J. Braz. Chem. Soc., Vol. 13, No. 6, 754-762, 2002.
Printed in Brazil - ©2002 Sociedade Brasileira de Quimica
0103 - 5053 $6.00+0.00

Review

Prediction of Environmental Toxicity and Fate Using Quantitative Structure-Activity

Relationships (QSARs)

John C. Dearden

Atualmente, muito pouco se sabe sobre a toxidez de mais de 100.000 substancias quimicas que
sdo liberadas no meio-ambiente. O custo necessdrio para a obteng@o dessas informagdes é elevado
ndo apenas em termos financeiros, mas também no consumo de tempo e de animais. Por isso, muitas
industrias e agéncias governamentais regulatérias estdo focalizando sua atengdo na predicdo da
toxidez e suas causas através de relagdes entre a estrutura quimica e a atividade (QSARs). Este artigo
examina o uso de QSARs neste contexto. Como, em geral, as QSARs sdo dependentes de mecanismos
especificos, a primeira etapa € classificar a substancia téxica em uma das quatro classes de toxidez:
narcose apolar, polar, reatividade inespecifica e acdo especifica (por exemplo, atividades
anticolinesterase). Uma QSAR apropriada pode, entdo, ser selecionada para predizer a toxidez de
uma dada substancia quimica. Também existem sistemas inteligentes para a predi¢@o da toxidez. As
predicdes de bioconcentragdes, absor¢des do solo e biodegrabilidade também podem ser realizadas.
A predicdo por QSARs e sistemas inteligentes de propriedades fisico-quimicas, tais como o coeficiente
de particdo, solubilidade aquosa, pontos de fusdo e ebuli¢do, pressdo de vapor e constante de lei de
Henry, pode ser prontamente obtida.

Little or nothing is known about the toxicity of most of the >100,000 chemicals released into the
environment. The cost of obtaining such information experimentally would be enormous in terms of
money, time and animals. Companies and regulatory agencies are therefore turning to the prediction
of environmental toxicity and fate through the use of quantitative structure-activity relationships
(QSARs). This paper examines the use of QSARS in this context. Generally, QSARs are mechanism-
specific, so that the first step is to classify a toxicant into one of four broad classes of toxicity: non-
polar narcosis, polar narcosis, unselective reactivity and specific action (e.g. anticholinesterase
activity). An appropriate QSAR can then be selected in order to predict the toxicity of a given
chemical. There are also some expert systems available for toxicity prediction. QSAR predictions of
bioconcentration, soil sorption and biodegradability can also be made; again, expert systems are
available for such prediction. QSAR and expert system prediction of physico-chemical properties
such as partition coefficient, aqueous solubility, melting and boiling point, vapour pressure and
Henry’s law constant can readily be made.
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1. Introduction

Over 100,000 chemicals are released into the
environment, and as few as 1 — 5% have toxicity data
available. Even for the high production volume chemicals
or HPVCs (those chemicals produced in quantities of >
1000 tonnes per year in the EU or > 1,000,000 pounds
(about 442 tonnes) per year in the U.S.A.) there is a paucity
of information concerning their toxicity," as Table 1 shows.

With increasing concern about the environment,
governments and regulatory agencies worldwide are

* e-mail: j.c.dearden@livjm.ac.uk

Table 1. Availability of toxicity data for high production volume
chemicals

European Union U.S.A.
Number 2465 2863
Full toxicity data 3% 7%
Partial toxicity data 43% 50%
No toxicity data 54% 43%

seeking to assess the ecotoxicological risks posed by the
release of chemicals. For example, in February 2001 the
Commission of the European Communities presented a
White Paper entitled “Strategy for a Future Chemicals
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Policy” which proposed that some 30,000 existing
chemicals be tested on animals for a range of toxic effects.
This would clearly be an extremely expensive and time-
consuming undertaking, involving the use of many
thousands of animals. Table 2 gives information® showing
the costs of some of the tests.

Table 2. Costs of single toxicity tests in 1994

Test Cost (US$) Test duration
Microtox 62 5 min
Lettuce 296 96 h

Rotifer 333 24 h

Brine shrimp 333 24 h
Polytox 407 21 min
Daphnia magna 703 48 h
Pimephales promelas 1036 96 h
Selenastrum capricornutum 1280 96 h

Carcinogenicity (rodent) 2 million 2 year

One also has to query whether it is necessary to test the
many chemicals that have been in use for many years
without obvious adverse effects.

In view of the increasing demands for toxicity
assessment, a number of organisations are investigating
the use of alternatives to animal testing. For example,
ECVAM (European Centre for the Validation of Alternative
Methods; altweb.jhsph.edu/publications/ECVAM/ecvam-
reports.htm) is examining ways forward for the application
of existing alternative methods, and seeking to identify
areas of research that could facilitate the development of
new alternative methods; ECETOC (European Centre for
Ecotoxicology and Toxicology of Chemicals;
www.ecetoc.org) recently (March 2002) organised a
Workshop on Regulatory Acceptance of (Q)SARs for
Human Health and Environmental Endpoints; FRAME
(Fund for Replacement of Animals in Medical
Experimentation; www.frame.org.uk) is committed to the
development and acceptance of methods to replace animal
testing for regulatory and other purposes.

2. Methods

2.1 Quantitative structure-activity relationships

One of the chief alternatives to animal testing for
toxicity is the use of quantitative structure-activity
relationships (QSARs), which are mathematically-derived
rules that quantitatively describe a property in terms of
descriptors of chemical structure. Of course, biological data
are needed to develop a QSAR in the first place, but it can
then be used to predict the toxicities of other chemicals
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with the same mechanism of action. It should also be
emphasised that predictions should not be made on
chemicals that are outside the range covered by the
chemicals used to develop the QSAR (the training set).

It is often difficult to determine whether or not a
chemical possesses a particular mechanism of action. For
this reason QSARs are usually developed using compounds
of a single chemical class (e.g. phenols) on the assumption
that such a congeneric series has a common mechanism of
action. Any chemicals that do not possess the same
mechanism of action will show up as outliers; that is, they
will not be well modelled by the QSAR.

The descriptors used in the development of a QSAR
are physico-chemical and structural properties. They fall
into three broad classes — hydrophobic, electronic and
steric.* Most chemicals move through an organism by a
partitioning process between aqueous and lipid
compartments, so that transport is controlled largely by
hydrophobicity. This is generally well modelled by the
octanol-water partition coefficient (P). Interaction with a
receptor site, on the other hand, is a function of the ability
of the chemical to form (generally reversible) links with
the receptor (through hydrogen bonding and dipolar forces,
for example) and by the ability to fit the receptor site well,
which is a function of molecular size and shape. Dearden*
has discussed each class of descriptor in detail.

Topological descriptors are also widely used in QSAR.
These are derived from the molecular structure, and are
not always easy to interpret in physico-chemical terms.
The most extensively used topological descriptors are
molecular connectivities® and electrotopological state
descriptors.¢

Corwin Hansch is acknowledged to be the father of the
discipline of QSAR; his first publication on the subject’
dealt with the herbicidal effects of derivatives of
phenoxyacetic acid (1). He has since published many
hundreds of papers, and his recent book® summarises
progress in the field.

OCH,COOH

2.2 OSAR in environmental toxicology

QSAR is a tool for the prediction of biological activity,
and thus lends itself readily to the prediction of
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environmental toxicity. Over the past 20 years environmental
QSAR has increased steadily in importance, and Nendza’
has admirably summarised its achievements. It has now
reached the stage where some regulatory agencies, such as
the U.S. Environmental Protection Agency, routinely use
some QSAR-predicted toxicities for regulatory purposes;
it is anticipated that such use will increase greatly in the
future, as more assurances are sought on the safety of
chemicals, and more public pressure is brought to bear
against the use of animals in toxicity testing. It should be
noted, however, that experimental toxicity data are needed
in the first place in order to develop a QSAR, and there is
still a shortage of good quality data in many areas.

2.3 OSARs for toxicity prediction

Most environmental toxicity data have been obtained
using aquatic animals such as fish of various species, Daphnia,
Tetrahymena pyriformis, Vibrio fischeri and algee. Cronin and
Dearden'® have reviewed the literature concerning QSAR
modelling of aquatic toxicity. Eight modes of action have
been identified in fish, namely non-polar narcosis, polar
narcosis, uncoupling of oxidative phosphorylation,
respiratory membrane irritation, acetylcholinesterase
inhibition, central nervous system seizure, inhibition of
photosynthesis, and alkylation.!' However, these are generally
more broadly grouped as: non-polar narcosis, polar narcosis,
unselective reactivity, and specific mechanisms of action. It
is important, in order to obtain a correct QSAR prediction of
toxicity, that a chemical’s mode of action is correctly
identified. To this end Verhaar et al.'> developed a scheme
based on the presence of functional groups to classify
chemicals into these four groups. Later Boxall er al."® used a
pattern recognition approach to four-group classification
based on 7 molecular descriptors, and obtained 76% correct
predictions.

The first QSAR correlation of non-polar narcosis was
developed by Kénemann,' who correlated the acute
toxicity of diverse industrial chemicals to the guppy,
Poecilia reticulata:

log 1/LC, = 0.87 log P — 1.87 (1)
n=50,r>=0.98,s=0.23

where LC, = concentration (mmol L") to kill 50% of fish
in a specified time, n = number of chemicals, r = correlation
coefficient, and s = standard error of the estimate.

van Leeuwen et al.’ later showed that similar
correlations obtained for other aquatic species. Lipnick!®
proposed that non-polar narcosis be considered as “base-
line” toxicity, with no chemicals having lower toxicity,
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and this is now accepted. It should be pointed out that
occasionally a chemical appears to show lower than base-
line toxicity, but this is invariably due to an artefact, such
as evaporative loss giving a lower than nominal aqueous
concentration.

Veith and Broderius'’ reported that some unreactive
chemicals, such as phenol (2) and aniline (3) derivatives,
that produced toxicity consistent with narcosis were
nevertheless more toxic than would be expected for non-
polar narcosis. This mode of action is now termed polar
narcosis, and may result from the presence of a strongly
hydrogen bonding group in a molecule. The correlation
found by Veith and Broderius'’ for toxicity to the fathead
minnow, Pimephales promelas, was:

log 1/LC,, = 0.65 log P - 0.71 ©)
n =39, r> = 0.900, s not given

OH NH,

Reactive chemicals are more generally toxic still,
although their toxicities can nevertheless sometimes be
correlated with log P alone. An example is given by the
toxicity of a,B-unsaturated aldehydes such as 2-hexenal
(4) to a phosphorescent bacterium, Vibrio fischeri:'®

CH,CH,CH,CH=CH.CHO
4

log 1/EC,; = 0.50 log P + 0.35 3)
n=7,r"=0.854,5s=0.23, F=36.2

It can be seen that the coefficients on log P are in the
order: equation 1 > equation 2 > equation 3, whilst the
opposite is true of the intercepts. This means that at some
high value of log P, the three equations converge, as is
shown in Figure 1.

Clearly, correlations such as those depicted in Figure 1
do not extend ad infinitum. As hydrophobicity increases,
aqueous solubility decreases, and a point is reached where
solubility is too low for a toxic concentration to be reached
(the solubility cut-off). This is typically in the region of
log P ~ 6-7.

Generally, the toxicity of reactive chemicals can be
modelled only by the inclusion of one or more descriptors
that reflect reactivity. Typically such reactivity is
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log 1/LC,, =0.56 log P+ 13.7 S _N—1.49 5)
2 o Aldehyde toxicity n=114,r>=0.81, s not given

Polar narcosis

1 _ Non-polar narcosis

log 1/LCs,
=)
|

-2

log P

Figure 1. QSARs for non-polar narcosis (equation 1), polar narco-
sis (equation 2) and aldehyde toxicity (equation 3).

electrophilic in nature, since nucleophilic groups such as
NH, OH and SH abound in biological macromolecules.
Cronin and Schultz! found the following QSAR for the
toxicity of aromatic compounds to an aquatic ciliate,
Tetrahymena pyriformis:

log 1/IGC,, = 0.603 log P~ 0.330 E,,,, - 1.00 (4
n =239, 2 = 0.800, Q> = 0.796, s = 0.335, F = 476

where IGC_ = the concentration (mmol L) to inhibit growth
by 50%, E,,,, = energy of lowest unoccupied molecular
orbital, Q = cross-validated correlation coefficient (leave-
one-out procedure), and F = Fisher statistic.

The statistics given for equation 4 are the preferred
statistics for the reporting of QSARSs; the cross-validated
correlation coefficient is a measure of the predictivity of
the QSAR (as distinct from its merely correlative ability);
F gives a measure of probability that the correlation has
not arisen by chance.

Since most QSARs are developed for predictive
purposes, it is important that their predictive ability is
assessed. Whilst cross-validation is one method of
assessing predictive ability, it is an internal method, and
can be criticised as simply giving an indication of the
internal consistency of the data-set used to develop the
QSAR (the training set). A better method is to use the QSAR
to predict the toxicities of chemicals not used in the training
set (external validation).

As well as E, ., other measures of reactivity can be
used in QSARs involving reactive chemicals. An
interesting example is given by Mekenyan and Veith?,
who correlated the toxicity of chemicals with three different
modes of action to P. promelas by the use of the molecular
orbital descriptor known as superdelocalisability:

where S N = average nucleophilic superdelocalisability.

Specifically-acting chemicals are typified by the
organophosphorus insecticides such as malathion (5).
Hermens et al.*! found that they could model the toxicity
of these compounds to P. reticulata with a two-term QSAR:

log 1/LC,, = 0.23 27 + 0.80 k +2.77 ©6)
n=9,12=092,5=0.19

where 27t = sum of hydrophobic fragmental constants, and
k = experimentally determined reaction rate constant with
4-nitrobenzylpyridine. A later study by de Bruijn and
Hermens* with 20 such insecticides failed to confirm this
correlation. However, Verhaar et al.”, using a number of
physico-chemical descriptors, obtained a series of good
QSAREs for the toxicity of a series of 12 organophosphorus
insecticides. Recently Devillers* used a neural network
approach to model the toxicity of 66 diverse pesticides to
the bluegill fish, Lepomis macrochirus, using
autocorrelation descriptors encoding lipophilicity and
hydrogen bonding ability; he found RMS residual values
of 0.345 log units for the training set and 0.359 log units
for a 21-compound test set.

0
H S— 1|>— OCH;
CH;CH,0CCH,CH OCH,8

N

/c —o0
0
\ CH,CH,
5

An interesting study by Kaiser er al.* used probabilistic
neural networks to model the toxicity to P. promelas of a
very diverse data-set of 1000 chemicals with various modes
of action. Using functional groups as descriptors, they
obtained r> = 0.899, and a test set of 84 chemicals yielded r
=0.803.

2.4 Expert systems for toxicity prediction

An expert system has been defined? as “any formalised
system, not necessarily computer-based, which enables a



758 Dearden

user to obtain rational predictions about the properties of
chemicals”. Greene?” has recently reviewed expert systems
for toxicity prediction.

A number of such systems are available commercially,
and whilst most of them deal predominantly with human
health hazards such as carcinogenicity, teratogenicity and
skin sensitisation, some include modules for the prediction
of ecotoxicological endpoints. TOPKAT
(www.accelrys.com) uses a QSAR approach, based largely
on topological descriptors, to predict LC, values for
Daphnia magna and P. promelas. MULTICASE
(www.multicase.com) identifies structural fragments that
are responsible for a given toxicity, and includes fish LC,,
among available endpoints. HAZARDEXPERT
(www.compudrug.com) incorporates expert human
knowledge to identify structural fragments linked to
toxicity; it provides predictions across a range of trophic
levels with different dosing regimes. An associated
program, METABOLEXPERT, predicts metabolites that
can then also be assessed by HAZARDEXPERT. ASTER
(www.epa.gov/med/databases/aster.html) was developed
by the U.S. Environmental Protection Agency, and the
endpoints covered are largely ecotoxicological, namely
LC,, values for P. promelas, sheepshead minnow
(Cyprinodon variegatus) and D. magna. It is essentially a
database, but uses QSAR to predict toxicities when
experimental data are not available. It uses different QSAR
models for different types of chemicals (non-polar
narcotics, polar narcotics and so on), as is shown to be
appropriate by Figure 1. Owing to security restrictions,
ASTER is currently not publicly available. Finally, the
U.S. E.P.A. has also developed ECOSAR (www.epa.gov/
oppt/exposure/docs/episuitedl.htm), which is freely
downloadable from the website. It uses hydrophobicity-
based QSARs to predict toxicities to fish, daphnids and
green algae.

2.5 OSARs for bioconcentration

The accumulation of chemicals in biota from the
environment represents a considerable hazard. There are
two main routes of uptake: via the food chain, thus
producing higher concentrations in higher trophic levels,
termed bioaccumulation; and uptake from the surrounding
mileu, termed bioconcentration. The former has not been
subjected to QSAR analysis, important though it is.
Bioconcentration has, however, been extensively
investigated in this way. Typically, an organism takes up a
toxicant from a surrounding aqueous phase, which may be
regarded as a partitioning process. It follows that
bioconcentration should be related to log P, and this is
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indeed the case. Nendza’ has comprehensively reviewed
QSAR modelling of bioconcentration.

Numerous bioconcentration QSARs have been
published, and the following two examples, both involving
diverse chemicals, will suffice to illustrate. Mackay,” using
fish bioconcentration data, developed the following QSAR:

log BCF = 1.00 log P —1.32 @)
n=44,r>=0.95,s=0.25

where BCF = bioconcentration factor, the ratio of
concentration in the fish to that in the surrounding aqueous
phase.

Geyer et al.”, using algal bioconcentration data,
reported a similar dependence on hydrophobicity:

log BCF = 0.681 log P + 0.164 8
n=41,1r*=0.814, s not given

However, it has been observed that such rectilinear
correlations break down at high log P values (> 6-7). There
are several possible reasons for this: very hydrophobic
chemicals may not have reached equilibrium in the
organism during the test; very hydrophobic molecules are
often very large, and large (MW > 500) molecules have
great difficulty in penetrating membranes; hydrophobic
chemicals tend to metabolise more quickly*, thus reducing
the concentration of the original toxicant in the organism;
for large molecules, octanol may not be a good surrogate
for lipid; certain specific sub-structural effects, such as in
2.,4-dinitrophenols, appear to reduce bioconcentration.?!

QSARs that are biphasic in log P have been developed
to try to model this non-rectilinear behaviour. For example,
Dimitrov et al.,** using a large diverse data-set for fish
BCEF, developed an unusual QSAR

log BCF = 0.420 + 3321 ¢ (¢ - loghy 1013 ©)
n=443,1=0.73, 5 = 0.65

where log P, = optimal log P (in this case 6.35).

Sabljié*® used second-order valence molecular
connectivity to model the bioconcentration of a diverse
group of chemicals in fish:

log BCF = 2.12 % - 0.16 (%*)* - 2.13 (10)
n=284,1>=0.933,s=0.345

The rationale behind the use of molecular connectivity
is not clear. 2" is known to correlate with molecular size,*
and, as mentioned earlier, large molecules do not penetrate
lipid membranes readily; it may be also that, in the chemicals
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used in this study, hydrophobicity and size were reasonably
collinear. Equation 10 should not, however, be construed as
indicating that bioconcentration is largely a function of
molecular size. In fact, as equations 7 and 8 show, log BCF
is a rectilinear function of log P up to log P values of 6-7.

There is one expert system available for the prediction
of bioconcentration, namely BCFWIN, developed by
Syracuse Research Corporation and freely downloadable
from the E.P.A. website (www.epa.gov/oppt/exposure/docs/
episuitedl.htm).

2.6 QSAR:s for soil sorption

The sorption of chemicals to soil and sediment is an
important factor in their distribution and mobility. The
extent of sorption of a chemical is, of course, a function of
its molecular structure, but depends also on such soil
factors as particle size, porosity, pH and organic carbon
content. Indeed, concerning the last-mentioned, it is
generally accepted that little or no sorption occurs to silica,
and that sorption is directly proportional to organic carbon
content of the soil. Nendza®’ has reviewed in detail the
QSAR analysis of soil sorption.

The sorption coefficient K is defined as (concentration
of chemical sorbed to soil) + (concentration of chemical in
surrounding aqueous phase). It is generally referred to as
K, (OC = organic carbon). Since effectively the chemical
partitions between the surface of the soil and the aqueous
phase, it is not surprising that K _ correlates with log P, and
many sorption QSARs have confirmed this.’ Two examples
illustrate this. Briggs® found an excellent correlation for a
large group of pesticides:

log Koc=0.52 logP+1.12 (11)
n =105, r* = 0.90, s not given

For a series of aromatics and polyaromatic
hydrocarbons (PAHs, 6), Hodson and Williams*® found:

6
Phenanthrene, an example of a PAH

log K =0.83log P +0.29 (12)
n =20, r* = 0.90, s not given
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A number of workers have correlated K  values with
descriptors that effectively model molecular size, such as
molar refractivity and first- and second-order molecular

connectivities. An example is the study by Sablji¢*’ of
PAHs and halogenated hydrocarbons:

log K_=0.55 +0.45 (13)
n=37,1=095,s=0.34

It is likely that such descriptors are simply reflecting
the known collinearity between hydrophobicity and
molecular size within congeneric series, for, as Nendza’
has pointed out, there is no unique dependence of soil
sorption on the structural features encoded in these
descriptors.

It is interesting to note that no-one appears to have
reported QSAR correlations of K values for diverse groups
of chemicals. The organic content of soils must, by virtue
of the wide range of chemicals that can be sorbed, and the
fact that K _ is directly correlated with hydrophobicity, act
as a non-specific binding site. There does not therefore
seem to be any reason why one could not correlate K
values of a diverse group of chemicals with
hydrophobicity. It should be borne in mind, however, that
in general real soils are used for sorption, and thus each
data-set in effect uses a different protocol. This probably
explains the very wide range of slopes and intercepts
observed in soil sorption QSARs; in the nine log K_-log P
correlations listed by Nendza,’ slopes range from 0.38 to
0.99, and intercepts from — 0.35 to + 1.92. It would be
useful to know whether or not K values of diverse
chemicals, measured under a single protocol and using a
single type of soil, would correlate with hydrophobicity.
If so, that would greatly enhance the ability to predict K
values; even then, the results would probably not be
applicable to other soil types.

For the present, however, it must be accepted that K,
predictions are valid only within specific chemical classes
for which QSARSs have been derived.

There is one expert system available for the prediction
of K , namely PCKOCWIN, developed by Syracuse
Research Corporation (SRC) and freely downloadable from
the E.P.A. website (www.epa.gov/oppt/exposure/docs/
episuitedl.htm).

2.7 OSARs for biodegradability

Environmental risk is a function of both the intrinsic
hazard posed by a chemical, and the exposure to it to which
organisms (including humans) are subjected. One of the
main factors influencing exposure is the length of time
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that a chemical persists in the environment before being
degraded. Such biodegradation is brought about very
largely by bacterial attack, so that testing for
biodegradation usually involves the use of a sample of
soil or sewage sludge. There are a number of different types
of biodegradability test, and it is important to note that
biodegradability data are comparable only if determined
under the same protocol. Even then, it is recognised that
there is considerable error on biodegradability data.
Furthermore, since different classes of chemicals are likely
to have different mechanisms of biodegradation, it would
be expected that the biodegradability of groups of diverse
chemicals would be difficult to model using QSAR
techniques; this has proved, indeed, to be the case.

A number of QSARs have been published for
biodegradability of congeneric series of chemicals. Paris
et al.®® found that biodegradation rate constants of a small
series of 2,4-dichlorophenoxyacetic acid esters (7)
correlated well with hydrophobicity:

OCH,COOR

Cl

Cl

log k =0.799 log P — 11.64 (14)
n =6, 1> =0.944, s not given

Other studies have, however, demonstrated correlations
40 properties for other series of
chemicals. This probably reflects different mechanisms of
biodegradation of different classes of chemicals.

Diverse data-sets, however, are not very amenable to
Hansch-type (i.e. multiple linear regression) QSAR
analysis, undoubtedly because of different mechanisms of
action being involved. Desai er al.*' used a group
contribution method to predict biodegradation rate
constants of diverse chemicals, and obtained a mean error
of 11.1%. A recent analysis,* using electrotopological state
indices, found 12 = 0.76 for a training set of 176 diverse
organic chemicals.

The classification approach has therefore been adopted,
whereby chemicals are classified as readily or non-readily
biodegradable according to pre-defined criteria. For
example, Dearden and Cronin® used discriminant analysis
to model a data-set of 222 aromatic compounds; using
three descriptors, they found 73.1% correct predictions

with electronic® and steric
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for non-ready biodegradability and 88.7% correct
predictions for ready biodegradability. Loonen et al.** used
partial least squares discriminant analysis based on sub-
structural features to obtain 84% correct predictions for
ready and 86% correct predictions for non-ready
biodegradability, with a large data-set of 894 compounds.
Raymond et al.*® have recently reviewed the QSAR
prediction of biodegradability.

There are several expert systems available for the
prediction of biodegradability. The SRC software BIOWIN
is freely downloadable from the E.P.A. website
(www.epa.gov/oppt/exposure/docs/episuitedl.htm). META
(www.multicase.com) is part of the MULTICASE suite of
software. It is essentially a metabolite prediction system,
but has been applied to biodegradation with good results.*
METEOR, developed by Lhasa Limited
(www.chem.leeds.ac.uk/LUK) is also a metabolite
prediction system; it has not yet been applied to
biodegradability prediction, but there is no reason why it
could not be so used.

2.8 Physicochemical property calculation

A number of physicochemical properties are of
environmental importance, as the QSARs given above
illustrate. Partition coefficient (P) is undoubtedly the most
important of these, and there are numerous software
packages available for the calculation of log P. Of these,
among the best are: Interactive Analysis (www.logp.com),
which allows free on-line calculation ; Biobyte
(www.biobyte.com); SPARC (http://ibmlc2.chem.uga.edu/
sparc), which allows free on-line calculation; and the SRC
software KOWWIN, which is freely downloadable from
the E.P.A. website (www.epa.gov/oppt/exposure/docs/
episuitedl.htm).

Aqueous solubility is another important environmental
property. The Interactive Analysis and SPARC websites
allow free on-line calculation of solubility, and
WSKOWWIN from SRC is freely downloadable from the
E.P.A. website.

Boiling point calculation is available from SPARC
(freely on-line), MPBPVP from SRC (www.epa.gov/oppt/
exposure/docs/episuitedl.htm), ACD (www.acdlabs.com)
and ProPred (www.capec.kt.dtu.dk/main/software/propred/
propred.html). Vapour pressure calculation is available from
SPARC (freely on-line) and ACD. Melting point calculation
is available from MPBPVP and ProPred. Dearden* has
recently reviewed the QSAR prediction of melting point,
boiling point and vapour pressure.

The air-water partition coefficient (Henry’s law
constant) has important implications for the distribution
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of chemicals in the environment, and numerous attempts
have been made to predict it; Dearden and Schiitirmann*®
have recently reviewed the QSAR prediction of Henry’s
law constant. The SRC software HENRYWIN is freely
downloadable from the E.P.A. website.

3. Conclusions

More than 100,000 chemicals are released into the
environment, and little is known about the toxicity of most
of them. It would be impossibly expensive and time-
consuming to test all such chemicals for toxicity. However,
regulatory agencies are beginning to accept toxicities
predicted by QSAR. This paper has shown that the use of
QSAR for the prediction of environmental toxicity is well-
established, although there is still a shortage of good
quality toxicity data for the development of QSARs.
Environmental fate (bioconcentration, soil sorption and
biodegradation) can also be predicted by QSAR, as can
physico-chemical properties of environmental relevance.
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