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Foram isoladas de extratos de folhas de Ocotea catharinensis Mez (Lauraceae) quatorze 
neolignanas sendo nove benzofurânicas (incluindo três novas substâncias 1e, 2f e 4b), uma seco-
benzofurânica inédita (3b), duas biciclo[3.2.1]octânicas (incluindo a nova 5c), dois novos dímeros 
biciclo[3.2.1]octânicos (7a e 7b) e ainda dois sesquiterpenos (incluindo o novo humulanol 9). Nos 
embriões somáticos de O. catharinensis foram identificadas sete neolignanas incluindo uma nova 
neolignana biciclo[3.2.1]octânica (4a). 

The extracts from leaves of Ocotea catharinensis Mez (Lauraceae) were found to contain 
fourteen neolignans and two sesquiterpenes: nine benzofuran types (including three new compounds 
1e, 2f and 4b), one new seco-benzofuran type (3b), two bicyclo[3.2.1]octane types (including the 
new compound 5c), two new dimers of bicyclo[3.2.1]octane type (7a and 7b) and two sesquiterpenes 
(including a new humulanol 9). In addition, seven neolignans were also showed to occur in somatic 
embryos of O. catharinensis including one new bicyclo[3.2.1]octane type (4a). 

Keywords: Ocotea catharinensis, benzofuran neolignans, bicyclo[3.2.1]octane neolignans, 
humulane sesquiterpene, somatic embryos

Introduction

Ocotea catharinensis (Lauraceae) is a woody plant 
species found in southern Atlantic forest in Brazil, which 
produces excellent quality of timber. The extensive logging 
over the past thirty years associated with difficulties for 
propagation has led its natural population to be significant 
decrease. Since O. catharinensis has been included as 
endangered species, a somatic embryogenic system was 
developed aiming to a massive propagation.1,2 

The Ocotea has been one of the most phytochemically 
investigated Lauraceous genus and their major secondary 
compounds were showed to be   phenylpropanoid-
derived including several sub-classes of neolignans.3 
Previous phytochemical studies carried out in leaves 

of O. catharinensis collected at Horto Florestal (Serra 
da Cantareira), São Paulo State, Brazil, reported the 
occurrence of benzofuran (1b, 1c, 1d, 2b, 2c, 2d, 2e and 
2h) and bicyclo[3.2.1]octane (5a, 5b and 5d) neolignans.4 
Representatives of both sub-classes of neolignans have 
also been previously isolated from barks and woods of 
a specimen collected in São Paulo State,5,6 and also from 
wood and leaves of O. porosa (“imbuia”) collected in Rio 
Grande do Sul State, southern Brazil.7-9

This work describes the isolation and characterization of 
major secondary compounds from leaves collected at Vale 
do Itajaí, Santa Catarina State, Brazil and from embryogenic 
cultures developed from the same plant source. The extracts 
from leaves afforded seven new neolignans 1e, 2f, 3b, 
4b, 5c, 7a, 7b, besides seven previously reported ones 
1a,6,10 1d,6 2a,6,10,11 2d,4 2e,6 2g,12 5e.13 Additionally, a 
new sesquiterpene of humulane type (9), besides known 
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spathulenol (8)4,14 were isolated as well. The embryogenic 
cultures were shown to contain a new benzofuran neolignan 
4a, six already known benzofuran 1c,6,12 1d,6 2a,6,10,11 2b,11,12 
2e,6 and a bicyclo[3.2.1]octane neolignan 6.15

Results and Discussion

The defatted fraction of hexane extracts from  
O. catharinensis leaves and from O. catharinensis 
somatic embryos were submitted to flash chromatography 

followed by prep. TLC and/or circular chromatography 
(Chromatotron®). This procedure yielded nine new 
compounds (1e, 2f, 3b, 4a, 4b, 5c, 7a, 7b and 9), besides 
armenin-B (1a),6,10 1c,6,12 5’-methoxyporosin (1d),6 
ferrearin-C (2a),6,10,11 ferrearin-B (2b),11,12 2d,4 ferrearin-E 
(2e),6 ferrearin-G (2g),12 5e,13 615 and spathulenol (8).4,14

The molecular formula of compound 1e was determined 
by HRESI as C

23
H

30
O

7
.

 
Its 1H NMR spectrum was 

quite similar to that of armenin-B (1a) (C
21

H
24

O
6
), 

previously isolated from Licaria armeniaca10
 

and from 
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O. catharinensis.6
 

The only difference was assigned to 
the oxygenation pattern of the aromatic ring, which was 
determined as 3,4,5-trimethoxyphenyl in 1e instead of 
3,4-methylenedioxyphenyl in 1a.

The 1H NMR spectra of 2f (C
21

H
26

O
6
) and of ferrearin-E 

(2e) (C
20

H
24

O
5
) isolated from O. catharinensis6

 

were 
similar. The difference between both compounds consisted 
of an additional methoxyl group at β-position (C-5’, 
d 169.3) of 2f.

The molecular formula of compound 3b was determined 
by HRESI as C

22
H

28
O

6
. All the 1H NMR data was similar 

to that of a neolignan 3a (C
21

H
26

O
5
) previously isolated 

from O. porosa.16 Nevertheless, the 1H and 13C NMR 
spectra indicated that 3b contained a methoxyl group at 

C-3’ (d
H
 3.58, d

C
 55.7) which was evidenced by the signal 

of C-3’ at d
C
 152.8 instead of d

C
 132.7 in 3a. Its absolute 

configuration was determined as 8S,1’R,5’R based on 
the signal of optical rotation ([a]

D
21 = −17o (MeOH,  

c = 0.92 g/100mL) and comparison with reported data for 
(–)-megaphone in which X-ray crystallographic studies 
was carried out.16 

The compounds 4a and 4b were characterized as 
hexahydrobenzofuran neolignans by analysis of their 1H 
and 13C NMR spectra and comparison with 4c which was 
previously isolated from O. porosa.9 The aromatic rings were 
determined as 3,4-methylenedioxyphenyl and 5-methoxy-
3,4-methylenedioxyphenyl for 4a and 4b, respectively. The 
relative stereochemistry between methyl and aryl groups 

Table 1. 1H and 13C NMR data of 1e, 2f, 3b, 4a, 4b and 6 [d, J (Hz), 200 MHz and 50 MHz, CDCl
3
]

position 1e 2f 3b 4a 4b 6

1H 13C 1H 13C 1H 13C 1H 1H 13C 13C

1 131.8 131.3 131.3 132.5 129.4

2 6.34 (brs) 102.5 6.63-6.76 (m) 110.8 7.38 (d, 2.0) 109.9 6.99 (d,1.5) 6.45 (brs) 106 113.9

3 153.4 148.2 148.7 148 148.2

4 136.1 148.6 149.9 134.2 147.3

5 153.3 6.63-6.76 (m) 109.7 6.80 (d, 8.4) 110.8 6.64 (d, 7.8) 143.1 110.6

6 6.45 (brs) 101.1 6.63-6.76 (m) 118.5 7.52 (dd, 8.4; 2.0) 122.8 6.73 (dd, 7.8; 1.5) 6.42 (brs) 106 122.8

7 5.20 (d, 1.9) 92.5 5.36 (d, 9.3) 82.4 202.3 4.43 (d, 9.9) 5.33 (d, 9.7) 82.3 57.1

8 2.37-2.66 (m) 44.3 2.75 (m) 43.2 4.0 (q, 7.5) 42.4 2.18-2.40 (m) 2.72 (d, 9.6) 43.3 49.1

9 1.15 (d, 7.4) 17.7 0.52 (d, 7.4) 11.4 1.10 (d, 7.5) 12.5 0.84 (d, 6.8) 0.57 (d, 7.5) 12.4 13.8

1’ 47.3 51.6 50.4 49.9 50.8

2’ 31.6 100.9 196.5 102 77.4

3’ 77.3 196.9 152.8 152.5 89.9

4’ 192.5 5.39 (s) 102.4 5.72 (brs) 132.9 4.78 (brs) 4.92 (brs) 97.5 193.7

5’ 3.93 (dd, 12.1; 5.0) 132.3 169.3 4.3 (m) 72.8 4.03-4.12 (m) 4.08-4.13 (m) 74.3 151.8

6’ 1.82 (dd, 12.0; 12.0) 169.7 2.45 (d, 16.5) 41.7 2.80 (dd, 12.9; 9.9) 34.6 2.00 (dd, 12.6; 5.0) 1.90 (dd, 12.3; 4.8) 31.7 119.3

2.09-2.25 (m) 2.20 (dd, 12.9; 5.3) 1.40 (dd, 12.6; 10.0) 1.46 (dd, 10.0; 10.0)

7’ 2.09-2.25 (m) 41.3 2.31 (dd, 7.3; 5.5) 40.1 2.50 (dd, 14.4; 6.4) 39 2.18-2.40 (m) 2.43 (dd, 14.2; 7.1) 38.4 36.9

2.30 (dd, 14.4; 8.8) 2.23 (dd, 14.2; 7.9)

8’ 5.54-5.65 (m) 132.3 5.64-5.73 (m) 133.4 5.58-5.68 (m) 132.9 5.86-5.95 (m) 5.90-5.95 (m) 135 133.8

9’ 5.03 (dd, 14.6; 1.4) 120 5.00 (dd, 15.3; 1.9) 118.7 5.05 (dd, 12.0; 2.0) 118.6 5.03 (dd, 14.8; 1.8 5.12 (dd, 14.4; 1.8) 117.5 118.8

4.72 (dd, 11.2; 1.4) 4.93 (dd, 10.0; 1.9) 5.03 (dd, 14.8; 1.8 5.08 (dd, 7.7; 1.8)

CH
2
O

2
5.86 (s) 5.92 (s) 101.3

MeO-3 3.80 (s) 60.9 3.79 (s) 55.8 3.82 (s) 55.9 55.8

MeO-4 3.81 (s) 60.5 3.78 (s) 55.9 3.86 (s) 55.8 55.7

MeO-5 3.82 (s) 60.9 3.85 (s) 56.7

MeO-3’ 3.73 (s) 59.3 3.58 (s) 55.7 3.61 (s) 3.67 (s) 55.8 54.7

MeO-4’ 3.34 (s) 55

MeO-5’ 3.56 (s) 55.9 3.75 (s) 55.6 3.34 (s) 3.37 (s) 55.1 55.5

OH-2’ 3.66 (s)

COMe-4’ 3.66 (s) 21.0/169.0
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was deduced from the anisotropic shielding effect caused 
by aromatic ring on cis methyl hydrogens as observed in the 
1H NMR spectra. The methyl (H-9) signals of 4a (trans) and 
4b (cis) were observed at d 0.84 (d, 6.8 Hz) and 0.57 (d, 7.5 
Hz), respectively. The placement of hydroxyl group at C-2’ 
and methoxyl group at C-3’ were possible by comparison 
of 13C NMR data and those described for 4c.9

The molecular formula of compound 5c was determined 
by HRESI as C

21
H

22
O

6
. Its 1H NMR were similar to that 

observed for previously reported 5e (C
22

H
24

O
7
) isolated 

from Aniba simulans,13 but with a 3,4-methylenedioxy for 
5c instead of 5-methoxy-3,4-methylenedioxy observed 
for 5e.

Compounds 7a and 7b had their structures determined 
by analysis of their IR, MS and NMR spectra. The IR spectra 
of 7a/7b exhibited absorption bands at 1766 and 1714 cm-1,  
assignable to two carbonyl groups for each compound. 
Their 1H and 13C NMR spectra resembled those of 5c/5e, 
respectively. Nevertheless, the 13C NMR signals associated 
to the olefinic double bond at C5´-C6´ were replaced by 
signals of quaternary carbinolic and methine signals at 
d 88.4/52.6 (7a) and d 88.4/52.7 (7b), respectively. The 
EIMS of 7a/7b showed molecular ion at m/z 370 and 400, 
but the chemical ionization mass spectrometry (CIMS) 
provided a molecular ion peak (M + H)+ at m/z 741 and 
m/z 801, respectively. These molecular ions combined 
with 1H and 13C NMR (PND and DEPT 135°), suggested 
a molecular formula C

42
H

44
O

12
 and C

44
H

48
O

14
 compatible 

with dimeric structures. Thus, the fragmentary ion peaks 
found at m/z 371 of 7a and 401 of 7b were assigned to the 
cleavage into monomers indicating that 7a and 7b were 
symmetric dimers of 5a and 5e. Based on similarities to 
5a and 5e all 1H and 13C NMR data were assigned with 
the aid of 1H-1H COSY and HETCOR spectra (Table 2). 
In order to determine the relative stereochemistry at the 
cyclobutane ring, NOESY spectra showed cross-peaks 
between H-8 and H-7’, H-7’ and H-6’, H-6’ and OMe-5’. 
Thus, among the cyclobutane syn-adducts at C-5’ and 
C-6’ four dimers would be expected (Figure 1). Dimers III 
and IV having cis configuration at the cyclobutane would 
involve a considerable steric hindrance between the bulky 
groups of bicyclooctane neolignan, which would prevent 
such arrangement. For these reason, dimers I and II having 
trans configuration were considered as the mostly probable 
structures.

The molecular formula of 9 (C
15

H
26

O) was deduced from 
MS and 13C NMR (PND and DEPT 135°) spectral data. The 
spectral characteristics of compound 9 were closely related to 
those of α-humulane17 except for the existence of a hydroxyl 
group (IR ν

max
/cm

-1
: 3425) and two double bonds instead of 

three. All the 1H and 13C NMR signals were assigned by 1H-1H 

COSY and HETCOR techniques and were compatible with 
the structure depicted for humula-4,8-dien-2-ol (9).

The leaves of O. catharinensis collected in São Paulo 
and in Santa Catarina were showed to contain both 
benzofuran and bicyclo[3.2.1]octane type neolignans. The 
benzofuran neolignan 1d was the major compound in the 
leaves collected in São Paulo while bicyclo[3.2.1]octane 
neolignans 5e/5c were predominant in Santa Catarina 
specimen. The embryogenic cultures also produced both 
types of neolignans, but 1d was the major compound.

Experimental

General 

Prep. TLC was carried out on silica gel PF-254 (Merck) 
and CC on silica gel 60H (0.005-0.045 mm) (Merck). 
Optical rotations were measured on Jasco Mod. DIP-370. 
1H and 13C NMR spectra were registered on a Bruker 
AC-200 spectrometers using CDCl

3
 as solvent and TMS 

as internal standard. EIMS (70 eV) and CIMS (methane) 
were obtained on a HP 5988-A spectrometer. HRESIMS 
(positive mode) were recorded on a Bruker Daltonics 
microTOF. Elemental analysis were performed on a 
Perkin-Elmer CHN Elemental Analyser 2400. HPLC were 
performed on Gilson 321 using a reverse phase column 
(Supelco, C-18, 4.6 × 250 mm, 5 µm).

Plant material 

The leaves of the O. catharinensis were collected in 
Brusque, Santa Catarina State, Brazil in June 1993. The 
species was collected and identified by Prof. Ademir Reis 
(Departamento de Botânica, UFSC). The voucher specimen 
(FLOR-17560) was deposited in the FLOR Herbarium 
(UFSC).

Figure 1. Possible structure of dimers for 7a/7b.
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Initiation and multiplication of embryogenic cultures

Embryogenic cultures were initiated from mature 
zygotic embryos of O. catharinensis according to described 
methodology.1,2

The somatic embryos produced at early cotyledonary 
stage (2-3 mm length) were inoculated in Woody Plant 
Medium (WPM, Sigma Co., USA) supplemented with 
22.7 g L-1 sorbitol, 2 g L-1 Phytagel, 20 g L-1 sucrose and 
400 mg L-1 glutamine (pH 5.8) and maintained at 25 °C and 
with photon flux of 22 µmol m-2 s-1 provided by fluorescent 
tubes under 16 h photoperiod.2,18 After four weeks cultivation 
the somatic embryos at mature stage (≥ 5 mm) were 
transferred to Petri dishes (6 cm), spread over two filter 
papers, and maintained at 25 °C for 4 days for desiccation. 

Extraction and isolation of the constituents from leaves

Dried and powdered leaves (395.0 g) were exhaustively 
extracted with hexane at room temp. Evaporation of the 

Table 2. 1H and 13C NMR of compounds 5c, 5e, 7a and 7b [d, J (Hz), 200 MHz and 50 MHz, CDCl
3
]

position 5c 5e 7a 7b

1H 13C 1H 13C 1H 13C 1H 13C

1 130.8 131.5 131.8 132.5

2 6.51 (brs) 109.4 6.14 (d, 1.4) 109.4 6.50 (s) 107.9 6.13 (s) 108.9

3 146.9 148.7 147.1 142.9

4 147.6 134.4 147.4 148.6

5 6.69 (d, 7.6) 107.9 142.9 6.70 (d, 8.4) 108.9 108.9

6 6.49 (d, 7.6) 122.9 6.17 (d, 1.4) 103.1 6.49 (dd, 8.4; 1.8) 122.2 6.13 (s) 122.2

7 2.54-2.59 (m) 53.9 2.46-2.51 (m) 54.1 2.89 (d, 4.5) 62.2 2.81 (d, 4.5) 62.4

8 2.19-2.24 (m) 47.1 2.15-2.22 (m) 47.0 2.53 (dd, 6.7; 4.5) 37.2 2.53 (dd, 7.0; 4.5) 37.2

9 0.96 (d, 6.6) 14.3 0.92 (d, 6.7) 14.4 1.18 (d, 6.7) 18.9 1.12 (d, 7.0) 18.9

1’ 54.2 54.2 56.6 56.5

2 204.9 204.9 201.6* 201.5*

3’ 93.7 93.6 85.2**  85.2**

4’ 191.7 191.7 199.2* 198.1*

5’ 152.7 152.8 88.4**  88.4**

6’ 5.81 (s) 117.7 5.76 (s) 117.8 2.96 (s) 52.6 2.91 (s) 52.7

7’ 2.52-2.58 (m) 35.8 2.46-2.51 (m) 35.7 2.23 (dd, 15.2; 5.7) 34.4 2.20 (dt, 5.7; 2.9; 1.4) 34.3

2.65 (dd, 15.2; 8.4) 2.45 (dd, 6.7; 4.6)

8’ 5.87-5.96 (m) 132.9 5.82-5.91 m 132.9 5.80-5.92 (m) 132.6 5.80-5.87 (m) 132.6

9’ 5.19 (d, 17.0) 119.3 5.13 (d, 16.6) 119.3 5.20 (d, 15.7) 119.6 5.20 (d, 15.7) 119.6

5.17 (d, 10.3) 5.11 (d, 10.6) 5.23 (d, 11.2) 5.25 (d, 11.6)

CH
2
O

2
5.91 (d, 2.3) 101.1 5.88 (d, 1.3) 101.3 5.91 (s) 101.1 5.86 (d, 1.5) 101.4

MeO-5 - - 3.78 (s) 55.8 - - 3.78 (s) 56.1

MeO-3’ 3.52 (s) 56.3 3.47 (s) 56.3 3.35 (s) 55.1 3.31 (s) 55.2

MeO-5’ 3.73 (s) 53.9 3.67 (s) 56.5 3.61 (s) 58.4 3.55 (s) 58.4

*,**: Assignments may be reversed.

Table 3. 1H and 13C NMR data of compound 9 [d, J (Hz), 200 MHz and 
50 MHz, CDCl

3
]

position 9

1H 13C

1 4.83-4.85 124.7

2 1.75-2.0 (m) 25.2

3 1.75-2.2 (m) 39.2

4 133.0

5 4.83-4.85 (m) 126.5

6 0.90-1.1 (m) 47.0

1.75-2.0 (m)

7 1.9-2.2 (m) 49.7

8 3.14 (ddd; 2.9; 2.7; 2.4) 70.0

9 1.75-2.2 (m) 39.3

10 132.2

11 33.6

12 0.95 (s) 31.2

13 1.05 (s) 27.7

14 1.44 (s) 15.9

15 1.59 (s) 18.3
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hexane under a reduced pressure gave a residue, which 
was partitioned between hexane and MeOH-H

2
O (9:1). 

The hydroalcoholic phase was concentrated under reduced 
pressure yielding 2.4 g. This residue was submitted to flash 
chromatography column (silica gel, 150 g) and eluted 
with hexane-EtOAc mixtures at increasing polarities (7:3 
to 0:1), yielding 120 fractions (30 mL each). Frs. 29-32 
(33.0 mg) submitted to prep. TLC (silica gel, hexane-Et

2
O, 

4:1) gave spathulenol 8 (7.0 mg) and humula-4,8-dien-2-ol 
9 (17.0 mg). Frs. 33-41 (76.0 mg) was also fractionated 
by prep. TLC (silica gel, cyclohexane-Me

2
CO, 98:2) 

followed by prep. TLC (silica gel, hexane-CHCl
3
-iso-PrOH, 

94.5:5.0:0.5) and afforded 2d (5.5 mg) and 2a (4.9 mg). 
Frs. 44-59 (60.0 mg) submitted to prep. TLC (silica 
gel, cyclohexane-Me

2
CO, 97:3) followed by prep. TLC 

(silica gel, CHCl
3
-EtOAc-iso-PrOH, 94.5:5.0:0.5) gave 

2g (3.0 mg) and 6 (6.0 mg). Fr. 60 (24.0 mg) fractionated 
by prep. TLC (silica gel, cyclohexane-Me

2
CO, 98:2) 

yielded 5c (6.0 mg). Frs. 61-65 (440.0 mg) submitted 
to flash chromatography column (silica gel, CHCl

3
-

EtOAc-iso-PrOH, 89:10:1), affording three sub-fractions  
(S

1
-S

3
). Prep. TLC of sub-fraction S

1
 (70.0 mg) (silica 

gel, CHCl
3
-EtOAc-iso-PrOH, 94.5:5.0:0.5) afforded 7a 

(17.0  mg) and prep. TLC of sub-fraction S
3
 (80.0 mg) 

(silica gel, CHCl
3
-EtOAc-iso-PrOH, 94.5:5.0:0.5) yielded 

5c (30.0 mg). Frs. 66-71 (272.0 mg) fractionated by prep. 
TLC [silica gel, cyclohexane-Me

2
CO (97:3)] furnished 2e 

(6.0 mg). Frs. 77-79 (150.0 mg) submitted to chromatotron 
(silica gel, hexane-EtOAc-iso-PrOH, 69:30:1), to give two 
sub-fractions (S

4
 and S

5
). Prep. TLC of sub-fraction S

4
 

(14.0 mg) (silica gel, cyclohexane-Me
2
CO, 95:5) gave 2a 

(5.0 mg) and 7b (4.0 mg) and prep. TLC of sub-fraction 
S

5
 (98.0 mg) (silica gel, cyclohexane-Me

2
CO, 95:5) gave 

5e (70.0 mg). Frs. 80-81 (98.0 mg) submitted to prep. TLC 
(silica gel, CH

2
Cl

2
-Me

2
CO, 95:5) yielded 4b (12.0 mg). Fr. 

82-86 (500.0 mg) submitted to chromatotron (silica gel, 
hexane-EtOAc-iso-PrOH, 89:10:1) afforded 2e (7.2 mg) 
and two sub-fractions S

6
 and S

7
. Sub-fraction S

6
 (400.0 mg) 

was further fractionated by flash chromatography column 
(silica gel, CH

2
Cl

2
-Me

2
CO, 98:2) yielding 2f (12.0 mg) 

and 3b (9.0 mg). Sub-fraction S
7
 (43.0 mg) was submitted 

to chromatotron (silica gel, CH
2
Cl

2
-Me

2
CO, 95:5) to give 

1a (24.0 mg). Frs. 105-110 (87.0 mg) was submitted to 
chromatotron (silica gel, CH

2
Cl

2
-Me

2
CO, 96:4) yielding 

1d and 1e (5.5 mg) as a mixture.

Extraction and isolation of the constituents from somatic 
embryos

The desiccated somatic embryos (400.0 g) were frozen 
in Me

2
CO with dry ice, ground and extracted with 500 mL 

MeOH-H
2
O (4:1). The hydroalcoholic extracts was 

concentrated and successively partitioned with hexane and 
CHCl

3
 (3 × 200 mL, each). The CHCl

3
 residue (360.0 mg) 

was submitted to flash chromatography column (silica gel, 
150 g) and eluted with CH

2
Cl

2
-Me

2
O at increasing polarity 

(1:1 to 0:1), affording 160 fractions (20 mL each). Fr. 1 
(18.0 mg) submitted to prep. TLC (cyclohexane-Me

2
CO, 

95:5) yielded 2a (5.0 mg) and 6 (5.0 mg). Frs. 2-12 (7.0 
mg) submitted to prep. TLC (cyclohexane-Me

2
CO, 95:5) 

gave 2a (1.0 mg) and 2e (2.0 mg). Frs. 13-21 (20.5 mg) 
submitted to prep. TLC (cyclohexane-Me

2
CO, 95:5) gave 

2b (3.0 mg), 2a (4.0 mg) and 1c (3.0 mg). Frs. 22-54 (43.0 
mg) purified by prep. TLC (CH

2
Cl

2
-Me

2
O, 9:1) yielded 

4a (3.0 mg) and 6 (4.0 mg). Frs. 145-158 (29.0 mg) 
fractionated by prep. TLC (CHCl

3
-MeOH, 9:1) yielded 

1d (7.0 mg).

(7S,8S,1’R,3’R)-3,4,5,3’,5’-Pentamethoxy-4’-oxo-∆1,3,5,5’,8’-
8.1’,7.O.6’-neolignan (1e)

Viscous oil; IR (film) ν
max

/cm
-1
: 3469, 2925, 1707, 1695, 

1500, 1446, 1371, 1218, 1087, 1033, 925, 816, 772; 1H and 
13C NMR, see Table 1; HRESIMS m/z: 419.2090 [M+H]+ 
(calcd for C

23
H

31
O

7
, 419.2071); EIMS (70 eV) m/z (rel. 

int.): 418(M+, 34), 388(19), 377(100), 349(87), 317(29), 
285(13), 208(44), 181(22), 91(13).

rel(7R,8S,1’R,2’S)-2’-Hydroxy-3,4,5’-trimethoxy-3’-oxo-
∆1,3,5,4’,8’-8.1’,7.O.2’-neolignan (2f)

Viscous oil; [a]
D
21 = − 130o (MeOH, c = 0.20 g/100mL); IR 

(film) ν
max

/cm
-1
: 3435, 2936, 2849, 1739, 1664, 1588, 1511, 

1457, 1251, 1142, 1012, 762; 1H and 13C NMR, see Table 1; 
EIMS (70 eV) m/z (rel. int.): 374(M+, 7), 194(17), 167(100), 
166(66), 165(76), 139(56), 95(17), 77(21), 69(18).

rel (8S, 1’R, 5’R)-3,4,3’,5’-Tetramethoxy-7,2’-dioxo-
∆1,3,5,3’,8’-8.1’-neolignan (3b) 

Viscous oil; [a]
D
21 = − 17o (MeOH, c = 0.92 g/100mL); 

IR (film) ν
max

/cm
-1
: 2957, 2914, 2860, 2348, 1739, 1620, 

1511, 1457, 1371, 1263, 1229, 1144, 1023, 766; 1H and 
13C NMR, see Table 1; HRESIMS m/z: 389.1983 [M+H]+ 
(calcd for C

22
H

29
O

6
, 389.1966); EIMS (70 eV) m/z (rel. 

int.): 388(M+, 4), 352(30), 339(23), 324(10), 316(3), 
165(100), 137(6).

rel(7S,8S,1’R,2’S)-2’-Hydroxy-3,4-methylenedioxy-3’,5’-
dimethoxy-∆1,3,5,3’,8’-8.1’,7.O.2’-neolignan (4a)

Viscous oil; 1H NMR see Table 1.

rel(7R,8S,1’R,2’S)-2’-Hydroxy-3,4-methylenedioxy-
5,3’,5’-trimethoxy-∆1,3,5,3’,8’-8.1’,7.O.2’-neolignan (4b)

Viscous oil; 1H and 13C NMR, see Table 1.
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rel(7S,8R,1’R,3’R)-4’-Hydroxy-3,4-methylenedioxy-3’,5’-
dimethoxy-2’,4’-dioxo-∆1,3,5,5’,8’-8.1’,7.3’-neolignan (5c) 

Viscous oil; [a]
D
21 = −18o (MeOH, c = 3.75 g/100mL); IR 

(film) ν
max

/cm
-1
: 1765, 1698, 1504, 1491, 1247, 1094, 1039. 

1H and 13C NMR, see Table 2; HRESIMS m/z: 371.1496 
[M+H]+ (calcd for C

21
H

23
O

6
, 371.1496); EIMS (70 eV) m/z 

(rel. int.): 370 (M+, 22), 329(80), 287(12), 269(9), 208(100), 
149(82), 137(73), 77(31).

(7S,8R,1’R,3’R)-4’-Hydroxy-3,4-methylenedioxy-3’,5’,5-
trimethoxy-2’,4’-dioxo-∆1,3,5,5’,8’-8.1’,7.3’-neolignan (5e) 

Viscous oil; [a]
D
21 = − 29o (MeOH, c = 4.48 g/100mL); 

1H and 13C NMR, see Table 2; EIMS (70 eV) m/z (rel. 
int.): 400 (M+, 52), 359(21), 331(10), 288(14), 219(100), 
208(45), 207(43), 193(18), 192(66), 180(53), 165(34), 
137(23), 91(14), 77(16).

7a (Dimer of 5c)
Viscous oil; [a]

D
21 = + 220o (MeOH, c = 0.07 g/100mL); 

IR (film) ν
max

/cm
-1
: 2922, 1766, 1714, 1513, 1453, 1137, 

1094,1044; 1H and 13C NMR, see Table 2; CIMS m/z (rel. 
int.): 741(M+, 1), 579(1), 419(15), 391(91), 371(100), 
341(18), 209(28), 163(37), 57(27).

7b (Dimer of 5e)
Viscous oil; [a]

D
21 = + 57o (MeOH, c = 0.62 g/100mL); 

IR (film) ν
max

/cm
-1
: 1767, 1714, 1505, 1491, 1445, 1240, 

1039; 1H and 13C NMR, see Table 2; CIMS m/z (rel. int.): 
801(M+, 1), 609(18), 429(76), 419(85), 401(100), 371(11), 
209(17), 193(11).

rel(8R)-Humulan-1,4-dien-8-ol (9) 
Solid amorphous. Found: C, 80.89 %, H, 11.65% 

(C
15

H
26

O requires: C, 81.02%, H, 11.79%); IR (film) 
ν

max
/cm

-1
: 3425, 2946, 1707, 1446, 1371, 1022, 762; 1H 

and 13C NMR, see Table 3; EIMS (70 eV) m/z (rel. int.): 
344(M+, 27), 303(9), 271(12), 189(100), 179(26), 178(76), 
166(25), 165(66), 151(59), 137(19), 115(15), 107(27), 
91(35), 77(33).
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Figure S1. 1H NMR spectrum of 1a (200 MHz, CDCl
3
).
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Figure S2. 13C NMR spectrum of 1a (50 MHz, CDCl
3
).

Figure S3. DEPT 135 13C NMR spectrum of 1a (50 MHz, CDCl
3
).
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Figure S4. 1H NMR spectrum of 1b (200 MHz, CDCl
3
).

Figure S5. 1H NMR spectrum of 1c (200 MHz, CDCl
3
).
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Figure S6. 13C NMR spectrum of 1c (50 MHz, CDCl
3
).

Figure S7. DEPT 135 13C NMR spectrum of 1c (50 MHz, CDCl
3
).
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Figure S8. 1H NMR spectrum of 1e (200 MHz, CDCl
3
).

Figure S9. 13C NMR spectrum of 1e (50 MHz, CDCl
3
).
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Figure S10. DEPT 135 13C NMR spectrum of 1e (50 MHz, CDCl
3
).

Figure S11. HRESIMS spectrum of 1e.
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Figure S12. 1H NMR spectrum of 2a (200 MHz, CDCl
3
).

Figure S13. 13C NMR spectrum of 2a (50 MHz, CDCl
3
).
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Figure S14. DEPT 135 13C NMR spectrum of 2a (50 MHz, CDCl
3
).

Figure S15. 1H NMR spectrum of 2b (200 MHz, CDCl
3
).
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Figure S16. 13C NMR spectrum of 2b (50 MHz, CDCl
3
).

Figure S17. DEPT 135 13C NMR spectrum of 2b (50 MHz, CDCl
3
).
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Figure S18. 1H NMR spectrum of 2c (200 MHz, CDCl
3
).

Figure S19. 13C NMR spectrum of 2c (50 MHz, CDCl
3
).
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Figure S20. DEPT 135 13C NMR spectrum of 2c (50 MHz, CDCl
3
).

Figure S21. 2D COSY 13C NMR spectrum of 2c (200 MHz, CDCl
3
).
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Figure S22. 1H NMR spectrum of 2d (200 MHz, CDCl
3
).

Figure S23. 13C NMR spectrum of 2d (50 MHz, CDCl
3
).
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Figure S24. DEPT 135 13C NMR spectrum of 2d (50 MHz, CDCl
3
).

Figure S25. 1H NMR spectrum of 2f (200 MHz, CDCl
3
).
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Figure S26. 13C NMR spectrum of 2f (50 MHz, CDCl
3
).

Figure S27. DEPT 135 13C NMR spectrum of 2f (50 MHz, CDCl
3
).
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Figure S28. 1H NMR spectrum of 2g (200 MHz, CDCl
3
).

Figure S29. 13C NMR spectrum of 2g (50 MHz, CDCl
3
).
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Figure S30. 1H NMR spectrum of 2h (200 MHz, CDCl
3
).

Figure S31. 13C NMR spectrum of 2h (50 MHz, CDCl
3
).
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Figure S32. DEPT 135 13C NMR spectrum of 2h (50 MHz, CDCl
3
).

Figure S33. 1H NMR spectrum of 3b (200 MHz, CDCl
3
).
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Figure S34. 13C NMR spectrum of 3b (50 MHz, CDCl
3
).

Figure S35. DEPT 135 13C NMR spectrum of 3b (50 MHz, CDCl
3
).
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Figure S36. COSY 13C NMR spectrum of 3b (50 MHz, CDCl
3
).

Figure S37. HRESIMS spectrum of 3b.
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Figure S38. 1H NMR spectrum of 4a (200 MHz, CDCl
3
).

Figure S39. 1H NMR spectrum of 4b (200 MHz, CDCl
3
).
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Figure S40. 13C NMR spectrum of 4b (50 MHz, CDCl
3
).

Figure S41. 1H NMR spectrum of 5a (200 MHz, CDCl
3
).
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Figure S42. 13C NMR spectrum of 5a (50 MHz, CDCl
3
).

Figure S43. DEPT 135 13C NMR spectrum of 5a (50 MHz, CDCl
3
).
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Figure S44. HETCOR 13C NMR spectrum of 5a (50 MHz, CDCl
3
).

Figure S45. 1H NMR spectrum of 5b (200 MHz, CDCl
3
).
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Figure S46. 13C NMR spectrum of 5b (50 MHz, CDCl
3
).

Figure S47. DEPT 135 13C NMR spectrum of 5b (50 MHz, CDCl
3
).
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Figure S48. COSY 13C NMR spectrum of 5b (50 MHz, CDCl
3
). 

Figure S49. HETCOR 13C NMR spectrum of 5b (50 MHz, CDCl
3
).
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Figure S50. 1H NMR spectrum of 5c (200 MHz, CDCl
3
).

Figure S51. 13C NMR spectrum of 5c (50 MHz, CDCl
3
).
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Figure S52. COSY 13C NMR spectrum of 5c (50 MHz, CDCl
3
).

Figure S53. HETCOR 13C NMR spectrum of 5c (50 MHz, CDCl
3
).
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Figure S54. HRESIMS spectrum of 5c.

Figure S55. 1H NMR spectrum of 5d (200 MHz, CDCl
3
).
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Figure S56. 13C NMR spectrum of 5d (50 MHz, CDCl
3
).

Figure S57. DEPT 135 13C NMR spectrum of 5d (50 MHz, CDCl
3
).
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Figure S58. 1H NMR spectrum of 5e (200 MHz, CDCl
3
).

Figure S59. 13C NMR spectrum of 5e (50 MHz, CDCl
3
).
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Figure S60. DEPT 135 13C NMR spectrum of 5e (50 MHz, CDCl
3
).

Figure S61. 1H NMR spectrum of 6 (200 MHz, CDCl
3
).
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Figure S62. 1H NMR spectrum of 7a  (200 MHz, CDCl
3
).

Figure S63. 13C NMR spectrum of 7a (50 MHz, CDCl
3
).
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Figure S64. COSY 13C NMR spectrum of 7a (50 MHz, CDCl
3
).

Figure S65. HETCOR 13C NMR spectrum of 7a (50 MHz, CDCl
3
).
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Figure S66. EIMS spectrum of 7a (70 eV).

Figure S67. 1H NMR spectrum of 7a  (200 MHz, CDCl
3
).
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Figure S69. DEPT 135 13C NMR spectrum of 5e (50 MHz, CDCl
3
).
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Figure S70. 1H NMR spectrum of 8  (200 MHz, CDCl
3
).

Figure S71. 13C NMR spectrum of 8 (50 MHz, CDCl
3
).
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Figure S72. 1H NMR spectrum of 9  (200 MHz, CDCl
3
).

Figure S73. 13C NMR spectrum of 9 (50 MHz, CDCl
3
).
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Figure S74. COSY 13C NMR spectrum of 9 (50 MHz, CDCl
3
).

Figure S75. HETCOR 13C NMR spectrum of 9 (50 MHz, CDCl
3
).


