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A bioatividade de n-alquilsulfatos (C
6
 – C

10
 e C

12
) foi estudada utilizando-se calorimetria de

fluxo em tempo real, para monitorar a resposta biológica (BR) produzida pelo metabolismo
aeróbico da bactéria Chromobacterium violaceum. Todos os compostos apresentaram um
comportamento linear no gráfico de BR vs. log (dose). Destes gráficos, foi calculado o valor de
(dose)

max
 para cada composto. O valor de (dose)

max
, que está diretamente relacionado com a

biotividade, permitiu uma boa correlação entre esta propriedade e a estrutura da molécula,
mostrando que a atividade biológica é diretamente proporcional à lipofilicidade dos compostos.

The bioactivity of a series of sodium n-alkylsulfates (C
6
-C

10
 and C

12
) was studied with flow

calorimetry to follow in real time the calorimetric effect on the metabolic rate of the bacterium
Chromobacterium violaceum. All the compounds showed a linear plot of the fraction of control
metabolic heat rate against log (dose). From these plots the value of dose

max 
(the dose producing

zero metabolic heat rate) for each compound was evaluated. The value of dose
max

 is correlated
with the chain length of the molecule, showing that their biological activity is directly proportional
to the lipophilicity of the compound.
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n-alkylsulfates, bioactivity

Introduction

Cationic and anionic surfactants are compounds used
extensively in products for hygiene and cleanliness.1

However, the bioactivity of these compounds, especially
the anionic surfactants, are not satisfactorily described
in the literature. Anionic surfactants are denaturating
agents, the denaturation of proteins by sodium
dodecylsulfate happens at millimolar concentrations.1

Many studies on the interaction of anionic surfactants
with isolated biomolecules are described in the literature,
however, little is known about the effects of of this class
of surfactants on living cells.

According to Denyer 2 the possible targets of action of
the bactericidal agents are the cell wall, cytoplasmatic
membrane and the cytoplasm. Jones and co-workers,3-5

Moosavi-Movahedi and co-workers,6,7 and Silva and Volpe,8

related studies about the action of a homologous series of
sodium n-alkylsulfates on proteins and Jones9 published
information on the surfactant effect on cellular membranes.

Globular proteins bind anionic surfactants, leading

to denaturation of the protein.1,5,10 However, this
information does not allow prediction of the activity
that these compounds might have on a living cell, since
bioactivity depends on complex interactions between
the surfactant, the cellular membrane, extrinsic and
intrinsic proteins, enzymes, organelles etc. The study
of the effects of chemical compounds on living cells, in
real time, became possible with the introduction of the
flow calorimetric technique for the evaluation of the
biological activity of drugs and monitoring of
biological processes.11-13

Biological calorimetry for studies of Quantitative
Structure-Activity Relationship (QSAR), was demons-
trated by Beezer et al.14 Although the technique has good
potential in the study of drug bioactivity on living systems,
its use is still not widespread.

In this work, using flow calorimetry, the bioactivity
of a series of sodium n-alkylsulfates (C

6
 – C

10
 and sodium

dodecylsulfate (SDS)) was studied in C. violaceum, a
gram-negative bacterium belonging to the class of
flagellated bacilli and optional aerobiums.15 This
microorganism is frequently found in soils and waters
of tropical and subtropical areas. In Brazil, significant
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amounts of C. violaceum are found in the waters and on
the margins of the Negro river.16

Experimental

Reagents

Glucose (Hoescht), anhydrous potassium phosphate
monobasic and dibasic (Synth) were reagent grade. The
sodium n-alkylsulfates used in this work were hexylsulfate
(C

6
), heptylsulfate (C

7
), octylsulfate (C

8
), nonylsulfate (C

9
),

decylsulfate (C
10

) and dodecylsulfate (C
12

) or SDS, all in
the form of sodium salts. The C

6
, C

7
, C

8
 and C

9
 homologs

were synthesized by mixing a solution of the appropriate
long chain alcohol (Sigma) with chlorosulfonic acid
(Vetec), in equimolar amounts in dry ethyl ether, followed
by neutralization with NaOH, according to the procedure
described by Livingston et al.17 The synthesized
surfactants were purified by recrystallization from
isopropanol, as reported by Murphy and Taggart.18 Their
structure and the purity were confirmed through 1H NMR
and infrared spectra. The C

10
 and C

12
 homologs were

purchased from Sigma and Aldrich, respectively.

Preparation of cells

Chromobacterium violaceum was grown in 1.5 dm3

flasks (B. Braun Biotech, Biostat B2) containing a sterilized
culture medium of (g dm-3): 3.0 of yeast extract, 7.5 of
glucose and 7.5 bacteriologic peptone in distilled water,
all in a sterilized PBS (phosphate buffered solution)
composed of (g dm-3): 8.0 of NaCl; 0.20 of KCl; 1.15 of
Na

2
HPO

4
 and 0.20 of KH

2
PO

4
, at final pH 7.0.

The reactor flask was inoculated with 1.0 cm3 of cell
suspension and incubated at 298 K on a rotatory shaker
(200 rpm; Gallenkamp). After 14 h of incubation, the
cells were separated from the culture medium by
centrifugation at 4000 rpm during 20 min. The cells
were washed three times by suspending in PBS solution
and then centrifuged. After the last centrifugation, the
cells were suspended again in 100 cm3 of PBS solution
containing 10% dimethylsulfoxide and conditioned in
1.0 cm3 polypropylene ampoules (Corning).

The ampoules were inserted into a thin perforated
styrofoam plate which was placed 8 cm above liquid
nitrogen in an appropriate container. When the temperature
in the control ampoule reached 200 K the ampoules were
immersed in liquid nitrogen and stored in the cryogenic
cylinder.19 A viable count, performed periodically, gave
1.3 x 1010 cells cm-3. The cells were stored for up to 6
months and recovered with 95% viability.

Flow calorimetry and calorimetric curves

Antibacterial activities were determined with a
Thermometric – TAM 2277 calorimeter, at 298.15 ± 0.02
K, fitted with a flow-through cell.

Before initiating the respiration experiment, a baseline
was obtained by pumping the culture media through the
flow cell without the microorganisms. When a stable baseline
was established, an electrical calibration was performed to
calibrate the heat rate scale. The composition of the culture
media was (g dm-3): 1.80 of glucose; 8.75 of K

2
HPO

4
; 1.88

of KH
2
PO

4
, at pH 7. Without the addition of the bioactive

compounds (sodium n-alkylsulfates), this media was defined
as a control preparation. During the course of this work,
control curves were obtained periodically.

The inoculation of C. violaceum (0.90 cm-3 of the cell
suspension) was done immediately after a reactivation
process; defrosting the ampoule for 3 min in a water bath
at 310 K, followed by manual stirring for 20 s. During the
experiment, the bacterial suspension coming from a reactor
was pumped into the flow-through cell (30 cm3 h-1) by an
LKB 2132 peristaltic pump in a closed loop system.20

Any substance that modifies the metabolic process
involved in cell growth and/or respiration will change the
thermal power-time curve obtained from the calorimeter.

Results and Discussion

The control curve (control), corresponds to the
maximum calorimetric signal generated by respiration of
the microorganism in the experimental conditions in the
absence of bioactive compounds. The maximum biological
response (BR

max
) is the difference between the maximum

of the calorimetric curve and the baseline.
Three control curves were performed to obtain the

average BR
max

 57.6 ± 1.0 μW. The small deviation (±1.7%)
indicates that viability stayed constant during the period
of this work. Thermal power-curves curves were obtained
for each surfactant at various concentrations. Figure 1
shows the thermograms obtained for the C

8
 surfactant at

the indicated concentrations.
Biological responses (BR) were obtained for each member

of the homologous series and are shown in Table 1. BR is
obtained in the same way as BR

max
, however BR is the

percentage of BR in relation to the control. Table 1 also presents
the correlation coefficients, slopes and intercepts of the plot
log (dose) vs BR, as shown in Figure 2 for the C

8
 surfactant.

The value of dose
max

 was estimated by extrapolation of the
curve to BR = 0, the intercept. The maximum dose is the
concentration of a compound that completely suppresses the
calorimetric signal. 21-23 The larger the value of dose

max
, the
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smaller the bioactivity of the surfactant. For the C
6
 and C

7

surfactants log (dose) is not correlated with BR. For C
7
, some

concentrations resulted in BR > BR
max

, which could indicate
activation or stress of respiration. Table 1 therefore only
presents values of dose, log (dose) and BR for these surfactants.

The values of dose
max

 in Table 1 clearly show the effect
of hydrophobicity on the toxicity of the sufactants. A plot
of log (dose)

max
 vs carbon number in the surfactant

molecule, Figure 3, yields a straight line (correlation
coefficient, r = 0.9999). The toxicity is directly
proportional to the number of CH

x 
groups in the structure

of the hydrocarbon chain of the surfactant.
The data in Table 1 shows that the concentration of the

most hydrophobic surfactant, sodium dodecylsulfate (C
12

),
necessary to inhibit bacterium respiration is 5 times smaller
than C

10
, 11 times smaller than C

9
 and 28 times smaller

than C
8
. For the compounds C

6
 and C

7
, BR is not related to

log (dose).
Because log(dose)

max
 displays a linear relationship

wich the number of carbon atoms in the alkyl chain, the
same relationship is expected between log(dose)

max
 and

the change in Gibbs energy for the transfer of these
surfactants from aqueous to hydrophobic phase. Similar
correlation was reported for m-alkoxyphenols.

 
20, 24

Calorimetry is a non-specific technique and does not
permit infering the mechanism of action of these surfactants

against C. violaceum. The activity of these compounds on
the respiration of C. violaceum cells may result from
simultaneous effects on several cell functions. The relative
importance of each effect may vary with the species of
organism challenged. Observed effects in real time are an
average of the whole population and do not necessarily
reflect the sensitivity of all the cells. This is the basis by
which surviving fractions in a treated population sometimes

Table 1. Values of dose, log (dose), log (dose)
max

, biological
response and correlation coefficients, slopes and intercepts derived
from plots of log (dose) vs. BR for sodium n-alkylsulfates

Surfactant dose log(dose) BR

(mmol dm-3) (%)

C
6

70 1.8 82.7

85 1.9 93.3

95 2.0 76.3

corr.coef. –

slope –

intercept –

C
7

12 1.1 107.0

24 1.4 95.9

30 1.5 109.3

48 1.7 51.2

corr.coef. –

slope –

intercept –

C
8

4 0.6 96.5

8 0.9 66.5

16 1.2 31.8

22 1.3 7.8

corr.coef. 0.9958

slope -0.0085

intercept = log (dose)
max

1.45

C
9

2 0.3 91.0

4 0.6 62.4

6 0.8 43.2

8 0.9 10.6

coef corr.. 0.9727

slope -0.0080

intercept = log (dose)
max

1.06

C
10

0.50 -0.3 82.8

0.75 -0.1 77.4

1 0 56.8

2 0.3 35.1

4 0.6 8.2

5 0.7 2.6

corr.coef. 0.9942

slope -0.0119

intercept = log (dose)
max

0.72

C
12

0.10 -1.0 86.8

0.25 -0.6 62.4

0.50 -0.3 22.5

0.75 -0.1 5.3

corr.coef. 0.9862

slope -0.0105

intercept = log (dose)
ma

-0.04

Figure 2. Biological response BR vs. log (dose) for n-octylsulfate.

Figure 1. Power-time curve for the respiration of C. violaceum in
different concentrations of n-octylsulfate.
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remain, possibly to emerge more adequately equipped to
deal with a subsequent biocide challenge. Mechanism of
action studies usually only determine bulk population
behavior. It should never be assumed that every bacterium
in the population is suffering the same type and degree of
damage at the same time. In this manner, flow calorimetry
for monitoring the metabolism of cells in real time is a
powerful complementary tool to QSAR studies. The
correlation between a homologous series of compounds with
BR is its formal basis.

Conclusions

Antibacterial effect of homologous anionic surfactants
on the respiration of C. violaceum is directly dependent of
their hydrocarbon chain length. These data are of
significance to QSAR studies and to detergent and cosmetic
research where molecule structure is related to biological
response and to achievable solubility levels in the biophase.

C
6
 and C

7
 members of these series did not show a linear

relationship between concentration and biological
response, possibly due to their high solubility in the
aqueous phase. The excellent linear relationship between
log (dose)

max
 and the number of CH

x
 obtained through

calorimetric measurements, allow us to restate the great
potential of flow microcalorimetry for QSAR studies,
showing advantages such as accuracy in a more realistic
procedure, i.e., in real time and with living cells.
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Figure 3. Variation of bioactivity within the homologous series of
n-alkylsulfates.


