sensitivity of the studied compound to the solvent dipolarity/polarizability (π^*_{Y}), the solvent hydrogen-bond-donor acidities (α_Y) and the solvent hydrogen-bond-acceptor basicities (β_Y), respectively, the differences between these parameters for compounds **1a-c** must reflect the differences in some intramolecular properties of these molecules. In order to better understand the differences of the sensitivity of each compound to the solvent effects the MO calculations were performed. Selected data of the most stable molecular structure of compounds **1a-c** were determined by energy minimization calculations using the AM1 semiempirical method^{11,12} are listed in Table 4.

Table 3. Contributions (in ppm) to the	e ¹⁷ O	chemical	shift o	of O1	of
compounds 1a-c from terms of Equatio	n 2.				

	1 a	
$s^{O1}\pi^*$	$a^{O1}\alpha$	$b^{O1}\beta$
-3.007	0.072	-0.219
-2.910	0.833	-0.283
-3.201	0.170	-0.141
-4.850	0.000	-0.347
-2.377	0.000	-0.050
-3.347	0.394	0.000
-3.541	0.269	0.000
	1b	
$s^{O1}\pi^*$	$a^{O1}\alpha$	$b^{O1}\beta$
-1.978	-0.015	0.949
-1.914	-0.179	1.226
-2.105	-0.036	0.613
-3.190	0.000	1.503
-1.563	0.000	0.218
-2.201	-0.084	0.000
-2.329	-0.058	0.000
	1c	
$s^{O1}\pi^*$	$a^{O1}\alpha$	$b^{O1}\beta$
-5.547	-0.218	0.427
-5.368	-2.533	0.552
-5.904	-0.518	0.276
-8.946	-0.000	0.676
-4.384	-0.000	0.098
-6.173	-1.199	0.000
-6.531	-0.817	0.000
	$s^{O1}\pi^*$ -3.007 -2.910 -3.201 -4.850 -2.377 -3.347 -3.541 $s^{O1}\pi^*$ -1.978 -1.978 -1.978 -1.978 -1.914 -2.105 -3.190 -1.563 -2.201 -2.329 $s^{O1}\pi^*$ -5.547 -5.368 -5.904 -8.946 -4.384 -6.531	$s^{O1}\pi^*$ $a^{O1}\alpha$ -3.007 0.072 -2.910 0.833 -3.201 0.170 -4.850 0.000 -2.377 0.000 -3.347 0.394 -3.541 0.269 1b $s^{O1}\pi^*$ $a^{O1}\alpha$ -1.978 -0.015 -1.914 -0.179 -2.105 -0.036 -3.190 0.000 -1.563 0.000 -2.329 -0.058 1c $s^{O1}\pi^*$ $a^{O1}\alpha$ -5.547 -0.218 -5.368 -2.533 -5.904 -0.518 -8.946 -0.000 -4.384 -0.000 -6.173 -1.199 -6.531 -0.817

Although the solvent effect was obtained only for three compounds, and therefore we can not make a statistical treatment, when these data were compared with molecular data obtained by MO calculations, it was possible to observe some reasonable trends.

The solvent-solute dipolarity-polarizability (s^{O1}) does not show any trend when compared with the dipole moments of compounds **1a-c** (Table 4). The other parameters show a tendency to decrease (a^{O1}) and increase (b^{O1}) with dipole moments of compounds **1a-c**. All absolute values of solvent parameters (s^{O1} , a^{O1} , b^{O1}) for O1 decrease with the decrease of the net charge in this atom (Table 4).

Conclusion

This work show the validaty to use the Kamlet-Abboud-Taft (KAT) model for complete evaluation of the solvent effects on the ¹⁷O chemical shifts of compounds **1a-c**. From a multilinear-regression analysis using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters (π^*_{Y} , α_{Y} , β_{Y} and δ_{Y}) and the observed ¹⁷O chemical shifts of compounds **1a-c**, at infinite dilution, it was possible to determine the terms s^{O1} , a^{O1} and b^{O1} . These terms are a measurement of the sensitivity of the studied compounds to the solvent dipolarity/polarizability, the solvent hydrogen-bond-donor acidities and the solvent hydrogen-bond-acceptor basicities, respectively.

	Compounds			
Data	1a	ı 1b	1c	
Oxygen Net Charge	-0.0304	-0.0302	-0.0338	
Dipole (sum, debyes)	2.624	2.982	3.140	
Bindind Energy (kcal.mol-1)	-1016.96	-1300.20	-1299.66	
Bond Length (Å)				
O1-N2	1.3131	1.3120	1.3119	
N2-C3	1.3430	1.3507	1.3401	
C3-C4	1.4596	1.4655	1.4663	
C4-C5	1.3820	1.3797	1.3855	
C5-O1	1.4218	1.4212	1.4253	
C3-H3	1.0915	-	1.0913	
C4-H4	1.0860	1.0858	-	
C3-CH3	-	1.4734	-	
C4-CH3	-	-	1.4606	
C5-C6	1.4748	1.4747	1.4755	
Bond Angle (degrees)				
O1N2C3	109.57	109.60	109.53	
N2C3C4	109.07	108.54	109.28	
C3C4C5	104.07	104.34	103.82	
C4C5O1	107.71	107.71	107.54	
C501N2	109.58	109.81	109.84	
N2C3H3	123.65	-	123.95	
C5C4H4	129.31	129.46	-	
N2C3CH3	-	126.91	-	
C5C4CH3	-	-	131.44	
C5C6C1	109.32	109.34	110.60	
01C5C6	117.41	117.39	115.70	
Dihedral Angle (degrees)				
O1C5C4H4	180.00	179.96	-	
O1N2C3H3	180.00	-	180.00	
O1C5C4CH3	-	-	179.96	
O1N2C3CH3	-	179.75	-	
O1C5C6Cl	180.00	179.68	179.16	
H4C4C3CH3	-	0.28	-	
H3C3C4CH3	-	-	0.02	
H3C3C4H4	0.00	-	-	
ac				

Table 4. Selected structural dataa obtained by AM1 calculations for compounds 1a-c.

^aSee experimental.

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq / PADCT) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. The fellowships from CNPq, CAPES and FAPERGS are also acknowledged.

References

1. (a) Häkinen, A.-M.; Ruostesuo, P.; Kurkisuo, S. Magn. Reson. Chem. 1985, 23, 311; (b) Ruostesuo, P.; Häkinen, A.-M.; Peltola, K. Spectrochim. Acta 1985, 41A, 5, 739; (c) Hczyszyn, M. J. Phys. Chem. 1991, 95, 7621; (d) Tiffon, B.; Ancian B. Org. Magn. Reson. 1981, 16, 247; (e) Jallani-Heravi, M.; Na Lamphun, B.; Webb, G. A.; Ando, I.; Kondo, M.; Watanabe, S. Org. Magn. Reson. 1980, 14, 92; (f) Gerothanassis, I. P.; Vakka, C. J. Org. Chem. 1994, 59, 2341; (g) Gerothanassis, I. P.; Demetropoulos, I. N.; Vakka, C. Biopolymers 1995, 36, 415.

- 2. Díez, E.; Fabián, J. S.; Gerothanassis, I. P.; Esteban, A. L.; Abboud, J. -L. M.; Contreras, R. H.; de Kowalewski, D. G. J. Magn. Reson. 1997. 124, 8.
- 3. (a) Kamlet, M. J.; Abboud, J. -L. M.; Taft, R.W. Prog. Phys. Org. Chem. 1981, 13, 485; (b) Kamlet, M. J.; Abboud, J. -L. M.; Abraham, M. H.; Taft, R. W. J. Org. Chem. 1983, 48, 2877; (c) Abraham, M. H.; Grellier, P. L.; Abboud, J. -L. M.; Doherty, R. M.; Taft, R. W. Can. J. Chem. 1988, 66, 2673; (d) Laurence, C.; Nicolet, P.; Daleti, M. T.; Abboud, J. -L. M.; Notario, R. J. Phys. Chem. 1994, 98, 5807.
- 4. Martins, M. A. P.; Siqueira, G. M.; Flores, A. F. C.; Zanatta, N.; Bonacorso, H. G. Spectroscopy Lett. 1999, 32, 973.
- 5. (a) Martins, M. A. P.; Freitag, R. A.; Zimmermann, N. E. K.; Sinhorin, A. P.; Bastos, G. P.; Zanatta, N.; Bonacorso, H. G. Spectrosc. Lett. 2001, in press (Part 5); (b) Martins, M. A. P.; Flores, A. F. C.; Freitag, R. A.; Zanatta, N.; Bortoluzzi, A. J.; Hörner, M. Spectroscopy Lett. 1997, 30, 661 (Part 1); (c) Martins, M. A. P.; Zanatta, N.; Pacholski, I. L.; Bonacorso, H. G.; Bortoluzzi, A. J.; Oliveira, A. B.; Hörner, M. Spectroscopy Lett. 1998, 31, 1125 (Part 2); (d) Martins, M. A. P.; Zoch, A. N.; Zanatta, N.; Flores, A. F. C. Spectroscopy Lett. 1998, 31, 621 (Part 3); (e) Bonacorso, H. G.; Martins, M. A. P.; Oliveira, M. R.; Wentz, A. P.; Wastowski, A. D.; Oliveira, A. B.; Hörner, M.; Zanatta, N. Spectrosc. Lett. 1999, 32, 851 (Part 4).
- 6. (a) Martins, M. A. P.; Colla, A.; Clar, G.; Fischer, P.; Krimmer, S. Synthesis 1991, 6, 483; (b) Martins, M. A. P.; Zoch, A. N.; Bonacorso, H. G.; Zanatta, N.; Clar, G. J. Heterocycl. Chem. 1995, 32, 739; (c) Martins, M. A. P.; Flores, A. F. C.; Freitag, R. A.; Zanatta, N. J. Heterocycl. Chem. 1995, 32, 731; (d) Martins, M. A. P.; Flores, A. F. C.; Freitag, R. A.; Zanatta, N. J. Heterocycl. Chem. 1996, 33, 1223; (e) Martins, M. A. P.; Siqueira, G. M.; Bastos, G. P.; Bonacorso, H. G.; Zanatta, N. J. Heterocycl. Chem. **1996**, *33*, 1619; (f) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Zanatta, N.; Bonacorso, H. B. J. Heterocycl. Chem. 1999, 36, 837; (g) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Bonacorso, H.B.; Zanatta, N. Tetrahedron Lett. 2000, 41, 293.
- 7. (a) Martins, M. A. P.; Freitag, R. A.; Flores, A. F. C.; Zanatta, N. Synthesis 1995, 1491; (b) Martins, M. A. P.; Freitag, R. A.; Rosa, A.; Flores, A. F. C.; Zanatta, N.; Bonacorso, H. G. J. Heterocycl. Chem. 1999, 36, 217; (c) Martins, M. A. P.; Braibante, M. E. F.; Clar,

G. J. Heterocycl. Chem. **1993**, *30*, 1159; (d) Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P.; Naue, J. A. J. Fluorine Chem. **1998**, *92*, 23; (e) Bonacorso, H. G.; Oliveira, M. R.; Wentz, A. P.; Wastowski, A. D.; Oliveira, A. B.; Hörner, M.; Zanatta, N.; Martins, M. A. P. Tetrahedron **1999**, *55*, 345.

- (a) Zanatta, N.; Pacholski, I. L.; Blanco, I.; Martins, M. A. P. J. Braz. Chem. Soc. 1991, 2, 118; (b) Zanatta, N.; Madruga, C. C.; Clerici, E.; Martins, M. A. P. J. Heterocycl. Chem. 1995, 32, 735.; (c) Zanatta, N.; Cortelini, M. F. M.; Carpes, M. J. S.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocycl. Chem. 1997, 34, 509; (d) Zanatta, N.; Fagundes, M. R.; Ellensohn, R.; Marques, M.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocycl. Chem. 1998, 35, 451.
- 9. (a) Bonacorso, H. G.; Bittencourt, S. T.; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* **1996**, *37*, 9155; (b) Bonacorso, H. G.; Bittencourt, S. T.; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. *J. Heterocycl. Chem.* **1999**, *36*, 45.

- (a) Martins, M. A. P.; Martins, A. C. L. Magn. Reson. Chem. 1994, 32(10), 614; (b) Martins, M. A. P.; Freitag, R. A.; Zanatta, N. Spectroscopy Lett. 1994, 27(9), 1227; (c) Martins, M. A. P. Spectroscopy Lett. 1996, 29(4), 631; (d) Martins, M. A. P.; Flores, A. F. C.; Freitag, R. A.; Siqueira, G. M.; Zanatta, N. 13C, ¹⁷O and ¹⁵N NMR of Isoxazoles, in: New Advances in Analytical Techniques, Gordon and Breach Science Publishers, Amsterdam, 2000, Vol. I, pp. 605-658.
- (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1990, 107, 3902;
 (b) Stewart, J.J.P. Reviews of Computational Chemistry, Lipkovitz, K.; Boyd, D. B. Eds., VCM Publishers, New York, 1990.
- Hypercube, Inc., HyperChem 6.03 Package, Gainesville, Florida, USA, 1999.
- (a) Gerothanassis, I. P. Prog. Nucl. Magn. Reson. Spectrosc. **1987**, 19, 267; (b) Gerothanassis, I. P.; Lauterwein, J. J. Magn. Reson. **1986**, 66, 33; (c) Balton, P. S.; Cox, I. J.; Harris, R. K. J. Chem. Soc., Faraday Trans. 2 **1985**, 81,63.

Received: June 11, 2001 Published on the web: August 10, 2001