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As constantes de acidez do PAR foram determinadas por Análise de Componentes Principais em
Rede Neural Artificial, usando-se dados espectrais simulados e experimentais. As equações de
balanço de massa do ácido triprótico e os perfis espectrais correspondentes, gerados por um modelo
Gaussiano, foram usados para simular  todos os dados de absorbância-pH necessários. Um ruído
constante, com média zero e diferentes desvios padrões (1-3% dos valores máximos de absorbância)
foi sobreposto ao espectro simulado gerado. Um modelo experimental triangular foi usado para
selecionar e determinar as diferentes constantes de acidez simuladas. Os efeitos de ruído em diferentes
níveis foram também estudados para avaliar a habilidade de predição do modelo. Um conjunto
completo de dados experimentais de titulação fotométrica do PAR, no intervalo de pH 1,50-13,00,
foi usado como teste. As constantes de acidez obtidas concordam com os valores previamente
relatados usando-se o programa DATAN.

The acidity constants of the PAR were determined by Principal Component Analysis Artificial
Neural Networks, using simulated and experimental spectral data. Triprotic acid mass balance
equations and corresponding spectral profiles generated by a Gaussian model were used to simulate
all required absorbance-pH data. A constant noise with zero mean and different standard deviations
(1-3% of the maximum absorbance values) was superimposed on the generated simulated spectra. A
triangular experimental design was used to select and produce the different simulated acidity constants.
The effects of white noise at different levels were also studied to check the prediction ability of the
model. A fully experimental data set, photometric titration data of PAR at pH=1.50-13.00 range was
used as a test set. The obtained acidity constants are in a good agreement with previously reported
values using DATAN software.

Keywords: acidity constants, experimental design, Principal Component Analysis, Artificial
Neural Networks, photometric titration, DATAN

Introduction

The accurate determination of acidity constant values
is often required in various chemical and biochemical
areas. These are of vital importance in understanding the
distribution, transport behavior, binding to receptors and
mechanism of action of certain pharmaceutical
preparation.1,2 The acidity constants of organic reagents
play a very fundamental role in many analytical
procedures such as acid-base titration, solvent extraction
and complex formation reactions. But in determining of
acidity constants of these molecules we are faced with
several drawbacks such as low solubility in aqueous
solutions and the low values of acidity constants.

Therefore, in order to enhance the acidity constants on
one hand and to increase the solubility on the other, we
forced to choose mixed solvents.

Spectroscopic methods are, in general, highly sensitive
and are as such suitable for studying chemical equilibrium
of solutions. If the components involved can be obtained
in pure form, or if their spectral responses do not overlap,
such analysis is, in general, trivial. For many systems,
particularly those with similar components, this is not the
case, and these have been difficult to analyze. Therefore
to overcome this problem we have to employ the graphical
and computational methods. Up to the middle of the 1960s,
the evaluation of equilibrium measurements was based on
the different graphical methods. These methods were
reviewed in considerable details, by Rossotti and Rossoti.3

Starting from middle of the 1960s; computers acquired
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ever-greater importance in the evaluation of equilibrium
measurement data using multiple wavelengths or full
spectral domain for determining the stability and acidity
constants. The most relevant reports are on LETAGROP-
SPEFO,4 SPECFIT,5 SQUAD,6 and HYPERQUAD.7 All these
computational approaches are based on an initial proposal
of a chemical equilibrium model defining species
stoichiometries and based on mass-action law and mass
balance equations (hard modeling methods) and also
involve least squares curve fitting procedures. In contrast
the soft modeling approaches are free from the restriction
of the mass-action law and do not require an initial model
species to be set up. Artificial Neural Network’s (ANNs) is
one of the most powerful techniques of soft or model free
computation. The use of soft modeling goes back to 1971,
in which Lawton and Silvestre8 introduced chemometrics-
based methods for spectral analysis. A basic review of the
applications of ANN was published by Gasteiger and
Zupan.9 Recently ANN has successfully been applied in
capillary zone electrophoresis,10-12 for modeling in ion
chromatography13 or in electrokinetic micellar chroma-
tography14 without necessity to know or determine
physiochemical parameters. ANN actually represents a well
known soft modeling without to know or establish any
mathematical model between input and output rela-
tionship.15 Here we used an ANN system to establish a
nonlinear relationship between score vectors of the
absorbance- pH data matrix as input and acidity constants
of a tri-protic acid as output. To our knowledge this is the
first report on the application of PC-ANN in determination
of acidity constants using pH- absorbance titration data.

Theory

Multivariate spectrophotometric data were generated
based o Beer-Lambert’s law. A matrix C was calculated
based on the chemical reactions model and the appropriate
formation constants (equilibrium constants). The columns
of C are formed by the concentration profiles of the
absorbing species of the chemical equilibrium system. The
rows of the matrix A contain the respective absorption
spectra of components involved in chemical equilibrium
model. According to Beer-Lambert’s law, the matrix
product C × A results in a matrix Y of the individual
absorbance readings at all wavelengths and each pH step.
An error term with zero mean and different standard
deviation in the range 1-3% of the maximum absorbance
values, were generated by Gaussian random generator of
MATLAB software represented by matrix R is added:16-18

Y= CA +R  (1)

A Principal component analysis (PCA) was used to
convert each spectral data to a simple and more usable and
compact one. It is note worthy to mention that principal
component analysis has been widely applied in data
mining to investigate data structure. In PCA, new
orthogonal variables (latent variables or principal
components) are obtained by maximizing variance of the
data. The number of the latent variables (factors) is much
lower than the number of original variables, so that the
data can be visualized in a low-dimensional PC’s (a space
span by principal components) space. While PCA greatly
reduces the dimensionality of the space, it does remain the
initial information in new space as mush as possible. PCA
technique has a special application for all spectro-
photometric studies which divided the spectral information
into two different orthogonal matrices, score and loading,
while score values have the most relevant information to
the concentration matrix, instead loading matrices have
the most related data to the pure spectral profiles matrix.
In this study PCA used for data compression and also for
extract the score matrix as the input for the ANN model.

The theoretical aspects of the artificial neural networks
are described in several papers.19,20 The development of
the artificial neural network (ANN) has provided a powerful
tool for non-linear approximations. A multi-layered ANN
with enough neurons can approximate almost any non-
linear input-output mapping at any required accuracy. An
artificial neural network (ANN) is a mathematical structure
designed to mimic the information processing functions
of a network of neurons in the brain.21, 22 ANNs are highly
parallel systems that process information through many
interconnected units that respond to inputs through
modifiable weights, thresholds, and mathematical transfer
functions. Each unit processes the pattern of activity it
receives from other units, and then broadcasts its response
to still other units. ANNs are particularly well suited for
problems in which large datasets contain complicated
nonlinear relations among many different inputs. ANNs
are able to find and identify complex patterns in datasets
that may not be well described by a set of known processes
or simple mathematical formulae.23-26 The neural network
used in this work is back propagation (BNN) type. A typical
back propagation neural network has three layers: the
input, the hidden, and the output layers. The activation of
a neuron is defined as the sum of the weighted input signals
to that neuron:

 (2)

where w
ij
 is the weight-connection to neuron j in the actual

layer from neuron i in the previous layer and bias
j
 is the
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bias of neuron j. The u
j
 of the weighted inputs is

transformed with a transfer function, which is used to get
to the output level. Several functions can be used for this
purpose, but the “sigmoid function” is mostly applied.27

This function is as follows:

 (3)

where y
j
 is output of the neuron j. The BP network learns

by adjusting its weights according to the error (E), equation
4. The goal of training of a network is to change the weights
between the layers in a direction that minimizes the error,
E:

 (4)

The error E of a network is defined as the squared
differences between the target values t and the outputs y of
the output neurons summed over p training patterns and k
output nodes.

After obtain the error all weights have to correct in turn
with back propagation derivative equations, and repeat these
two steps to access to an acceptable value for error. In back
propagation step, learning rate and momentum must be apply,
learning rate for adjusting the variation rate in model and
momentum for using the effect of last iteration value of the
weights in the next correction. To construct an ANN model
three set of data must be apply, calibration set for training the
random weights of the network, prediction set to distinguish
the optimum values of parameters and the architecture of the
network and the test set to evaluate the model efficiency.

Experimental

Data set

In order to establish the model, three different data sets
have been used: calibration set, prediction set and the test
set. The calibration and prediction sets were generated by
using mass balance equations, a simulated Gaussian curves
and proper estimates of all protolytic constants from a
experimental design strategy, while the applied test set
was a real experimental data set which previously
published.28-30

Simulated data

In order to have some simulated data which are similar to
data of real experiments, we tried to design some triprotic
acids with three different sets of pKa‘s (pKa

1
, pKa

2
, pKa

3
) at a

reasonable intervals. A triangular experimental design was

applied to construct data set. For these virtual triprotic acids
some spectral information must be approximated, each
spectrum structured with a combined Gaussian distribution
using the chemical behavior of the desired species in the
solutions. In each spectrum we added a random noise to the
absorbance values to have as much the relatively real spectra
as possible. Figure 1 shows a sample of simulated spectra for
prediction set. For all numerical experiments, the spectra were
simulated using Gaussian functions in the wavelength range
380-600 nm in 5 nm intervals; the means were 450, 480, 500
and 520 nm and widths 25, 28, 31 and 41 nm and the maximal
molar absorbencies were set on 1.2, 1.5, 1.4 and 2.0 mol-1 cm-1

for four chemical species from a triprotic acid respectively.
To the simulated data a 1-3% constant noise were added with
zero mean and 0.01-0.03 standard deviations.

Experimental data

The applied test set was a real experimental data set
which previously published.28-30 This real data sets are
visible spectra of the 4-(2-pyridylazo) resorcinol (PAR) in
different composition of methanol-water at designed pH
intervals.

Model constructing

In this part an ANN model was proposed to train a network
for predicting the pKa values using spectral information’s as
input data for each sample. Each sample is related to a matrix
with size equal to the number of pH values as the rows and the
wavelength values as the columns. A principal component
analysis used to compression the resulting matrix to more
compact score and loading matrices. The summation of first
four PC’s was used as input vector for each sample. Of course
several combination of scores were used and it was found that
the summation of first four principal components (scores)

Figure 1. A sample of simulated spectra of prediction set.
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gave the best calibration model. The values of pKa
1,
 pKa

2 
and

pKa
3
 are structured as the output nodes. The PCA-ANN

program was written in MATLAB 6.1 (Mathworks) in our
laboratory, and back propagation strategy was used for training
of the network. The parameters of the model were optimized
using prediction set, finally a 12-8-3 model obtained. The
real test set was used to predict the real data and evaluate the
model for experimental conditions.

Results and Discussion

The main aim of this work was to define and establish
a theoretical model to predict some physicochemical
properties of interested molecules form experimental data
without any knowledge of the under study system.

All simulations used in this study were based on
theoretical knowledge and analytical relationships. A
triangular design was applied to create different artificial
acidity constants. In this design a triangle shape used, while
one of each pKa

1
, pKa

2
 and pKa

3
, had been scaled on the

one of its gone. That is, pKa
1
 varies from 1 to 3 while pKa

2

and pKa
3
 were changed between 5-7 and 10-13 respectively

on each gone of the triangular shape. Figure 2 shows all of
the designed acids with their pKa’s on the related triangle.
The pKa values of all designed acids are listed in Table 1.
Some of these acids randomly selected for prediction set.
The concentrations of the components of each acid were
obtained from mass-balance relations, corresponding
simulated pH values and spectral profiles. Absorbance data
matrix obtained by multiplication of concentration matrix

Table 1. The simulated acidity constants for assumed triprotic acids for training and predictions sets

No. pKa
1

pKa
2

pKa
3

No. pKa
1

pKa
2

pKa
3

1 1 6 13 43 1.9 6.3 11.2
2 1.4 5.8 12.7 44 2.1 6.2 11.05
3 1.6 5.7 12.55 45 2.3 6.1 10.9
4 1.8 5.6 12.4 46 1.6 6.6 11.2
5 2 5.5 12.25 47 1.8 6.5 11.05
6 2.2 5.4 12.1 48 2 6.4 10.9
7 2.4 5.3 11.95 49 2.2 6.3 10.75
8 2.6 5.2 11.8 50 2.4 6.2 10.6
9 3 5 11.5 51 1.7 6.7 10.9
10 1.1 6.1 12.7 52 1.9 6.6 10.75
11 1.3 6 12.55 53 2.1 6.5 10.6
12 1.5 5.9 12.4 54 2.3 6.4 10.45
13 1.9 5.7 12.1 55 1.8 6.8 10.6
14 2.1 5.6 11.95 56 2 6.7 10.45
15 2.3 5.5 11.8 57 2.2 6.6 10.3
16 2.5 5.4 11.65 58 1.9 6.9 10.3
17 2.7 5.3 11.5 59 2.1 6.8 10.15
18 2.9 5.2 11.35 60 2 7 10
19 1.2 6.2 12.4 61 1.1 6 12.85
20 1.4 6.1 12.25 62 1.3 5.9 12.7
21 1.6 6 12.1 63 1.7 5.7 12.4
22 1.8 5.9 11.95 64 1.9 5.6 12.25
23 2 5.8 11.8 65 2.1 5.5 12.1
24 2.2 5.7 11.65 66 2.3 5.4 11.95
25 2.4 5.6 11.5 67 2.7 5.2 11.65
26 2.6 5.5 11.35 68 2.9 5.1 11.5
27 2.8 5.4 11.2 69 1.2 6 12.7
28 1.3 6.3 12.1 70 1.4 5.9 12.55
29 1.5 6.2 11.95 71 1.6 5.8 12.4
30 1.7 6.1 11.8 72 1.8 5.7 12.25
31 2.1 5.9 11.5 73 2 5.6 12.1
32 2.3 5.8 11.35 74 2.2 5.5 11.95
33 2.5 5.7 11.2 75 2.6 5.3 11.65
34 2.7 5.6 11.05 76 2.8 5.2 11.5
35 1.4 6.4 11.8 77 1.2 6.1 12.55
36 1.6 6.3 11.65 78 1.4 6 12.4
37 1.8 6.2 11.5 79 1.6 5.9 12.25
38 2 6.1 11.35 80 2 5.7 11.95
39 2.2 6 11.2 81 2.2 5.6 11.8
40 2.4 5.9 11.05 82 2.4 5.5 11.65
41 1.5 6.5 11.5 83 2.6 5.4 11.5
42 1.7 6.4 11.35 84 2.8 5.3 11.35

No. pKa
1

pKa
2

pKa
3

No. pKa
1

pKa
2

pKa
3

85 1.5 6 12.25 161 1.3 6.1 12.4
86 1.7 5.9 12.1 162 2.3 5.6 11.65
87 1.9 5.8 11.95 163 2.2 5.8 11.5
88 2.1 5.7 11.8 164 1.5 6.3 11.8
89 2.5 5.5 11.5 165 2.3 6.2 10.75
90 2.7 5.4 11.35 166 2.1 6.6 10.45
91 1.3 6.2 12.25 127 2.4 6 10.9
92 1.5 6.1 12.1 128 1.6 6.5 11.35
93 1.7 6 11.95 129 1.8 6.4 11.2
94 1.9 5.9 11.8 130 2 6.3 11.05
95 2.1 5.8 11.65 131 2.2 6.2 10.9
96 2.3 5.7 11.5 132 2.4 6.1 10.75
97 2.5 5.6 11.35 133 1.7 6.5 11.2
98 2.7 5.5 11.2 134 1.9 6.4 11.05
99 1.4 6.2 12.1 135 2.1 6.3 10.9
100 1.6 6.1 11.95 136 1.7 6.6 11.05
101 1.8 6 11.8 137 1.9 6.5 10.9
102 2 5.9 11.65 138 2.1 6.4 10.75
103 2.4 5.7 11.35 139 2.3 6.3 10.6
104 2.6 5.6 11.2 140 1.8 6.6 10.9
105 1.4 6.3 11.95 141 2 6.5 10.75
106 1.6 6.2 11.8 142 2.2 6.4 10.6
107 1.8 6.1 11.65 143 1.8 6.7 10.75
108 2 6 11.5 144 2 6.6 10.6
109 2.2 5.9 11.35 145 2.2 6.5 10.45
110 2.4 5.8 11.2 146 1.9 6.7 10.6
111 2.6 5.7 11.05 147 1.9 6.8 10.45
112 1.7 6.2 11.65 148 2.1 6.7 10.3
113 1.9 6.1 11.5 149 2 6.8 10.3
114 2.1 6 11.35 150 2 6.9 10.15
115 2.3 5.9 11.2 151 1.2 5.9 12.85
116 2.5 5.8 11.05 152 2.8 5.1 11.65
117 1.5 6.4 11.65 153 1.7 5.8 12.25
118 1.7 6.3 11.5 154 1.9 6 11.65
119 1.9 6.2 11.35 155 2.6 5.8 10.9
120 2.1 6.1 11.2 156 2.5 6 10.75
121 2.3 6 11.05 157 1.5 5.8 12.55
122 2.5 5.9 10.9 158 2.5 5.3 11.8
123 1.6 6.4 11.5 159 2.4 5.4 11.8
124 1.8 6.3 11.35 160 1.8 5.8 12.1
125 2 6.2 11.2
126 2.2 6.1 11.05
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by pure spectral profiles for all components. The pH values
were varied in the range 1.5 to 13.0 with a step 0.5. The
resulting data matrix is considered as inputs for PC-ANN
model. To reduce the dimension of the input matrix, PCA
technique was applied. PCA decompose data set to
corresponding score and loading matrices, then scores were
used as input data, because of their ability to cover all
information about the concentration profiles, also the
uncertainty in the simulation of spectral profile was
neglected as a consequence. By using triprotic acids in
different pH values as samples, there are four components
present in each sample, therefore four principal components
(PC) were selected for different pH values. Summation of
these PC‘s at each pH value was used for each acid as input
nodes for the ANN model. The ANN model has a good ability
to relate the scores to the concentrations or to the pKa‘s
because of high performance of ANN to predict the nonlinear
and complex effects. The model was optimized by prediction
set, the momentum and learning rate values are 0.1 and 0.9
respectively and 8 nodes were applied in hidden layer.

The mean square errors (MSEs) for the training and
prediction sets were plotted against the number of iterations
(Figure 3), finally at the iteration number of 9500 the ANN

Table 2. Real and predicted pKa values of the PAR using the con-
structed optimized model

Sample pKa
1

pKa
2

pKa
3

pKa
1

pKa
2

pKa
3

(real) (real) (real) (predicted) (predicted) (predicted)

1 2.45 6.82 12.77 2.30 6.88 12.75
2 2.50 6.69 12.68 2.33 6.65 12.64
3 2.57 6.52 12.57 2.41 6.50 12.52
4 2.65 6.35 12.45 2.49 6.44 12.44
5 2.72 6.28 12.40 2.56 6.34 12.38
6 2.80 6.11 12.37 2.68 6.19 12.32
7 2.88 5.97 12.22 2.74 5.96 12.20
8 2.90 5.86 12.21 2.78 5.85 12.18
9 3.01 5.80 12.11 2.97 5.74 12.13

Figure 2. Triangular experimental design.

Figure 4. The calculated pKa values vs real pKa values (obtained by
DATAN software). A: pKa

1
; B: pKa

2
; C: pKa

3
.

Figure 3. Variations of MSE vs the number of iterations for the
training and the prediction sets.
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model was trained. The model response has compared with
the pKa‘s obtained from DATAN software.31 Table 2, shows
that the predicted pKa‘s were in the good agreement with
values obtained from DATAN software for different
samples. The ANN predicted pKa‘s were plotted against
the pKa‘s obtained from DATAN in Figure 4. The good R2

values, 0.9874, 0.9799, 0.9918, for pKa
1
, pKa

2
, pKa

3

respectively, explain the superior ability of the model to
predict these acidity constants.

Conclusions

The good ability of ANN may applied to build models
based on theoretical information and used to predict
experimental values, prevent any trial and error
experiments, which save time and cost. This method proved
the prediction of acidity constants of different kind of
acids. Also this kind of modeling can be used to predict
any other properties for all kind of molecules. This is the
first step of using chemical information to build a model
for special purpose.
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