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Este trabalho compara o uso de um conjunto de validação separado e de validação cruzada
amostra-a-amostra para guiar a seleção de variáveis no Algoritmo das Projeções Sucessivas
(APS) para calibração multivariada. Análises de diesel e milho por espectrometria NIR são
apresentadas. Uma interface gráfica do APS encontra-se disponível em www.ele.ita.br/
~kawakami/spa/

This work compares the use of a separate validation set and leave-one-out cross-validation
to guide the selection of variables in the Successive Projections Algorithm (SPA) for multivariate
calibration. Two case studies involving diesel and corn analysis by NIR spectrometry are presented.
A graphical interface for SPA is available at www.ele.ita.br/~kawakami/spa/
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Introduction

The Successive Projections Algorithm (SPA) is a
variable selection technique specifically designed to
improve the conditioning of Multiple Linear Regression
(MLR) by minimizing collinearity effects in the calibration
data set. In several applications involving UV-Vis,1,2 ICP-
OES,3 FT-IR4 and NIR spectrometry,4-6 MLR-SPA resulted
in models with good prediction ability when compared to
conventional full-spectrum models obtained with Partial-
Least-Squares (PLS).

In SPA, candidate subsets of variables are constructed
according to a sequence of projection operations involving
the columns of the instrumental response matrix. These
candidate subsets are then evaluated according to the
prediction performance of the resulting MLR model. In
SPA such prediction performance has been so far assessed
by using an independent validation set.

It is worth noting that the definition of a repre-
sentative validation set may not be a trivial task and is
actually a matter of ongoing research.7,8 This problem
is more apparent in analytical applications involving
complex matrices, such as fuel and food products, in
which the variability of composition cannot be easily
reproduced by optimized experimental designs. In this
case, the validation set must somehow be extracted from
the pool of real samples available for model-building
purposes.

In this context, the use of cross-validation techniques
may be a valuable alternative, which has never been
investigated in previous works concerning SPA.1-6 To
address this issue, the present paper presents a comparative
study between the use of a separate validation set and leave-
one-out cross-validation for the selection of spectral
variables by SPA. This investigation is of value to
determine whether there are gains, in either parsimony or
prediction performance, that may justify the use of cross-
validation in SPA in view of the computational overhead
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involved. For this purpose, two case studies involving the
analysis of diesel and corn samples by near-infrared (NIR)
spectroscopy are presented. The results obtained with
MLR-SPA are also compared with those obtained by full-
spectrum PLS.

A graphical user interface (GUI) for SPA, incorporating
the cross-validation option, was developed for the
convenience of prospective users. The GUI files can be
downloaded at www.ele.ita.br/~kawakami/spa/

Background and theory

Suppose that the instrumental response data are
disposed in a matrix X of dimensions (N × K) such that
the kth variable x

k
 is associated to the kth column vector x

k

∈ ℜΝ. Let M = min (N - 1, K) be the maximum number
of variables that can be included in an MLR model with
intercept term.

SPA comprises three phases. The first phase consists
of projections carried out on the X matrix, which
generate K chains of M variables each. Each element
in a chain is selected in order to display the least
collinearity with the previous ones. These operations
can be implemented in a computationally efficient
manner in the Matlab environment by using the built-
in function qr. By default, the qr function adopts the
column with largest norm as the starting vector.
However, a scaling procedure can be employed to force
the algorithm to start from any given column. Such a
procedure is implemented in the Matlab routine
projections—qr.m presented in Table 1.

The second phase of SPA consists of evaluating
candidate subsets of variables extracted from the chains
generated in the first phase. The third and final phase
is an elimination procedure aimed at discarding
variables that do not significantly contribute towards
the prediction ability of the MLR model. More details
concerning the operations involved in SPA can be found
elsewhere.1,9

In all previous applications of SPA, the performance
metric employed in Phases 2 and 3 was the RMSEV value
obtained in an independent validation set of N

val
 samples,

defined as

(1)

where y
val,n

 and y^
val,n

 are the reference and predicted values
of the parameter under consideration for the nth validation
sample. In the present work, an extension of this criterion to
the cross-validation case is adopted by considering the root
mean square error of cross-validation (RMSECV) defined as

(2)

where y
cal,n

  is the reference value of the parameter under
consideration for the nth sample of the calibration set itself,
which contains N

cal
 samples. The predicted value y^

cal,n
 is

obtained by a leave-one-out procedure, which consists of
removing the nth sample from the calibration set, building a
model with the remaining ones, and applying this model to
the removed sample. This procedure is employed in Phases 2
and 3 of SPA described above. Phase 1 (projection operations)
is not repeated in the cross-validation procedure to alleviate
the computational workload involved in the process.

Experimental

Diesel data set

A total of 170 diesel samples were collected from gas
stations in the city of Recife (Pernambuco State, Brazil).
NIR spectra in the range 880-1675 nm were obtained using
an FT-NIR/MIR spectrometer Perkin Elmer GX fitted with
a Hellma® 130-QS quartz flow-through cell with an
optical path length of 1.0 cm. A spectral resolution of 2
cm-1 and 16 scans were used.

Table 1. Matlab Script employed in Phase 1 of SPA

function chain = projections_qr(X,k,M)
% X —> Matrix of predictor variables (# objects N x # variables K)
% k —> Index of the initial column for the projection operations
% M —> Number of variables to include in the chain
% chain —> Index set of the variables resulting from the projection operations
X_projected = X;
norms = sum(X_projected.^2); % Square norm of each column vector
norm_max = max(norms); % Norm of the “largest” column vector
% Scales the kth column so that it becomes the “largest” column
X_projected(:,k) = X_projected(:,k)*2*norm_max/norms(k);
[dummy1,dummy2,order] = qr(X_projected,0);
chain = order(1:M)’;
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Reference values for sulphur content were determined
by using energy-dispersive X-ray fluorescence according
to the ASTM (American Society for Testing and
Materials) 4294-90 standard. For this purpose, a Spectro
Titan spectrophotometer (current of 400 μA, tube voltage
of 5.5 kV and irradiation time of 300s) was employed.
In addition, reference values for three distillation
temperatures (Initial Point IP, T10% and T90%) were
obtained according to the ASTM D86 standard by using
a Herzog HDA 628 automatic distiller.

Corn data set

This data set comprises 80 corn samples with NIR
spectra in the range 1100-2498 nm acquired by 3
spectrometers and is publicly available at
www.eigenvector.com/Data/Corn/. In this study, only
the data from spectrometer “m5” were employed. The
data set also includes reference values of moisture, oil,
protein and starch content for each sample.

Sample set partitioning

The SPXY algorithm7 was used to divide the available
samples into calibration, validation, and prediction sets.
The diesel data were divided into 70 (calibration), 50
(validation), and 50 (prediction) samples. The corn data
were divided into 40 (calibration), 20 (validation), and 20
(prediction) samples. For the cross-validation study, the
calibration and validation samples were merged into a
single calibration set. The prediction set was employed to
compare the performance of the resulting models according
to the root mean square error of prediction (RMSEP)
metric, which is defined by using an equation similar to
equation 1. It is worth noting that the prediction samples
are not used in any phase of the variable selection or
calibration procedures.

Software

Savitzky-Golay differentiation and PLS regression were
performed by using The Unscrambler® 9.6 (CAMO AS,

Oslo, Norway). The number of latent variables for PLS was
determined on the basis of the validation or cross-validation
error by using the default settings of the software. SPA
variable selection, MLR modelling and SPXY sample
selection were implemented in MATLAB® 6.5.

Results and Discussion

Diesel analysis

Figure 1a shows the raw spectra of the 170 diesel
samples. The spectra display undesirable baseline features,
which were suppressed by using the first derivative with a
Savitzky–Golay filter10 employing a 2nd-order polynomial
and a 13-point window. The resulting derivative spectra
shown in Figure 1b comprised 1579 variables and were
employed for all calculations.

Table 2 presents the RMSEP values obtained when
the resulting MLR-SPA and PLS models were applied
to the independent prediction set. As can be seen, MLR-
SPA and PLS were comparable in terms of prediction
performance for sulphur and IP. In T10% and T90%,
MLR-SPA noticeably outperformed PLS. The results
also show that cross-validation does not provide a
systematic advantage over the use of a separate
validation set in terms of the RMSEP value for the

Table 2. RMSEP results for (a) sulphur content, (b) IP, (c) T10%, and (d) T90%. The values in parentheses correspond to the number of latent variables in PLS
and wavelengths in MLR-SPA

Parameter Range SPA PLS

Validation set Cross-Validation Validation set Cross-Validation

Sulphur 0.03-0.31 m/m 0.01 (10) 0.01 (05) 0.02 (05) 0.01 (11)
IP 142.2-240.7 ºC 10.3 (07) 8.3 (08) 10.3 (06) 8.2 (06)
T10% 186.6-269.9 ºC 3.0 (16) 4.0 (09) 4.9 (06) 4.6 (06)
T90% 317.2-385.5 ºC 3.5 (22) 3.3 (16) 5.3 (04) 4.2 (04)

Figure 1. (a) Original and (b) derivative NIR spectra of the 170 diesel
samples.



1583Galvão et al.Vol. 18, No. 8, 2007

resulting MLR-SPA models. However, in general, cross-
validation resulted in models with a smaller number of
selected variables.

Corn analysis

Figure 2a presents the raw spectra of the 80 corn
samples. As in the diesel case study, the spectral baseline
shifts were removed by using a first derivative procedure,
as shown in Figure 2b. In this case, a Savitzky–Golay filter
with a 2nd-order polynomial and a 21-point window was
employed. The resulting derivative spectra shown in Figure
2b comprised 680 variables and were employed for all
calculations.

Table 3 presents the RMSEP values obtained when
the resulting MLR-SPA and PLS models were applied
to the independent prediction set. As can be seen, MLR-
SPA noticeably outperformed PLS for moisture, protein,
and starch. The oil results were similar for both
techniques. Again, there is no systematic difference
between the MLR-SPA models obtained by validation
or cross-validation from the point of view of final
prediction performance. In this case, with the exception
of moisture, the number of selected variables is similar
in both approaches.

Figure 2. (a) Raw and (b) derivative NIR spectra of the 80 corn samples.

Table 3. RMSEP results for (a) moisture, (b) oil, (c) protein and (d) starch contents. The values in parentheses corresponds to the number of latent variables in
PLS and wavelengths in MLR-SPA

Parameter Range SPA PLS

Validation set Cross-Validation Validation set Cross-Validation

Moisture 9.377-10.993 % 0.019 (17) 0.012 (30) 0.045 (06) 0.040 (05)
Oil 3.088-3.832 % 0.030 (18) 0.022 (17) 0.028 (10) 0.029 (12)
Protein 7.654-9.711 % 0.033 (27) 0.040 (27) 0.110 (07) 0.119 (06)
Starch 62.826-66.472 % 0.101 (20) 0.100 (20) 0.228 (05) 0.196 (06)

Conclusions

The results obtained in this work revealed that using a
separate validation set or resorting to cross-validation are
equally valid approaches to guide the selection of variables
in SPA. This finding is of value because it supports the
validation procedure employed in all previous papers
concerning SPA. On the other hand, despite the
computational overhead involved, the proposed cross-
validation approach for SPA may be of value when the
definition of a representative validation set is not trivial,
as is the case with complex matrices such as those
considered in this work. In these situations, the use of
cross-validation circumvents the need for the delicate task
of partitioning the available samples into calibration and
validation subsets.
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