
Ar
ti
cl
e

J. Braz. Chem. Soc., Vol. 21, No. 9, 1626-1634, 2010.
Printed in Brazil - ©2010 Sociedade Brasileira de Química
0103 - 5053 $6.00+0.00

*e-mail: laqa@quimica.ufpb.br

Multi-Core Computation in Chemometrics: Case Studies of Voltammetric
and NIR Spectrometric Analyses

Anderson da Silva Soares,a Roberto K. H. Galvão,b Mário César U. Araújo,*,c
Sófacles F. C. Soaresc and Luiz Alberto Pintob,d

aDivisão de Ciência da Computação and bDivisão de Engenharia Eletrônica, Instituto Tecnológico
de Aeronáutica, 12228-900 São José dos Campos-SP, Brazil

cDepartamento de Química, CCEN, Universidade Federal da Paraíba, CP 5093,
58051-970 João Pessoa-PB, Brazil

dCoordenadoria de Engenharia de Controle e Automação, Instituto Federal do Espírito Santo,
29164-231 Serra-ES, Brazil

A aplicação de técnicas quimiométricas sofisticadas a grandes conjuntos de dados tem se
tornado possível devido aos contínuos aprimoramentos tecnológicos em computadores comerciais.
Recentemente, tais aprimoramentos têm sido obtidos principalmente através da introdução de
processadores com múltiplos núcleos. Contudo, o uso eficiente de hardware com múltiplos núcleos
requer o desenvolvimento de software apropriado para computação paralela. Este artigo trata da
implementação de paralelismo empregando o Matlab Parallel Computing Toolbox, que requer
somente pequenas modificações em códigos quimiométricos já existentes de modo a explorar os
benefícios do processamento em múltiplos núcleos. Empregando essa ferramenta de software,
mostra-se que implementações paralelas podem proporcionar expressivos ganhos computacionais.
Em particular, considera-se o problema de seleção de variáveis empregando o algoritmo das
projeções sucessivas e o algoritmo genético, bem como o uso de validação cruzada em mínimos
quadrados parciais. Para ilustração, duas aplicações analíticas são apresentadas: determinação de
proteína em trigo por espectrometria de reflectância no infravermelho próximo e classificação de
óleos vegetais comestíveis por voltametria de onda quadrada. Empregando as implementações
propostas para computação paralela, ganhos computacionais de até 204% foram obtidos.

The application of sophisticated chemometrics techniques to large datasets has been made
possible by continuing technological improvements in off-the-shelf computers. Recently, such
improvements have been mainly achieved by the introduction of multi-core processors. However,
the efficient use of multi-core hardware requires the development of software that properly address
parallel computing. This paper is concerned with the implementation of parallelism using the Matlab
Parallel Computing Toolbox, which requires only simple modifications to existing chemometrics
code in order to exploit the benefits of multi-core processing. By using this software tool, it is
shown that parallel implementations may provide substantial computational gains. In particular,
the present study considers the problem of variable selection employing the successive projections
algorithm and the genetic algorithm, as well as the use of cross-validation in partial least squares.
For demonstration, two analytical applications are presented: determination of protein in wheat by
near-infrared reflectance spectrometry and classification of edible vegetable oils by square-wave
voltammetry. By using the proposed parallel computing implementations, computational gains
of up to 204% were obtained.

Keywords: parallel computation, successive projections algorithm, genetic algorithm, partial
least squares, voltammetric analysis, near-infrared spectrometric analysis

Soares et al. 1627Vol. 21, No. 9, 2010

Introduction

Modern techniques and instrumentation provide
ever-growing amounts of data (in terms of variables and
samples) that need to be processed for analytical purposes.
Hyphenated methods1 and laser-induced plasma breakdown
spectroscopy,2 for instance, generate a considerable number
of measurements for each sample. One may also cite
near-infrared (NIR) spectrometric analysis of complex
matrices such as agricultural products and fuels, which
may require large sample sets for multivariate calibration.3
In such applications, the computational effort involved in
chemometrics data processing is not negligible.

It may be argued that this growing demand of
chemometrics has been compensated by improvements in
the performance of commercial computers. In fact, early
concerns related to the engineering limits of complexity
and speed in microprocessor units have been circumvented
by the deployment of multi-core processors.4 However,
the efficient use of such multi-core hardware requires the
development of software that properly address parallel
computing.5,6 Therefore, the chemometrics practitioner
must be prepared to deal with this new reality.

In recent years, there has been increasing interest in
the study, design, and analysis of parallel algorithms.7-9
Parallelization can significantly improve performance in
applications that involve many repetitions of a given task
or long tasks comprising several simpler operations. The
main idea is to divide a problem into smaller problems that
can be solved simultaneously. In a multi-core platform,
such smaller problems may be assigned to different cores,
in order to make full use of the available computing
capabilities.

In this context, a recent paper10 presented an
implementation of leave-one-out cross-validation in
multi-core processors using the message passing interface
(MPI) library in a C++ compiler. However, the proposed
implementation requires the expert use of low-level
C++ features, which may be too cumbersome to most
chemometricians. In this sense, it would be of value to
exploit multi-core processing in a simpler, high-level
software platform such as Matlab, which has become a
popular tool in chemometrics.11-14

The present paper is concerned with the implementation
of parallelism using the Matlab Parallel Computing
Toolbox,15 which requires only simple modifications to
existing code in order to exploit the benefits of multi-
core processing. By using this software tool, parallel
implementations are presented for three computationally
intensive chemometric procedures, namely the selection
of variables using the successive projections algorithm

(SPA)16-27 and the genetic algorithm (GA),16-18,22,24,26,28,29
and the use of leave-one-out cross-validation30-32 for model
order selection in partial least squares (PLS).30,31,33-35
Computational improvements in multivariate calibration
and classification tasks are demonstrated. The multivariate
calibration case study involves near-infrared determination
of protein content in a publicly available data set of
wheat samples. The classification study concerns the
discrimination of four types of edible vegetable oils by
square-wave voltammetry.

Background and Theory

Parallel computing in Matlab

The Parallel Computing Toolbox (PCT) of Matlab
was designed to facilitate the implementation of parallel
algorithms for multi-core computation. In what follows, the
use of the toolbox will be illustrated by a simple numerical
example. Consider the two scripts presented below, where
“m” is defined by the user.

Script 1: creation of a random square matrix
 randn(‘state’,0);
 X = randn(m,m);

Script 2: pseudo-inverse calculations
for i = 1:m
 cal = [[1:i-1] [i+1:m]];
 pinv(X(cal,:)’*X(cal,:));
end

Script 1 creates a random (m × m) matrix X. Script 2
uses the Matlab pinv function for calculation of the Moore-
Penrose36 pseudoinverse of m matrices of dimensions
m × m . For simplicity of presentation, the pseudoinverse
matrices are not stored, as this example will be mainly
concerned with the time required to complete the
calculations. The overall computational effort involved
in script 2 may be considerable for large m. However, the
script is amenable to parallelization, as the pseudoinverse
calculations for different matrices (i.e., different values of
index i in script 2) can be carried out independently.

Two main PCT functions can be used in this case,
namely “parfor” and “createTask”. However, the parfor
function has many programming restrictions that hinder
its application and may also compromise the gains in
computational performance.15 For these reasons, the
createTask function is adopted in the present work.

The parallelization of script 2 can be implemented by
using scripts 3 and 4 presented below.

Multi-Core Computation in Chemometrics: Case Studies of Voltammetric and NIR Spectrometric Analyses J. Braz. Chem. Soc.1628

Script 3: parallelization of script 2
job = createJob();
TASK(1) = createTask(job, @inv_thread,
0, {X, 1, round(m/2), m});
TASK(2) = createTask(job, @inv_thread,
0, {X, round(m/2) + 1, m, m});
submit(job);
waitForState(job,’finished’);
destroy(job);

Script 4: auxiliary function for parallelization of script 2
function inv_thread(X, i_initial, i_
final, m)

for i = i_initial : i_final
 cal = [[1:i-1] [i+1:m]];
 pinv(X(cal,:)’*X(cal,:));
end

The two tasks (TASK(1) and TASK(2)) created in
script 3 split the calculations into two threads. The first
thread carries out the pseudoinverse calculations for the
first m/2 matrices (i ranging from 1 to m/2 in script 2) and
the second thread carries out the pseudoinverse calculations
for the last m/2 matrices (i ranging from m/2 + 1 to m in
script 2). If m is an odd number, m/2 is rounded to the
nearest integer (round(m/2)). It is worth noting that script 3
can be easily modified to use more than two threads. In the
case of four threads, for example, each one would carry
out the calculations for m/4 matrices (1 to m/4, m/4 + 1 to
m/2, m/2 + 1 to 3m/4 and 3m/4 + 1 to m), as shown below.

Script 3 with four threads
job = createJob();
TASK(1) =
 createTask(job, @inv_thread, 0, {X,
 1, round(m/4), m});
TASK(2) =
 createTask(job, @inv_thread, 0, {X,
 round(m/4) + 1, round(m/2), m});
TASK(3) =
 createTask(job, @inv_thread, 0, {X,
 round(m/2) + 1, round(3*m/4), m});
TASK(4) =
 createTask(job, @inv_thread, 0, {X,
 round(3*m/4) + 1, m, m});
submit(job);
waitForState(job,’finished’);
destroy(job);

Figure 1 presents the results obtained by using the quad-
core (four cores) apparatus described in the “Computational

Setup” section. Parameter m (number of pseudoinverse
calculations) was varied from 100 to 1300. The calculations
were carried out with no paralellization, as well as with two
and four threads. As it can be seen, for large values of m
the time required for completion can be made smaller by
using parallelization. However, such an improvement in
performance is not attained for small values of m (smaller
than 400 in this example), as the creation of multiple threads
involves an overhead that may be comparatively significant
in tasks of small complexity.

As a general rule, further gains in performance are
not expected if the number of threads is increased beyond
the number of processor cores.8 In fact, after threads have
been assigned to each and every core, there will remain
no idle cores and the full capability of the processor
will be engaged in the computation task. However, new
technologies may introduce exceptions to this rule. The
Intel Core i7 quad-core processor, for example, is capable
of hyper-threading, which allows each core to process up
to two threads simultaneously.9 As a result, the processor
may be used as an eight-core device for parallelization
purposes.

Parallelization of the successive projections algorithm

The successive projections algorithm (SPA) was
originally designed to minimize multicollinearity
problems in multiple linear regression (MLR).16,18
Subsequently, the algorithm was extended to deal with
classification problems using linear discriminant analysis
(LDA).22,23,26,27 In what follows, the regression and
classification versions of SPA will be termed SPA-MLR
and SPA-LDA, respectively.

SPA comprises two main phases.21,24 Phase 1 consists
of projection operations carried out on the matrix of

Figure 1. Computation time required to complete the calculations with
(a) no paralellization, (b) two threads and (c) four threads.

Soares et al. 1629Vol. 21, No. 9, 2010

instrumental responses X (N × K). These projections are
used to generate chains of variables in which the elements
are selected to display the least collinearity with the
previous ones. One chain is initialized from each of the K
variables, thus resulting in a total of K chains.

In SPA-MLR, all objects are mean-centered prior to the
projection operators. Due to the loss of one degree of freedom
involved in this procedure, each chain may have up to
(N – 1) variables. In SPA-LDA, the objects are centered on
the mean of their respective classes. Therefore, if there are
C classes involved in the problem, each chain may have up
to (N – C) variables.

In Phase 2, candidate subsets of variables are
extracted from each of the K chains generated in Phase 1.
These subsets are then evaluated according to a suitable
performance index. Usually, the performance index is
calculated in a separate validation set, in order to avoid
overfitting problems. In SPA-MLR the performance index
is typically the root-mean-square error obtained when the
MLR model is applied to the validation set.21,24 In SPA-
LDA the performance index is related to the average risk
of misclassification. Such a risk is calculated by evaluating
the Mahalanobis distance of the validation samples with
respect to their true class, as well as to the closest wrong
class.22 Finally, a backward elimination procedure is
employed in SPA-MLR (Phase 3) to improve the parsimony
of the model.21,24 An equivalent procedure has not yet been
developed for SPA-LDA.

Although all phases of SPA can be parallelized, Phase
2 is the actual bottleneck for the overall computational
efficiency of the algorithm, as will be shown in the
Results section. Therefore, the parallelization study will
be restricted to Phase 2 in both SPA-MLR and SPA-LDA.
For this purpose, it is sufficient to create separate threads
to process different chains of variables, as illustrated in
Figure 2.

Parallelization of the genetic algorithm

Genetic algorithms are stochastic search techniques
inspired on natural selection mechanisms.24,28,29 In the
present work, a genetic algorithm (GA) is employed to
select variables for multivariate calibration using MLR
(GA-MLR) and classification using LDA (GA-LDA). A
standard GA formulation using binary chromosomes is
adopted. Each of the K available variables is associated
to a position in the chromosome, which is termed a gene.
The gene values can be either 1 (variable is included in the
model) or 0 (variable is not included in the model).

In order to apply natural selection rules, a fitness
value needs to be assigned to each chromosome in the

population.24,28,29 As in SPA, the fitness is evaluated in
a separate validation set, in order to avoid overfitting
problems. In GA-MLR, the fitness is calculated as the
inverse of the root-mean-square error of the MLR model in
the validation set. In GA-LDA, the fitness is calculated as
the inverse of the average risk of misclassification, defined
as in SPA-LDA. The probability of a given individual being
selected for the mating pool is proportional to its fitness
(roulette method). One-point crossover and mutation
operators are employed with probabilities of 60% and 10%,
respectively. The population size is kept constant, with each
generation being completely replaced by its descendants.
However, the best individual is automatically transferred
to the next generation (elitism) to avoid the loss of good
solutions. The GA is carried out for 50 generations with
4000 chromosomes each.

In both GA-MLR and GA-LDA, parallelization can
be achieved by creating separate threads to evaluate the
fitness of different chromosomes, as illustrated in Figure 2.

Paralellization of cross-validation in partial least squares

Partial least squares (PLS) is a generalization of
multiple linear regression, in which the relationship
between the instrumental responses (matrix X) and the
properties of interest (matrix Y) is modelled in terms of
latent variables.33 In PLS, such variables correspond to
directions in the multivariate space which maximize the
explained variance of both the X and Y data. If the Y data
consist of a single variable (that is, if matrix Y has one
column), the PLS algorithm is known as PLS1. If the Y
data comprise more than one variable (that is, if matrix
Y has several columns), the algorithm is known as PLS2.

Although PLS was originally developed as a multivariate
calibration algorithm, it can be applied to classification
problems by using a convenient representation of the class
indexes.31 If the problem involves C classes, the class index
for each object can be encoded in a y-vector with (C - 1)
elements equal to zero and a single element equal to one.
The position of this element in the y-vector denotes the
class index of the object under consideration. In this case,
the Y matrix will have C columns and the PLS2 algorithm
can be employed. When the resulting model is applied
to the classification of a new object, the class index can
be obtained as the position of the largest element in the
predicted y-vector.

Choosing an appropriate number of latent variables is
a key aspect in PLS modelling. The number of variables
should be large enough to capture the relevant sources of
data variation. However, if too many variables are employed,
data overfitting problems may occur and the predictive

Multi-Core Computation in Chemometrics: Case Studies of Voltammetric and NIR Spectrometric Analyses J. Braz. Chem. Soc.1630

ability of the resulting model may be compromised. In this
context, cross-validation is a commonly used procedure to
choose the model order in PLS.30,31,33-35 Cross-validation
consists of dividing the data into groups, and then building
separate models by removing one of the groups at a time.
In the “leave-one-out” procedure, each group consists of
a single object. Each model is then used to predict the
Y-values in the removed group. At the end, the prediction
errors of all models are collected to calculate a performance
index such as the root-mean-square error of cross-validation
(RMSECV). The number of latent variables can be chosen
in order to minimize the RMSECV value. Alternatively,
a statistical criterion can be adopted to choose a smaller

number of latent variables, for which the RMSECV value
is not significantly larger than its minimum value.37

In the cross-validation procedure, the construction of
each separate PLS model can be carried out independently.
Therefore, a parallel implementation can be easily
developed, as illustrated in Figure 2.

Experimental

Wheat data set for multivariate calibration

The data set for the multivariate calibration study
consists of 775 VIS-NIR spectra of whole-kernel wheat

Figure 2. Distribution of computational workload in a quad-core processor for SPA (Phase 2), GA and PLS (cross-validation): (a) no parallelization,
(b) two threads, (c) four threads. The number of chains of variables in SPA, the population size in GA (number of chromosomes) and the number of samples
in PLS are denoted by K, P and N, respectively.

Soares et al. 1631Vol. 21, No. 9, 2010

samples, which were used as shoot-out data in the 2008
International Diffuse Reflectance Conference (http://www.
idrc-chambersburg.org/shootout.html). Protein content
was chosen as the property of interest. The spectra were
acquired in the range 400-2500 nm with a resolution of
2 nm. In the present work, only the NIR region in the
range 1100-2500 nm was employed. In order to remove
undesirable baseline features, first derivative spectra were
calculated by using a Savitzky-Golay filter with a 2nd order
polynomial and an 11-point window.30

The Kennard-Stone (KS) algorithm38-39 was applied
to the resulting spectra to divide the data into calibration,
validation and prediction sets with 389, 193 and 193
samples, respectively. The validation set was employed
to guide the selection of variables in SPA-MLR and
GA‑MLR. The prediction set was only employed in the
final performance assessment of the resulting MLR models.
In the PLS study, the calibration and validation sets were
joined into a single modelling set, which was used in the
leave-one-out cross-validation procedure. The number
of latent variables was selected on the basis of the cross-
validation error by using the F-test criterion of Haaland
and Thomas with a = 0.25 as suggested elsewhere.37,40 The
prediction set was only employed in the final evaluation
of the PLS1 model.

Edible vegetable oils data set for classification

The data set for the classification study consists of 114
voltammograms of edible vegetable oil samples obtained
in a previous work,23 in which optimized experimental
conditions were reported. Each voltammogram comprises
800 variables (potentials) in the cathodic range down to
– 0.9 V. The data set includes canola, sunflower, corn and
soybean oils, some of which were stored for several months
past the expiry date. These “expired” samples were gathered
into a single group for classification purposes. Therefore,
the problem involves five classes (canola, sunflower, corn,
soybean and expired), as in the previous work.23

The KS algorithm was applied to the voltammograms
to divide the data into training, validation and test sets
with 59, 23 and 32 samples, respectively. The validation
set was employed to guide the selection of variables in
SPA-LDA and GA-LDA. The test set was only employed
in the final performance assessment of the resulting LDA
models. In the PLS study, the class indexes were encoded
in a binary Y matrix with five columns in order to use the
PLS2 algorithm. Moreover, the training and validation
sets were joined into a single modelling set, which was
used in the leave-one-out cross-validation procedure. As
in the multivariate calibration case, the number of latent

variables was selected on the basis of the cross-validation
error by using the F-test criterion of Haaland and Thomas
with a = 0.25. The test set was only employed in the final
evaluation of the PLS2 model.

Computational setup

All calculations were carried out by using a desktop
computer with an Intel® Core™2 quad-core processor
(2.3 GHz) and 4 GB of RAM memory. Matlab 7.0
and Parallel Computing Toolbox 4.1 were employed
throughout. Average and standard deviation values
for computation times were obtained by running each
chemometric algorithm three times.

Results and Discussion

Wheat data set

Table 1 presents the results obtained by applying the
resulting SPA-MLR, GA-MLR and PLS1 models to the
prediction set of wheat samples. As it can be seen, there is
good correlation between the predicted and reference values
and the root-mean-square error of prediction (RMSEP)
is small as compared to the range of protein content in
the samples. Table 1 also shows the number of variables
employed in each model (wavelengths in SPA-MLR,
GA-MLR and latent variables in PLS1). It is worth noting
that SPA-MLR is more parsimonious than GA-MLR with
respect to the number of spectral variables included in the
model. The variables selected by SPA-MLR and GA-MLR
are indicated in Figure 3.

Table 2 presents the computation time required to
obtain the SPA-MLR, GA-MLR and PLS1 models. As
it can be seen, the use of parallel processing results in
a significant decrease in computation time with respect
to the standard implementation (no parallelization). By
using four threads, computational gains of 204%, 80%
and 202% were obtained for SPA-MLR, GA-MLR and
PLS1, respectively. Such percentages were calculated by
considering the speed of calculations, which is inversely
related to the computation time.

Table 1. Prediction results for protein content in the wheat data set

SPA-MLR GA-MLR PLS1

Correlation coefficient 0.9889 0.9883 0.9895

RMSEP (%, m/m) 0.2 0.2 0.2

Number of selected variables 13 146 15

Range of protein content in the prediction set: 10.2-16.2% m/m.

Multi-Core Computation in Chemometrics: Case Studies of Voltammetric and NIR Spectrometric Analyses J. Braz. Chem. Soc.1632

As it can be seen, greater gains were achieved for
SPA-MLR and PLS1, as compared to GA-MLR. The
reason for such a difference may be explained as follows.
The computational cost involved in the evaluation of each
chromosome in GA-MLR depends on the number of
variables encoded in that chromosome (i.e. the number of
1-valued genes). In fact, the fitness calculation procedure
requires the calibration of an MLR model, which is more
complex if more variables are employed. Therefore, since
the population comprises chromosomes with different
numbers of encoded variables, the distribution of workload
among the processor cores (illustrated in Figure 2) is not
well-balanced, which results in a non-optimal use of the
available computational resources.41 In such a situation,
some cores may remain idle while the others are still busy
with the fitness calculations.

It is worth noting that the times required by Phase 1
and 3 of SPA-MLR (54 s and 1 s, respectively) are small as
compared to Phase 2. Therefore, no parallelization schemes
were developed for these phases.

Edible vegetable oils data set

SPA-LDA and GA-LDA selected 10 and 12 variables
(potential values in the voltammograms), respectively,
whereas the PLS2 model employed 14 latent variables.

By applying the resulting models to the test set, all samples
were correctly classified. It is worth noting that SPA again
resulted in a slightly more parsimonious model as compared
to GA. The potential values selected by SPA-LDA and
GA-LDA are indicated in Figure 4.

Table 3 presents the computation time required by
SPA-LDA, GA-LDA and PLS2 algorithms. As in the
previous application, the time required by Phase 1 of SPA-
LDA (7.2 s) is small as compared to Phase 2. It is worth
noting that a final variable elimination procedure (which
corresponds to Phase 3 in SPA-MLR) is not employed in
SPA-LDA. Again, the use of parallel processing provided
a significant decrease in computation time. By using four
threads, computational gains of 126%, 77% and 110% were
obtained for SPA-LDA, GA-LDA and PLS2, respectively.

Conclusions

This paper discussed the potential benefits of exploiting
parallel computing for chemometrics calculations in
multi-core hardware platforms. As shown in a numerical
example, such benefits can be obtained by introducing
simple modifications to existing Matlab code. Case studies
involving the successive projections algorithm and the
genetic algorithm for variable selection, as well as partial
least squares with cross-validation were presented. For this
purpose, datasets of NIR spectra for multivariate calibration

Figure 3. Original and derivative spectrum of a wheat sample. The
wavelengths selected by GA-MLR and SPA-MLR are indicated by circle
and square markers, respectively.

Table 2. Computation time (average and standard deviation, in seconds)
for SPA-MLR, GA-MLR and PLS1

Number of threads SPA-MLR
(Phase 2)

GA-MLR PLS1

No parallelization 3988 ± 11 2567 ± 17 31621 ± 38

Two 2281 ± 14 2033 ± 19 16582 ± 38

Four 1311 ± 14 1425 ± 18 10483 ± 41

Table 3. Computation time (average and standard deviation, in seconds)
for SPA-LDA, GA-LDA and PLS2

Number of threads SPA-LDA
(Phase 2)

GA-LDA PLS2

No parallelization 655 ± 3 1109 ± 7 13779 ± 21

Two 427 ± 2 786 ± 7 9170 ± 15

Four 290 ± 2 627 ± 14 6574 ± 22

Figure 4. Voltammogram of an edible oil sample. The potentials selected
by GA-LDA and SPA-LDA are indicated by circle and square markers,
respectively.

Soares et al. 1633Vol. 21, No. 9, 2010

and voltammograms for classification were employed. In
these applications, computational gains of up to 204%
were obtained by using the proposed implementation for
parallel computing.

The modern chemometrician will have to be prepared
to exploit the full capabilities of multi-core processors.
In this context, the appropriate use of parallel computing
plays an important role, as shown in this paper. It is worth
noting that sample-wise parallelization can also be easily
implemented in applications such as data compression,42
noise removal,43 and spectral library search.44 In such cases,
multiple threads can be used to process different samples
simultaneously. Future works could also be concerned with
the development of parallelization schemes for specific
parts of chemometric algorithms, such as the sorting and
selection of chromosomes according to the fitness function
in GA.

Acknowledgments

This work was supported by FAPESP (Grant
2 0 0 6 / 5 8 8 5 0 - 6 a n d D o c t o r a t e S c h o l a r s h i p
2007/57803-7), CAPES (MSc Scholarship and PROCAD
Grant 0081/05-1) and CNPq (Research Fellowships and
Instituto Nacional de Ciência e Tecnologia Analítica
Avançada). The authors also thank Dr. Francisco Fernandes
Gambarra-Neto for providing the voltammograms of the
edible vegetable oil data set.

References

	 1. 	Schoenmakers, P.; Ann. Rev. Anal. Chem. 2009, 2, 333

	 2. 	Pasquini, C.; Cortez, J.; Silva, L. M. C; Gonzaga, F. B.; J. Braz.

Chem. Soc. 2007, 18, 463.

	 3. 	Pasquini, C.; J. Braz. Chem. Soc. 2003, 14, 198.

	 4. 	Geer, D.; Computer 2005, 38, 11.

	 5. 	James, D.; Margaret, M.; Proceedings of the 33rd Annual

International Symposium on Computer Architecture, 2006,

pp. 78-88.

	 6. 	Hughes, C.; Hughes, T.; Professional Multicore Programming:

Design and Implementation for C++ Developers, Wiley: India,

2008.

	 7. 	Buttari, A.; Langou, J.; Kurzak, J.; Dongarra, J.; Paral. Comput.

2009, 35, 38.

	 8. 	Akhter, S.; Roberts, J.; Multi-core Programming: Increasing

Performance Through Software Multi-threading, Intel Press,

2006.

	 9. 	Kaivola, R.; Ghughal, R.; Narasimhan, N.; Telfer, A.;

Whittemore, J.; Pandav, S.; Slobodová, A.; Taylor , C.; Frolov,

V.; Reeber, E.; Naik, A.; Lect. Notes Comp. Sci. 2009, 5643,

414.

	 10. 	Zhang, Z. M.; Liang, Y. Z.; Xu Q. S.; Chemom. Intell. Lab. Syst.

2009, 96, 94.

	 11. 	Daszykowski, M.; Serneels, S.; Kaczmarek, K.; Chemom. Intell.

Lab. Syst. 2007, 85, 269.

	 12. 	Jaumot, J.; Gargallo, R.; de Juan, A.; Chemom. Intell. Lab. Syst.

2005, 76, 101.

	 13. 	Chau, F. T.; Chung, W. H; J. Chem. Educ. 1995, 72, A84.

	 14. 	Ohaver, T. C.; Chemom. Intell. Lab. Syst. 1989, 6, 95.

	 15. 	Parallel Computing Toolbox 4.1 User’s Guide, The Mathworks:

Natick, MA, 2008.

	 16. 	Araújo, M. C. U.; Saldanha, T. C. B.; Galvão, R. K. H.;

Yoneyama, T.; Chame, H. C.; Visani, V.; Chemom. Intell. Lab.

Syst. 2001, 57, 65.

	 17. 	Dantas Filho, H. A.; Souza, E. S. O. N.; Visani, V.; Barros, S.

R. R. C.; Saldanha, T. C. B.; Araújo, M. C. U.; Galvão, R. K.

H.; J. Braz. Chem. Soc. 2005, 16, 58.

	 18. 	Galvão, R. K. H.; Pimentel, M. F.; Araújo, M. C. U.; Yoneyama,

T.; Visani, V.; Anal. Chim. Acta 2001, 443, 107.

	 19. 	Honorato, F. A.; Galvão, R. K. H.; Pimentel, M. F.; Barros

Neto, B.; Araújo, M. C. U.; Carvalho, F. R.; Chemom. Intell.

Lab. Syst. 2005, 76, 65.

	 20. 	Dantas Filho, H. A.; Galvão, R. K. H.; Araújo, M. C. U.; Silva,

E. C.; Saldanha, T. C. B.; José, G. E.; Pasquini, C.; Raimundo

Jr., I. M.; Rohwedder, J. J. R.; Chemom. Intell. Lab. Syst. 2004,

72, 83.

	 21. 	Galvão, R. K. H.; Araújo, M. C. U.; Fragoso, W. D.; Silva, E.

C.; José, G. E.; Soares, S. F. C.; Paiva, H. M.; Chemom. Intell.

Lab. Syst. 2008, 92, 83.

	 22. 	Pontes, M. J. C.; Galvão, R. K. H.; Araújo, M. C. U.; Moreira,

P. N. T.; Pessoa Neto, O. D.; José, G. E.; Saldanha, T. C. B.;

Chemom. Intell. Lab. Syst. 2005, 78, 11.

	 23. 	Gambarra Neto, F. F.; Marino, G.; Araújo, M. C. U.; Galvão, R.

K. H.; Pontes, M. J. C.; Medeiros, E. P.; Lima, R. S.; Talanta

2009, 77, 1660.

	 24. 	Galvão, R. K. H.; Araújo, M. C. U. In Comprehensive

Chemometrics: Chemical and Biochemical Data Analysis;

Brown, S.; Tauler, R.; Walczak, B., eds.; Elsevier: Oxford,

2009.

	 25. 	Galvão, R. K. H.; Araújo, M. C. U.; Silva, E. C.; José, G. E.;

Soares, S. F. C.; Paiva, H. M.; J. Braz. Chem. Soc. 2007, 18,

1580.

	 26. 	Pontes, M. J. C.; Cortez, J. ; Galvão, R. K. H.; Pasquini, C.;

Araújo, M. C. U.; Coelho, R. M.; Chiba, M. K.; Abreu, M. F.;

Madari, B. E.; Anal. Chim. Acta 2009, 642, 12.

	 27. 	Moreira, E. D. T.; Pontes, M. J. C.; Galvão, R. K. H.; Araújo,

M. C. U.; Talanta 2009, 79, 1260.

	 28. 	Jouan-Rimbaud, D.; Massart, D. L.; Leardi, R.; Noord, O. E.;

Anal. Chem. 1995, 67, 4295.

	 29. 	Leardi, R.; J. Chemom. 2001, 15, 559.

	 30. 	Beebe, K. R.; Pell, R. J.; Seasholtz, B.; Chemometrics-A Pratical

Guide, Wiley: New York, 1998.

Multi-Core Computation in Chemometrics: Case Studies of Voltammetric and NIR Spectrometric Analyses J. Braz. Chem. Soc.1634

	 31. 	Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; Jong,

S.; Lewi, P. J.; Smeyers-Verbeke, J.; Handbook of Chemometrics

and Qualimetrics, Elsevier Science: Amsterdam, 1997.

	 32. 	Cawley, G. C.; Talbot, N. L. C.; Pattern Recogn. 2003, 36, 2585.

	 33. 	Wold, S.; Sjöström, M; Eriksson, L.; Chemom. Intell. Lab. Syst.

2001, 58, 109.

	 34. 	Wakeling, I. N.; Morris, J. J.; J. Chemom. 1993, 7, 291.

	 35. 	Clark, M.; Cramer III, R. D.; Quant. Struct.-Act. Relat. 1993,

12, 137.

	 36. 	Cramer, R.; Kiltz, E.; Padró, C.; Lect. Notes Comput. Sci. 2007,

4622, 613.

	 37. 	Haaland, D. M.; Thomas, E. V.; Anal. Chem. 1988, 60, 1193.

	 38. 	Kennard, R.W.; Stone L. A.; Technom. 1969, 11, 137.

	 39. 	Kanduc, K. R.; Zupan, J.; Majcen N.; Chemom. Intell. Lab.

Syst. 2003, 65, 221.

	 40. 	Li, B. X.; Wang, D. M.; Xu, C. L.; Zhang, Z. J.; Microchim.

Acta 2005, 149, 205.

	 41. 	Zomaya, A. Y.; Teh, Y. H.; IEEE Trans. Parallel Distrib. Syst.

2001, 12, 899.

	 42. 	Cobas, J. C.; Tahoces, P. G., Fernández, I. I.; Martín-Pastor, M.;

Chemom. Intell. Lab. Syst. 2008, 91, 141.

	 43. 	Galvão, R. K. H.; Dantas Filho, H. A.; Martins, M. N.; Araújo,

M. C. U; Pasquini, C.; Anal. Chim. Acta 2007, 581, 159.

	 44. 	Loudermilk, J. B.; Himmelsbach, D. S.; Barton, F. E.; Appl.

Spectrosc. 2008, 62, 661.

Submitted: August 25, 2009

Published online: May 11, 2010

FAPESP has sponsored the publication of this article.

