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A aplicação de técnicas quimiométricas sofisticadas a grandes conjuntos de dados tem se 
tornado possível devido aos contínuos aprimoramentos tecnológicos em computadores comerciais. 
Recentemente, tais aprimoramentos têm sido obtidos principalmente através da introdução de 
processadores com múltiplos núcleos. Contudo, o uso eficiente de hardware com múltiplos núcleos 
requer o desenvolvimento de software apropriado para computação paralela. Este artigo trata da 
implementação de paralelismo empregando o Matlab Parallel Computing Toolbox, que requer 
somente pequenas modificações em códigos quimiométricos já existentes de modo a explorar os 
benefícios do processamento em múltiplos núcleos. Empregando essa ferramenta de software, 
mostra-se que implementações paralelas podem proporcionar expressivos ganhos computacionais. 
Em particular, considera-se o problema de seleção de variáveis empregando o algoritmo das 
projeções sucessivas e o algoritmo genético, bem como o uso de validação cruzada em mínimos 
quadrados parciais. Para ilustração, duas aplicações analíticas são apresentadas: determinação de 
proteína em trigo por espectrometria de reflectância no infravermelho próximo e classificação de 
óleos vegetais comestíveis por voltametria de onda quadrada. Empregando as implementações 
propostas para computação paralela, ganhos computacionais de até 204% foram obtidos.

The application of sophisticated chemometrics techniques to large datasets has been made 
possible by continuing technological improvements in off-the-shelf computers. Recently, such 
improvements have been mainly achieved by the introduction of multi-core processors. However, 
the efficient use of multi-core hardware requires the development of software that properly address 
parallel computing. This paper is concerned with the implementation of parallelism using the Matlab 
Parallel Computing Toolbox, which requires only simple modifications to existing chemometrics 
code in order to exploit the benefits of multi-core processing. By using this software tool, it is 
shown that parallel implementations may provide substantial computational gains. In particular, 
the present study considers the problem of variable selection employing the successive projections 
algorithm and the genetic algorithm, as well as the use of cross-validation in partial least squares. 
For demonstration, two analytical applications are presented: determination of protein in wheat by 
near-infrared reflectance spectrometry and classification of edible vegetable oils by square-wave 
voltammetry. By using the proposed parallel computing implementations, computational gains 
of up to 204% were obtained. 
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Introduction

Modern techniques and instrumentation provide 
ever-growing amounts of data (in terms of variables and 
samples) that need to be processed for analytical purposes. 
Hyphenated methods1 and laser-induced plasma breakdown 
spectroscopy,2 for instance, generate a considerable number 
of measurements for each sample. One may also cite 
near-infrared (NIR) spectrometric analysis of complex 
matrices such as agricultural products and fuels, which 
may require large sample sets for multivariate calibration.3 
In such applications, the computational effort involved in 
chemometrics data processing is not negligible.

It may be argued that this growing demand of 
chemometrics has been compensated by improvements in 
the performance of commercial computers. In fact, early 
concerns related to the engineering limits of complexity 
and speed in microprocessor units have been circumvented 
by the deployment of multi-core processors.4 However, 
the efficient use of such multi-core hardware requires the 
development of software that properly address parallel 
computing.5,6 Therefore, the chemometrics practitioner 
must be prepared to deal with this new reality.

In recent years, there has been increasing interest in 
the study, design, and analysis of parallel algorithms.7-9 
Parallelization can significantly improve performance in 
applications that involve many repetitions of a given task 
or long tasks comprising several simpler operations. The 
main idea is to divide a problem into smaller problems that 
can be solved simultaneously. In a multi-core platform, 
such smaller problems may be assigned to different cores, 
in order to make full use of the available computing 
capabilities.

In this context, a recent paper10 presented an 
implementation of leave-one-out cross-validation in 
multi-core processors using the message passing interface 
(MPI) library in a C++ compiler. However, the proposed 
implementation requires the expert use of low-level 
C++ features, which may be too cumbersome to most 
chemometricians. In this sense, it would be of value to 
exploit multi-core processing in a simpler, high-level 
software platform such as Matlab, which has become a 
popular tool in chemometrics.11-14

The present paper is concerned with the implementation 
of parallelism using the Matlab Parallel Computing 
Toolbox,15 which requires only simple modifications to 
existing code in order to exploit the benefits of multi-
core processing. By using this software tool, parallel 
implementations are presented for three computationally 
intensive chemometric procedures, namely the selection 
of variables using the successive projections algorithm 

(SPA)16-27 and the genetic algorithm (GA),16-18,22,24,26,28,29 
and the use of leave-one-out cross-validation30-32 for model 
order selection in partial least squares (PLS).30,31,33-35 
Computational improvements in multivariate calibration 
and classification tasks are demonstrated. The multivariate 
calibration case study involves near-infrared determination 
of protein content in a publicly available data set of 
wheat samples. The classification study concerns the 
discrimination of four types of edible vegetable oils by 
square-wave voltammetry.

Background and Theory

Parallel computing in Matlab 

The Parallel Computing Toolbox (PCT) of Matlab 
was designed to facilitate the implementation of parallel 
algorithms for multi-core computation. In what follows, the 
use of the toolbox will be illustrated by a simple numerical 
example. Consider the two scripts presented below, where 
“m” is defined by the user.

Script 1: creation of a random square matrix
   randn(‘state’,0);
   X = randn(m,m);

Script 2: pseudo-inverse calculations
for i = 1:m 
    cal = [[1:i-1] [i+1:m]]; 
    pinv(X(cal,:)’*X(cal,:));
end

Script 1 creates a random (m × m) matrix X. Script 2 
uses the Matlab pinv function for calculation of the Moore-
Penrose36 pseudoinverse of m matrices of dimensions
m × m . For simplicity of presentation, the pseudoinverse 
matrices are not stored, as this example will be mainly 
concerned with the time required to complete the 
calculations. The overall computational effort involved 
in script 2 may be considerable for large m. However, the 
script is amenable to parallelization, as the pseudoinverse 
calculations for different matrices (i.e., different values of 
index i in script 2) can be carried out independently.

Two main PCT functions can be used in this case, 
namely “parfor” and “createTask”. However, the parfor 
function has many programming restrictions that hinder 
its application and may also compromise the gains in 
computational performance.15 For these reasons, the 
createTask function is adopted in the present work.

The parallelization of script 2 can be implemented by 
using scripts 3 and 4 presented below.
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Script 3: parallelization of script 2
job = createJob();
TASK(1) = createTask(job, @inv_thread, 
0, {X, 1, round(m/2), m});
TASK(2) = createTask(job, @inv_thread, 
0, {X, round(m/2) + 1, m, m});
submit(job);
waitForState(job,’finished’);
destroy(job);

Script 4: auxiliary function for parallelization of script 2
function inv_thread(X, i_initial, i_
final, m)

for i = i_initial : i_final
    cal = [[1:i-1] [i+1:m]]; 
    pinv(X(cal,:)’*X(cal,:));
end 

The two tasks (TASK(1) and TASK(2)) created in 
script 3 split the calculations into two threads. The first 
thread carries out the pseudoinverse calculations for the 
first m/2 matrices (i ranging from 1 to m/2 in script 2) and 
the second thread carries out the pseudoinverse calculations 
for the last m/2 matrices (i ranging from m/2 + 1 to m in 
script 2). If m is an odd number, m/2 is rounded to the 
nearest integer (round(m/2)). It is worth noting that script 3 
can be easily modified to use more than two threads. In the 
case of four threads, for example, each one would carry 
out the calculations for m/4 matrices (1 to m/4, m/4 + 1 to 
m/2, m/2 + 1 to 3m/4 and 3m/4 + 1 to m), as shown below.

Script 3 with four threads
job = createJob();
TASK(1) =
 createTask(job, @inv_thread, 0, {X, 
 1, round(m/4), m});
TASK(2) =
 createTask(job, @inv_thread, 0, {X, 
 round(m/4) + 1, round(m/2), m});
TASK(3) =
 createTask(job, @inv_thread, 0, {X, 
 round(m/2) + 1, round(3*m/4), m});
TASK(4) =
 createTask(job, @inv_thread, 0, {X, 
 round(3*m/4) + 1, m, m});
submit(job);
waitForState(job,’finished’);
destroy(job);

Figure 1 presents the results obtained by using the quad-
core (four cores) apparatus described in the “Computational 

Setup” section. Parameter m (number of pseudoinverse 
calculations) was varied from 100 to 1300. The calculations 
were carried out with no paralellization, as well as with two 
and four threads. As it can be seen, for large values of m 
the time required for completion can be made smaller by 
using parallelization. However, such an improvement in 
performance is not attained for small values of m (smaller 
than 400 in this example), as the creation of multiple threads 
involves an overhead that may be comparatively significant 
in tasks of small complexity.

As a general rule, further gains in performance are 
not expected if the number of threads is increased beyond 
the number of processor cores.8 In fact, after threads have 
been assigned to each and every core, there will remain 
no idle cores and the full capability of the processor 
will be engaged in the computation task. However, new 
technologies may introduce exceptions to this rule. The 
Intel Core i7 quad-core processor, for example, is capable 
of hyper-threading, which allows each core to process up 
to two threads simultaneously.9 As a result, the processor 
may be used as an eight-core device for parallelization 
purposes.

Parallelization of the successive projections algorithm

The successive projections algorithm (SPA) was 
originally designed to minimize multicollinearity 
problems in multiple linear regression (MLR).16,18 
Subsequently, the algorithm was extended to deal with 
classification problems using linear discriminant analysis 
(LDA).22,23,26,27 In what follows, the regression and 
classification versions of SPA will be termed SPA-MLR 
and SPA-LDA, respectively. 

SPA comprises two main phases.21,24 Phase 1 consists 
of projection operations carried out on the matrix of 

Figure 1. Computation time required to complete the calculations with 
(a) no paralellization, (b) two threads and (c) four threads.
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instrumental responses X (N × K). These projections are 
used to generate chains of variables in which the elements 
are selected to display the least collinearity with the 
previous ones. One chain is initialized from each of the K 
variables, thus resulting in a total of K chains.

In SPA-MLR, all objects are mean-centered prior to the 
projection operators. Due to the loss of one degree of freedom 
involved in this procedure, each chain may have up to 
(N – 1) variables. In SPA-LDA, the objects are centered on 
the mean of their respective classes. Therefore, if there are 
C classes involved in the problem, each chain may have up 
to (N – C) variables.

In Phase 2, candidate subsets of variables are 
extracted from each of the K chains generated in Phase 1. 
These subsets are then evaluated according to a suitable 
performance index. Usually, the performance index is 
calculated in a separate validation set, in order to avoid 
overfitting problems. In SPA-MLR the performance index 
is typically the root-mean-square error obtained when the 
MLR model is applied to the validation set.21,24 In SPA-
LDA the performance index is related to the average risk 
of misclassification. Such a risk is calculated by evaluating 
the Mahalanobis distance of the validation samples with 
respect to their true class, as well as to the closest wrong 
class.22 Finally, a backward elimination procedure is 
employed in SPA-MLR (Phase 3) to improve the parsimony 
of the model.21,24 An equivalent procedure has not yet been 
developed for SPA-LDA.

Although all phases of SPA can be parallelized, Phase 
2 is the actual bottleneck for the overall computational 
efficiency of the algorithm, as will be shown in the 
Results section. Therefore, the parallelization study will 
be restricted to Phase 2 in both SPA-MLR and SPA-LDA. 
For this purpose, it is sufficient to create separate threads 
to process different chains of variables, as illustrated in 
Figure 2.

Parallelization of the genetic algorithm

Genetic algorithms are stochastic search techniques 
inspired on natural selection mechanisms.24,28,29 In the 
present work, a genetic algorithm (GA) is employed to 
select variables for multivariate calibration using MLR 
(GA-MLR) and classification using LDA (GA-LDA). A 
standard GA formulation using binary chromosomes is 
adopted. Each of the K available variables is associated 
to a position in the chromosome, which is termed a gene. 
The gene values can be either 1 (variable is included in the 
model) or 0 (variable is not included in the model).

In order to apply natural selection rules, a fitness 
value needs to be assigned to each chromosome in the 

population.24,28,29 As in SPA, the fitness is evaluated in 
a separate validation set, in order to avoid overfitting 
problems. In GA-MLR, the fitness is calculated as the 
inverse of the root-mean-square error of the MLR model in 
the validation set. In GA-LDA, the fitness is calculated as 
the inverse of the average risk of misclassification, defined 
as in SPA-LDA. The probability of a given individual being 
selected for the mating pool is proportional to its fitness 
(roulette method). One-point crossover and mutation 
operators are employed with probabilities of 60% and 10%, 
respectively. The population size is kept constant, with each 
generation being completely replaced by its descendants. 
However, the best individual is automatically transferred 
to the next generation (elitism) to avoid the loss of good 
solutions. The GA is carried out for 50 generations with 
4000 chromosomes each.

In both GA-MLR and GA-LDA, parallelization can 
be achieved by creating separate threads to evaluate the 
fitness of different chromosomes, as illustrated in Figure 2.

Paralellization of cross-validation in partial least squares 

Partial least squares (PLS) is a generalization of 
multiple linear regression, in which the relationship 
between the instrumental responses (matrix X) and the 
properties of interest (matrix Y) is modelled in terms of 
latent variables.33 In PLS, such variables correspond to 
directions in the multivariate space which maximize the 
explained variance of both the X and Y data. If the Y data 
consist of a single variable (that is, if matrix Y has one 
column), the PLS algorithm is known as PLS1. If the Y 
data comprise more than one variable (that is, if matrix 
Y has several columns), the algorithm is known as PLS2.

Although PLS was originally developed as a multivariate 
calibration algorithm, it can be applied to classification 
problems by using a convenient representation of the class 
indexes.31 If the problem involves C classes, the class index 
for each object can be encoded in a y-vector with (C - 1) 
elements equal to zero and a single element equal to one. 
The position of this element in the y-vector denotes the 
class index of the object under consideration. In this case, 
the Y matrix will have C columns and the PLS2 algorithm 
can be employed. When the resulting model is applied 
to the classification of a new object, the class index can 
be obtained as the position of the largest element in the 
predicted y-vector.

Choosing an appropriate number of latent variables is 
a key aspect in PLS modelling. The number of variables 
should be large enough to capture the relevant sources of 
data variation. However, if too many variables are employed, 
data overfitting problems may occur and the predictive 
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ability of the resulting model may be compromised. In this 
context, cross-validation is a commonly used procedure to 
choose the model order in PLS.30,31,33-35 Cross-validation 
consists of dividing the data into groups, and then building 
separate models by removing one of the groups at a time. 
In the “leave-one-out” procedure, each group consists of 
a single object. Each model is then used to predict the 
Y-values in the removed group. At the end, the prediction 
errors of all models are collected to calculate a performance 
index such as the root-mean-square error of cross-validation 
(RMSECV). The number of latent variables can be chosen 
in order to minimize the RMSECV value. Alternatively, 
a statistical criterion can be adopted to choose a smaller 

number of latent variables, for which the RMSECV value 
is not significantly larger than its minimum value.37 

In the cross-validation procedure, the construction of 
each separate PLS model can be carried out independently. 
Therefore, a parallel implementation can be easily 
developed, as illustrated in Figure 2. 

Experimental

Wheat data set for multivariate calibration

The data set for the multivariate calibration study 
consists of 775 VIS-NIR spectra of whole-kernel wheat 

Figure 2. Distribution of computational workload in a quad-core processor for SPA (Phase 2), GA and PLS (cross-validation): (a) no parallelization, 
(b) two threads, (c) four threads. The number of chains of variables in SPA, the population size in GA (number of chromosomes) and the number of samples 
in PLS are denoted by K, P and N, respectively.
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samples, which were used as shoot-out data in the 2008 
International Diffuse Reflectance Conference (http://www.
idrc-chambersburg.org/shootout.html). Protein content 
was chosen as the property of interest. The spectra were 
acquired in the range 400-2500 nm with a resolution of 
2 nm. In the present work, only the NIR region in the 
range 1100-2500 nm was employed. In order to remove 
undesirable baseline features, first derivative spectra were 
calculated by using a Savitzky-Golay filter with a 2nd order 
polynomial and an 11-point window.30 

The Kennard-Stone (KS) algorithm38-39 was applied 
to the resulting spectra to divide the data into calibration, 
validation and prediction sets with 389, 193 and 193 
samples, respectively. The validation set was employed 
to guide the selection of variables in SPA-MLR and 
GA‑MLR. The prediction set was only employed in the 
final performance assessment of the resulting MLR models. 
In the PLS study, the calibration and validation sets were 
joined into a single modelling set, which was used in the 
leave-one-out cross-validation procedure. The number 
of latent variables was selected on the basis of the cross-
validation error by using the F-test criterion of Haaland 
and Thomas with a = 0.25 as suggested elsewhere.37,40 The 
prediction set was only employed in the final evaluation 
of the PLS1 model.

Edible vegetable oils data set for classification

The data set for the classification study consists of 114 
voltammograms of edible vegetable oil samples obtained 
in a previous work,23 in which optimized experimental 
conditions were reported. Each voltammogram comprises 
800 variables (potentials) in the cathodic range down to 
– 0.9 V. The data set includes canola, sunflower, corn and 
soybean oils, some of which were stored for several months 
past the expiry date. These “expired” samples were gathered 
into a single group for classification purposes. Therefore, 
the problem involves five classes (canola, sunflower, corn, 
soybean and expired), as in the previous work.23

The KS algorithm was applied to the voltammograms 
to divide the data into training, validation and test sets 
with 59, 23 and 32 samples, respectively. The validation 
set was employed to guide the selection of variables in 
SPA-LDA and GA-LDA. The test set was only employed 
in the final performance assessment of the resulting LDA 
models. In the PLS study, the class indexes were encoded 
in a binary Y matrix with five columns in order to use the 
PLS2 algorithm. Moreover, the training and validation 
sets were joined into a single modelling set, which was 
used in the leave-one-out cross-validation procedure. As 
in the multivariate calibration case, the number of latent 

variables was selected on the basis of the cross-validation 
error by using the F-test criterion of Haaland and Thomas 
with a = 0.25. The test set was only employed in the final 
evaluation of the PLS2 model.

Computational setup

All calculations were carried out by using a desktop 
computer with an Intel® Core™2 quad-core processor 
(2.3  GHz) and 4  GB of RAM memory. Matlab 7.0 
and Parallel Computing Toolbox 4.1 were employed 
throughout. Average and standard deviation values 
for computation times were obtained by running each 
chemometric algorithm three times.

Results and Discussion

Wheat data set 

Table 1 presents the results obtained by applying the 
resulting SPA-MLR, GA-MLR and PLS1 models to the 
prediction set of wheat samples. As it can be seen, there is 
good correlation between the predicted and reference values 
and the root-mean-square error of prediction (RMSEP) 
is small as compared to the range of protein content in 
the samples. Table 1 also shows the number of variables 
employed in each model (wavelengths in SPA-MLR, 
GA-MLR and latent variables in PLS1). It is worth noting 
that SPA-MLR is more parsimonious than GA-MLR with 
respect to the number of spectral variables included in the 
model. The variables selected by SPA-MLR and GA-MLR 
are indicated in Figure 3.

Table 2 presents the computation time required to 
obtain the SPA-MLR, GA-MLR and PLS1 models. As 
it can be seen, the use of parallel processing results in 
a significant decrease in computation time with respect 
to the standard implementation (no parallelization). By 
using four threads, computational gains of 204%, 80% 
and 202% were obtained for SPA-MLR, GA-MLR and 
PLS1, respectively. Such percentages were calculated by 
considering the speed of calculations, which is inversely 
related to the computation time.

Table 1. Prediction results for protein content in the wheat data set

SPA-MLR GA-MLR PLS1

Correlation coefficient 0.9889 0.9883 0.9895

RMSEP (%, m/m) 0.2 0.2 0.2

Number of selected variables 13 146 15

Range of protein content in the prediction set: 10.2-16.2% m/m. 
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As it can be seen, greater gains were achieved for 
SPA-MLR and PLS1, as compared to GA-MLR. The 
reason for such a difference may be explained as follows. 
The computational cost involved in the evaluation of each 
chromosome in GA-MLR depends on the number of 
variables encoded in that chromosome (i.e. the number of 
1-valued genes). In fact, the fitness calculation procedure 
requires the calibration of an MLR model, which is more 
complex if more variables are employed. Therefore, since 
the population comprises chromosomes with different 
numbers of encoded variables, the distribution of workload 
among the processor cores (illustrated in Figure 2) is not 
well-balanced, which results in a non-optimal use of the 
available computational resources.41 In such a situation, 
some cores may remain idle while the others are still busy 
with the fitness calculations. 

It is worth noting that the times required by Phase 1 
and 3 of SPA-MLR (54 s and 1 s, respectively) are small as 
compared to Phase 2. Therefore, no parallelization schemes 
were developed for these phases.

Edible vegetable oils data set 

SPA-LDA and GA-LDA selected 10 and 12 variables 
(potential values in the voltammograms), respectively, 
whereas the PLS2 model employed 14 latent variables. 

By applying the resulting models to the test set, all samples 
were correctly classified. It is worth noting that SPA again 
resulted in a slightly more parsimonious model as compared 
to GA. The potential values selected by SPA-LDA and 
GA-LDA are indicated in Figure 4.

Table 3 presents the computation time required by 
SPA-LDA, GA-LDA and PLS2 algorithms. As in the 
previous application, the time required by Phase 1 of SPA-
LDA (7.2 s) is small as compared to Phase 2. It is worth 
noting that a final variable elimination procedure (which 
corresponds to Phase 3 in SPA-MLR) is not employed in 
SPA-LDA. Again, the use of parallel processing provided 
a significant decrease in computation time. By using four 
threads, computational gains of 126%, 77% and 110% were 
obtained for SPA-LDA, GA-LDA and PLS2, respectively. 

Conclusions

This paper discussed the potential benefits of exploiting 
parallel computing for chemometrics calculations in 
multi-core hardware platforms. As shown in a numerical 
example, such benefits can be obtained by introducing 
simple modifications to existing Matlab code. Case studies 
involving the successive projections algorithm and the 
genetic algorithm for variable selection, as well as partial 
least squares with cross-validation were presented. For this 
purpose, datasets of NIR spectra for multivariate calibration 

Figure 3. Original and derivative spectrum of a wheat sample. The 
wavelengths selected by GA-MLR and SPA-MLR are indicated by circle 
and square markers, respectively.

Table 2. Computation time (average and standard deviation, in seconds) 
for SPA-MLR, GA-MLR and PLS1

Number of threads SPA-MLR 
(Phase 2)

GA-MLR PLS1

No parallelization 3988 ± 11 2567 ± 17 31621 ± 38

Two 2281 ± 14 2033 ± 19 16582 ± 38

Four 1311 ± 14 1425 ± 18 10483 ± 41

Table 3. Computation time (average and standard deviation, in seconds) 
for SPA-LDA, GA-LDA and PLS2

Number of threads SPA-LDA 
(Phase 2)

GA-LDA PLS2

No parallelization 655 ± 3 1109 ± 7 13779 ± 21

Two 427 ± 2 786 ± 7 9170 ± 15

Four 290 ± 2 627 ± 14 6574 ± 22

Figure 4. Voltammogram of an edible oil sample. The potentials selected 
by GA-LDA and SPA-LDA are indicated by circle and square markers, 
respectively.



Soares et al. 1633Vol. 21, No. 9, 2010

and voltammograms for classification were employed. In 
these applications, computational gains of up to 204% 
were obtained by using the proposed implementation for 
parallel computing. 

The modern chemometrician will have to be prepared 
to exploit the full capabilities of multi-core processors. 
In this context, the appropriate use of parallel computing 
plays an important role, as shown in this paper. It is worth 
noting that sample-wise parallelization can also be easily 
implemented in applications such as data compression,42 
noise removal,43 and spectral library search.44 In such cases, 
multiple threads can be used to process different samples 
simultaneously. Future works could also be concerned with 
the development of parallelization schemes for specific 
parts of chemometric algorithms, such as the sorting and 
selection of chromosomes according to the fitness function 
in GA.

Acknowledgments

This work was supported by FAPESP (Grant 
2 0 0 6 / 5 8 8 5 0 - 6  a n d  D o c t o r a t e  S c h o l a r s h i p 
2007/57803-7), CAPES (MSc Scholarship and PROCAD 
Grant 0081/05-1) and CNPq (Research Fellowships and 
Instituto Nacional de Ciência e Tecnologia Analítica 
Avançada). The authors also thank Dr. Francisco Fernandes 
Gambarra-Neto for providing the voltammograms of the 
edible vegetable oil data set.

References

	 1. 	Schoenmakers, P.; Ann. Rev. Anal. Chem. 2009, 2, 333

	 2. 	Pasquini, C.; Cortez, J.; Silva, L. M. C; Gonzaga, F. B.; J. Braz. 

Chem. Soc. 2007, 18, 463.

	 3. 	Pasquini, C.; J. Braz. Chem. Soc. 2003, 14, 198.

	 4. 	Geer, D.; Computer 2005, 38, 11.

	 5. 	James, D.; Margaret, M.; Proceedings of the 33rd Annual 

International Symposium on Computer Architecture, 2006, 

pp. 78-88.

	 6. 	Hughes, C.; Hughes, T.; Professional Multicore Programming: 

Design and Implementation for C++ Developers, Wiley: India, 

2008.

	 7. 	Buttari, A.; Langou, J.; Kurzak, J.; Dongarra, J.; Paral. Comput. 

2009, 35, 38.

	 8. 	Akhter, S.; Roberts, J.; Multi-core Programming: Increasing 

Performance Through Software Multi-threading, Intel Press, 

2006.

	 9. 	Kaivola, R.; Ghughal, R.; Narasimhan, N.; Telfer, A.; 

Whittemore, J.; Pandav, S.; Slobodová, A.; Taylor , C.; Frolov, 

V.; Reeber, E.; Naik, A.; Lect. Notes Comp. Sci. 2009, 5643, 

414.

	 10. 	Zhang, Z. M.; Liang, Y. Z.; Xu Q. S.; Chemom. Intell. Lab. Syst. 

2009, 96, 94.

	 11. 	Daszykowski, M.; Serneels, S.; Kaczmarek, K.; Chemom. Intell. 

Lab. Syst. 2007, 85, 269.

	 12. 	Jaumot, J.; Gargallo, R.; de Juan, A.; Chemom. Intell. Lab. Syst. 

2005, 76, 101.

	 13. 	Chau, F. T.; Chung, W. H; J. Chem. Educ. 1995, 72, A84.

	 14. 	Ohaver, T. C.; Chemom. Intell. Lab. Syst. 1989, 6, 95.

	 15. 	Parallel Computing Toolbox 4.1 User’s Guide, The Mathworks: 

Natick, MA, 2008.

	 16. 	Araújo, M. C. U.; Saldanha, T. C. B.; Galvão, R. K. H.; 

Yoneyama, T.; Chame, H. C.; Visani, V.; Chemom. Intell. Lab. 

Syst. 2001, 57, 65.

	 17. 	Dantas Filho, H. A.; Souza, E. S. O. N.; Visani, V.; Barros, S. 

R. R. C.; Saldanha, T. C. B.; Araújo, M. C. U.; Galvão, R. K. 

H.; J. Braz. Chem. Soc. 2005, 16, 58.

	 18. 	Galvão, R. K. H.; Pimentel, M. F.; Araújo, M. C. U.; Yoneyama, 

T.; Visani, V.; Anal. Chim. Acta 2001, 443, 107.

	 19. 	Honorato, F. A.; Galvão, R. K. H.; Pimentel, M. F.; Barros 

Neto, B.; Araújo, M. C. U.; Carvalho, F. R.; Chemom. Intell. 

Lab. Syst. 2005, 76, 65.

	 20. 	Dantas Filho, H. A.; Galvão, R. K. H.; Araújo, M. C. U.; Silva, 

E. C.; Saldanha, T. C. B.; José, G. E.; Pasquini, C.; Raimundo 

Jr., I. M.; Rohwedder, J. J. R.; Chemom. Intell. Lab. Syst. 2004, 

72, 83.

	 21. 	Galvão, R. K. H.; Araújo, M. C. U.; Fragoso, W. D.; Silva, E. 

C.; José, G. E.; Soares, S. F. C.; Paiva, H. M.; Chemom. Intell. 

Lab. Syst. 2008, 92, 83.

	 22. 	Pontes, M. J. C.; Galvão, R. K. H.; Araújo, M. C. U.; Moreira, 

P. N. T.; Pessoa Neto, O. D.; José, G. E.; Saldanha, T. C. B.; 

Chemom. Intell. Lab. Syst. 2005, 78, 11.

	 23. 	Gambarra Neto, F. F.; Marino, G.; Araújo, M. C. U.; Galvão, R. 

K. H.; Pontes, M. J. C.; Medeiros, E. P.; Lima, R. S.; Talanta 

2009, 77, 1660.

	 24. 	Galvão, R. K. H.; Araújo, M. C. U. In Comprehensive 

Chemometrics: Chemical and Biochemical Data Analysis; 

Brown, S.; Tauler, R.; Walczak, B., eds.; Elsevier: Oxford, 

2009.

	 25. 	Galvão, R. K. H.; Araújo, M. C. U.; Silva, E. C.; José, G. E.; 

Soares, S. F. C.; Paiva, H. M.; J. Braz. Chem. Soc. 2007, 18, 

1580.

	 26. 	Pontes, M. J. C.; Cortez, J. ; Galvão, R. K. H.; Pasquini, C.; 

Araújo, M. C. U.; Coelho, R. M.; Chiba, M. K.; Abreu, M. F.; 

Madari, B. E.; Anal. Chim. Acta 2009, 642, 12.

	 27. 	Moreira, E. D. T.; Pontes, M. J. C.; Galvão, R. K. H.; Araújo, 

M. C. U.; Talanta 2009, 79, 1260. 

	 28. 	Jouan-Rimbaud, D.; Massart, D. L.; Leardi, R.; Noord, O. E.; 

Anal. Chem. 1995, 67, 4295.

	 29. 	Leardi, R.; J. Chemom. 2001, 15, 559.

	 30. 	Beebe, K. R.; Pell, R. J.; Seasholtz, B.; Chemometrics-A Pratical 

Guide, Wiley: New York, 1998.



Multi-Core Computation in Chemometrics: Case Studies of Voltammetric and NIR Spectrometric Analyses J. Braz. Chem. Soc.1634

	 31. 	Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; Jong, 

S.; Lewi, P. J.; Smeyers-Verbeke, J.; Handbook of Chemometrics 

and Qualimetrics, Elsevier Science: Amsterdam, 1997.

	 32. 	Cawley, G. C.; Talbot, N. L. C.; Pattern Recogn. 2003, 36, 2585.

	 33. 	Wold, S.; Sjöström, M; Eriksson, L.; Chemom. Intell. Lab. Syst. 

2001, 58, 109.

	 34. 	Wakeling, I. N.; Morris, J. J.; J. Chemom. 1993, 7, 291.

	 35. 	Clark, M.; Cramer III, R. D.; Quant. Struct.-Act. Relat. 1993, 

12, 137.

	 36. 	Cramer, R.; Kiltz, E.; Padró, C.; Lect. Notes Comput. Sci. 2007, 

4622, 613.

	 37. 	Haaland, D. M.; Thomas, E. V.; Anal. Chem. 1988, 60, 1193.

	 38. 	Kennard, R.W.; Stone L. A.; Technom. 1969, 11, 137.

	 39. 	Kanduc, K. R.; Zupan, J.; Majcen N.; Chemom. Intell. Lab. 

Syst. 2003, 65, 221.

	 40. 	Li, B. X.; Wang, D. M.; Xu, C. L.; Zhang, Z. J.; Microchim. 

Acta 2005, 149, 205.

	 41. 	Zomaya, A. Y.; Teh, Y. H.; IEEE Trans. Parallel Distrib. Syst. 

2001, 12, 899.

	 42. 	Cobas, J. C.; Tahoces, P. G., Fernández, I. I.; Martín-Pastor, M.; 

Chemom. Intell. Lab. Syst. 2008, 91, 141. 

	 43. 	Galvão, R. K. H.; Dantas Filho, H. A.; Martins, M. N.; Araújo, 

M. C. U; Pasquini, C.; Anal. Chim. Acta 2007, 581, 159.

	 44. 	Loudermilk, J. B.; Himmelsbach, D. S.; Barton, F. E.; Appl. 

Spectrosc. 2008, 62, 661.

Submitted: August 25, 2009

Published online: May 11, 2010

FAPESP has sponsored the publication of this article.


