Evaluation of Snake Venom Phospholipase A,: Hydrolysis of Non-Natural Esters

Renan A. S. Pirolla, Paulo A. Baldasso, Sérgio Marangoni, Paulo J. S. Moran and José Augusto R. Rodrigues*

Department of Organic Chemistry, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970 Campinas-SP, Brazil

J. Braz. Chem. Soc., Vol. 22, No. 2, 300-307, 2011.

The following paragraphs, in page 304 column 1, were printed missing two references which are correctly given bellow:

Determination of absolute configurations

Bioreduction of \alpha-tetralone with Daucus carota

 $\alpha\text{-}Tetralone~(20~mg,~0.14~mmol)$ dissolved in 1 mL of ethanol was added to a suspension of freshly cut carrot root (30 g) in 80 mL of distilled water, and the reaction mixture was incubated on an orbital shaker (180 rpm) at 30 °C for 6 days. Finally, the suspension was filtered, and the carrot root was washed three times with water. Filtrates were extracted with ethyl acetate (3 \times 125 mL), the organic phase was dried over anhydrous Na $_3$ SO $_4$ and then evaporated. The

residue was analyzed by GC MS and GC FID with a chiral column. The product (*S*)-1,2,3,4-tetrahydronaphtalen-1-ol **12** was obtained in 64% yield and *ee* 65% with $[\alpha]_D^{20}$ +15 (*c* 0.59 in THF).²⁷

Bioreduction of *p*-nitroacetophenone with daucus carota Using a procedure similar to the describe above, 100 mg (0.60 mmol) of *p*-nitroacetophenone was reacted with 30 g of carrot root. Following separations and GC analysis the product (*S*)-*p*-nitrophenyl-1-ethanol **8** was obtained in 81% yield and ee 96% with $[\alpha]_D^{20}$ –24 (c 1.48 in THF).²⁸

^{*}e-mail: jaugusto@iqm.unicamp.br