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PPARd é um receptor nuclear que, quando ativado, regula o metabolismo de carboidratos e 
lipídios, e está relacionado com diversas enfermidades, tais como síndrome metabólica e diabetes 
tipo 2. Para entender as principais interações entre alguns ligantes bioativos e o receptor PPARd, 
modelos de QSAR 2D e 3D foram obtidos e comparados com mapas de potencial eletrostático 
(MEP) e dos orbitais de fronteira (HOMO e LUMO), assim como resultados de docagem molecular. 
Os modelos de QSAR obtidos apresentaram bons resultados estatísticos e foram utilizados para 
predizer a atividade biológica de compostos do conjunto-teste (validação externa), e os valores 
preditos estão em concordância com os resultados experimentais. Além disso, todos mapas 
moleculares foram utilizados para avaliar as possíveis interações entre os ligantes e o receptor 
PPARd. Portanto, os modelos de QSAR 2D e 3D, assim como os mapas de HOMO, LUMO e MEP, 
podem fornecer informações sobre as principais propriedades necessárias para o planejamento de 
novos ligantes do receptor PPARd. 

PPARd is a nuclear receptor that, when activated, regulates the metabolism of carbohydrates 
and lipids and is related to metabolic syndrome and type 2 diabetes. To understand the main 
interactions between ligands and PPARd, we have constructed 2D and 3D QSAR models and 
compared them with HOMO, LUMO and electrostatic potential maps of the compounds studied, 
as well as docking results. All QSAR models showed good statistical parameters and prediction 
outcomes. The QSAR models were used to predict the biological activity of an external test set, 
and the predicted values are in good agreement with the experimental results. Furthermore, we 
employed all maps to evaluate the possible interactions between the ligands and PPARd. These 
predictive QSAR models, along with the HOMO, LUMO and MEP maps, can provide insights 
into the structural and chemical properties that are needed in the design of new PPARd ligands 
that have improved biological activity and can be employed to treat metabolic diseases.
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Introduction

Peroxisome proliferator-activated receptor delta (PPARd) 
is a nuclear receptor that, when activated by specific 
ligands, promotes the transcription of genes that control the 
metabolism of lipids and carbohydrates. These receptors 
are expressed in several types of tissues and cells, but are 
significantly found in the brain, cardiac and skeletal muscles, 
adipose tissue and skin. Natural ligands of PPARd include 
fatty acids and eicosanoids.1-3 Figure 1 shows the structure 
of PPARd and an endogenous ligand in its active site.

Some effects of PPARd activation involve the decrease 
of glucose oxidation, the increase of lipid utilization into 

the muscle tissues, insulin sensibility and oxidation of 
fatty acids. Based on these effects, substances that activate 
the PPARd receptor can be used to treat two chronic 
diseases: type 2 diabetes mellitus (DM) and metabolic 
syndrome.4-7 DM is a disease of carbohydrate metabolism 
that is related to hyperglycemia and insulin resistance.8-11 
Metabolic syndrome is a disease of lipid metabolism and 
is consequently involved in obesity and insulin resistance. 
The two diseases can arise from similar causes, such as 
sedentary lifestyle, inadequate nutrition, genetics, and 
oxidative stress.6,12,13 In the 1990s, DM affected 4% of the 
global population and some studies have estimated that 
this number will increase by 1.5% in 2025. Type 2 DM is 
the most common type of diabetes and represents 90% of 
DM cases.14 Therefore, there is an urgency of developing 
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new safe and effective agents to treat DM and metabolic 
syndrome, and several authors have been studied PPAR as 
a potential target to treat these diseases.15-18

Structure and ligand-based approaches have been 
successfully employed in the development of new drugs. 
Two and three-dimensional quantitative structure-activity 
relationships (2D and 3D QSAR) and quantum chemical 
descriptors have been used to understand the main 
interactions between drugs and biological receptors, as well 
as in designing new classes of drugs for many diseases.19-27 
Therefore, the main objective of this study is to construct 
reliable HQSAR, CoMFA and CoMSIA models and utilize 
them in combination with quantum chemical maps to 
understand the main interactions between a set of bioactive 
ligands and the PPARd receptor.

Methodology

Data set

In general, PPAR ligands have a polar head (e.g., 
a COOH group), a linker group (e.g., a benzene  
ring-O-(CH2)2-) and a hydrophobic tail (see general 
structure in Table 1). Our compound set consists of 
indanylacetic acid derivatives that have very similar 
structures to the generic model of PPAR ligands.28-32 From 
the indanylacetic acid derivatives synthesized by Wickens 
et al.,29 we have selected 51 compounds to constitute the 
entire data set. A training set was formed using 41 of the 
compounds, and the remaining 10 comprised the test set 
(external validation). The selection of training and test sets 
was based on cluster analyses, and the chemical diversity 
of the two sets is very significant. 

Table 1 displays the chemical structures and the 
values of biological activity (EC50) for all compounds 
studied. These values were all measured under the same 
experimental conditions,29 converted to corresponding 
pEC50 value (-log EC50) and used as dependent variables 
in the QSAR analyses. Figure 2 displays the distribution 
of pEC50 values for the training and test sets.

Protein structure

To perform the molecular alignment of the data set, 
docking studies were necessary. We selected the protein 
structure from the Protein Data Bank (PDB) with regard 
to the characteristics that showed good correlation with the 
biological system. First, eight structures of PPARd with the 
best resolution (≤ 2.40Å) were chosen; then, the RMS fit for 
all structures were calculated using the Pymol33 software. 
The alignment error was 0.464Å, and Figure 3 shows the 
alignment of all protein structures selected.

The PPARd structures did not show significant 
differences when compared with each other. Therefore, we 
have selected the protein structure with the PDB code 3GZ934 
in order to perform the molecular alignment of the compound 
set. This PPARd structure has the better resolution (2.00 Å), 
and its ligand is structurally similar to the compounds in 
our data set. The PPAR ligand binding domain has a polar 
pocket with three main amino acids (His323, His449 and 
Tyr473), as well as a Y shaped hydrophobic cavity.3,33,35,36 
Before molecular alignment was performed on all the 
compound sets, redocking and crossdocking processes 
were carried out to validate the methodology selected. For 
the docking analyses, the crystallographic ligand and water 
molecules were removed and hydrogen atoms were added 
using the Biopolymer module, implemented in Sybyl 8.1.37 
Some aminoacid residues in the binding site (e.g. histidine, 
glutamine and asparagines) were manually checked for 
possible flipped orientation, protonation, and tautomeric 
states using the Pymol 1.0 program (DeLano Scientific, 
San Carlos, USA). The docking process was flexible with 
respect to the ligands.

Figure 1. Structure of PPARd and the natural ligand D32 (red). See 
online for color image. Figure 2. Distribution of pEC50 values for the training, test and complete 

data sets.



Maltarollo et al. 87Vol. 23, No. 1, 2012

Table 1. Structure of compounds studied and EC50 values

Compound General structure R1 R2 X Y EC50 / (nmol L-1)

Training set

1
2
3

H
CH2CH3

OCH3

-
-
-

-
-
-

-
-
-

27
590
4400

4 - - - 3140

5 - - - 10000

6 - - - 883

7 - - - 6480

8
9
10
11
12
13
14
15
16
17
18

4-OCH3

3-OCH3

4-Et
4-t-Bua

4-i-Prb

4-F
4-Ph

4-CH3

3-CH3

4-CN
3-CN

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

3
18
3
21
1
7
6
4
64
35
73

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H
4-CH3

3,4-OCH2O
4-OCH3

3-OCH3

4-F
2-F

3-OCH3

3-Me
3-CF3

4-OCF3

4-Phc

4-Ph
4-Ph
4-Etd

4-Et
4-OCH3

4-OCH3

H

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
S
S
S
S
S
S
S
S
S
S
S
N

NCH3

N
NCH3

N
NCH3

NCH3

N
N
N
N
N
N
N
N
N
N
N
N

NCH3

N
NCH3

N
NCH3

N
N

11
0.8
5
4
61
7

116
272
272
30
2
13
28
309
31
347
86

10000
10000

38
39
40
41

H
4-CH3

4-Et
H

Et
Et
Et
Pr

-
-
-
-

-
-
-
-

7
5
11
10
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Compound General structure R1 R2 X Y EC50 / (nmol L-1)

Test set

42 CH3 - - - 120

43
44
45
46

H
3-F
3-Cl
4-Cl

-
-
-
-

-
-
-
-

-
-
-
-

14
13
13
3

47
48
49
50

4-i-Pr
3-F
4-Cl

H

-
-
-
-

S
S
S
N

N
N
N

NCH3

5
47
1.5
257

51 H (CH2)2-Ph - - 10000

at-Bu = C(CH3)3; 
bi-Pr = CH(CH3)3; 

cPh = C6H11;
 dEt = CH2CH3.

Table 1. continuation

Figure 3. Alignment of PPARd structures with resolution ≤ 2.40Å from 
Protein Data Bank. (A) Backbone view of aligned structures; (B) aligned 
residues into the binding site. See online for color image.

Redocking and crossdocking

Using Surflex docking implemented in Sybyl 8.1,37 
we docked the natural ligand of PPARd found in the 
3GZ934 structure, called D32 or (2,3-dimethyl-4-phenyl]
sulfanyl} phenoxy) acetic acid. The redocking results 
were compared with the crystallographic structure of the 
ligand. The redocking process was also performed using 
the same receptor structure (3GZ9), but with the ligand 
from the 3D5F structure called L41 or (4-[3-(4-acetyl-3-
hydroxy-2-propylphenoxy)propoxy] phenoxy) acetic acid. 
The results obtained from redocking and crossdocking are 
shown in Figure 4.

From Figure 4, we can observe that the selected 
methodology reproduces the geometries and the positioning 
of molecules into the binding site accurately. Therefore, 

Surflex docking can be used to dock all compound sets to 
create reliable 3D QSAR models.

2D and 3D QSAR studies

All 2D and 3D QSAR analyses, calculations and 
visualizations were performed using the Sybyl 8.1 package 
(Tripos, St. Louis, USA), running on Linux workstations. 

The 2D QSAR analyses were performed using a 
specialized fragment-based method to develop a predictive 
quantitative structure-activity relationship. This method 
is known as hologram QSAR (HQSAR) and permits the 
visualization of the positive and negative contributions of 
each molecular fragment to the biological activity. The 
HQSAR models can be affected by a number of parameters 
concerning hologram generation, such as hologram length, 

Figure 4. (A) Redocking and (B) crossdocking results. Both 
crystallographic ligands are shown in gray and the docked ligands are in 
green (D32) and yellow (L41), respectively. See online for color image.
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fragment size and fragment distinction. Initially, each 
molecule in the data set was energetically minimized by 
the Tripos force field; the Gasteiger-Huckel charges were 
calculated and the molecular holograms were generated 
using the standard parameters implemented in Sybyl 8.1. 

Comparative molecular field analysis (CoMFA) 
and comparative molecular similarity indices analysis 
(CoMSIA) are two methods based on molecular force fields 
that reproduce some interactions between ligands and their 
biological receptors. In combination with HQSAR maps, 
3D QSAR results can show a complete understanding of 
electrostatic, stereochemical, hydrophobic, and H-bond 
donor and acceptor features of bioactive ligands. Structural 
alignment is an important parameter in developing reliable 
3D QSAR models, and in this case, we have employed a 
docking methodology to align all the compounds of the 
data set. For this, we used the Surflex module of Sybyl 
8.1 (scoring function: ChemScore)37 on the PPARd 
structure with PDB code 3GZ9. Figure 5 displays the 
molecular alignment of the compound set obtained from 
this methodology.

After aligning all compounds in the PPARd structure, 
we have constructed several models based on CoMFA and 
CoMSIA. Initially, we calculated the atomic charges using 
the PM3 method,38,39 implemented in the MOPAC package, 
as this method contains many of the same AM1 parameters, 
but these ones were derived more systematically.40 These 
CoMFA models were based on the relationship between the 
values of biological activity and the values of the force fields 
based on the stereochemical (according to Lennard-Jones 
potential) and electrostatic (Coulomb potential) interactions. 
All CoMFA and CoMSIA models were investigated using 
full leave-one-out cross-validation (q2) and no validation (r2) 
methods, as well as CoMFA and CoMSIA standard options 
for variable scaling. The values of pEC50 were used as the 
dependent variable in all QSAR analyses. 

For CoMSIA analyses, stereochemical, electrostatic, 
hydrophobic, H bond acceptor and H bond donor 

similarity indices were evaluated using the standard indices 
implemented in Sybyl 8.1. A CoMFA and CoMSIA region 
focusing method was applied to increase the resolution 
of the 3D QSAR models. The statistical evaluation for 
the CoMSIA analyses was performed in the same way as 
described for CoMFA.

Quantum chemical maps

Based on previous QSAR studies41-44 using quantum 
chemical descriptors, we can note that the energy of the 
lowest unoccupied molecular orbital (LUMO), the charge of 
a carbon atom and the value of the dipole moment of a class 
of PPARd ligands are important properties in describing the 
biological activity. Therefore, we decided to calculate the 
HOMO, LUMO and ESP (electrostatic surface potential) 
maps for some of the compounds studied. The calculations 
were performed with the DFT method implemented in the 
Gaussian09 software,45 using the B3LYP46,47 functional and 
DGDZVP48,49 basis sets, since this functional is appropriated 
for organic molecules and this set of functional and basis set 
was employed in a previous study, providing good results 
when compared to crystallographic data.50

Results and Discussion

HQSAR analyses

The first 2D QSAR analyses employed several 
combinations of molecular parameters, such as the 
screening of the 12 default series of hologram length 
(ranging from 53 to 401 bins), fragment distinction (atoms, 
bonds, connections, hydrogen atoms, chirality, donor and 
acceptor atoms) and fragment size. All results from the PLS 
analyses, using several fragment distinction combinations 
and different fragment sizes, are displayed in Table 2.

Analyzing the results from Table 2 using the default 
fragment size (4-7), we can observe that the models 2, 3 and 
8 have presented the best statistical parameters. Afterwards, 
we varied the fragment size for the three models selected in 
order to assess the influence of the length of the fragments 
to be included in the hologram fingerprint. From Table 2, 
we can see that the best statistical results among all models 
were obtained for model 28 (r2 = 0.863 and q2 = 0.656). 
This model was derived using a combination of A, B, C and 
H, with 5 being the optimum number of PLS components 
with a fragment size of 7-10. It is interesting to note that 
the best model contains hydrogen atoms as the fragment 
distinction, indicating the importance of possible hydrogen 
bonds between the ligands and the binding site of the 
biological receptor.

Figure 5. Molecular alignment of all compounds studied. See online 
for color image.
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After the HQSAR model construction, the next step 
was employing an external validation process, in which the 
compounds in the test set were completely excluded during 
the training of the model, and the best model generated 
was used to predict the values of the biological property 
of the new compounds. Thus, the predictive power of the 
best HQSAR model (derived using the molecules from the 
training set; fragment distinction A/B/C/H; fragment size 
7-10, Table 2) was assessed by predicting the pEC50 values 
for the test set (42-51, Table 1). The prediction results are 
listed in Table S1 (Supplementary Information) and Figure 6.  
It is possible to see that the test set compounds, which 
represent the different structural features incorporated 
within the training set, were well predicted by the best 
HQSAR model. From the low residual values, we can say 
that the HQSAR model obtained is robust and can be used 
in further medicinal chemistry studies. 

3D QSAR analyses

After several analyses, the best CoMFA model was 
obtained by a focusing process using a weight of 0.5 
and a distance of 1.0. This model shows q2 = 0.714 and 
r2 = 0.993, with steric and electrostatic proportions of 34% 
and 66%, respectively. Table S2 displays the statistical 
results from all CoMFA analyses. It is interesting to note 
that the electrostatic contribution for the CoMFA model 
is more important than the contributions from the steric 
data. This fact indicates that electrostatic interactions 
(e.g., hydrogen bonds) are important in describing and 
improving biological activity. According to experimental 
evidence, PPARd has a polar cavity with 3 main amino 
acids (His323, His449 and Tyr473) to which activating 
ligands must bind.3 Therefore, the electrostatic forces are 
more important than the steric ones because of the large 

Table 2. HQSAR results using several fragment distinction combinations and fragment sizes

Model Fragment size Distinction q2 SEP r2 SEE HL N

1 4-7 A/B 0.488 0.881 0.799 0.552 151 5

2 4-7 A/B/C 0.577 0.812 0.869 0.451 83 6

3 4-7 A/B/C/H 0.555 0.833 0.878 0.437 59 6

4 4-7 A/B/C/H/Ch 0.496 0.849 0.759 0.588 401 3

5 4-7 A/B/C/H/Ch/DA 0.545 0.818 0.805 0.535 61 4

6 4-7 A/B/H 0.434 0.939 0.880 0.432 151 6

7 4-7 A/B/C/Ch 0.546 0.829 0.851 0.475 83 5

8 4-7 A/B/DA 0.607 0.783 0.834 0.509 53 6

9 4-7 A/B/C/DA 0.533 0.841 0.862 0.458 199 5

10 4-7 A/B/H/DA 0.497 0.861 0.780 0.569 53 4

11 4-7 A/B/C/Ch/DA 0.448 0.914 0.866 0.451 199 5

12 4-7 A/B/C/H/DA 0.490 0.866 0.781 0.568 61 4

13 4-7 A/B/H/Ch/DA 0.533 0.829 0.823 0.511 307 4

14 2-5 A/B/DA 0.412 0.957 0.748 0.627 307 6

15 3-6 A/B/DA 0.433 0.926 0.792 0.56 151 5

8 4-7 A/B/DA 0.607 0.783 0.834 0.509 53 6

16 5-8 A/B/DA 0.499 0.871 0.867 0.449 257 5

17 6-9 A/B/DA 0.489 0.879 0.884 0.419 257 5

18 7-10 A/B/DA 0.476 0.903 0.888 0.418 97 6

19 2-5 A/B/C 0.466 0.912 0.789 0.573 199 6

20 3-6 A/B/C 0.579 0.810 0.86 0.466 257 6

2 4-7 A/B/C 0.577 0.812 0.869 0.451 83 6

21 5-8 A/B/C 0.634 0.745 0.870 0.443 61 5

22 6-9 A/B/C 0.491 0.877 0.892 0.404 151 5

23 7-10 A/B/C 0.496 0.861 0.825 0.507 151 4

24 2-5 A/B/C/H 0.426 0.946 0.781 0.584 257 6

25 3-6 A/B/C/H 0.490 0.891 0.850 0.484 401 6

3 4-7 A/B/C/H 0.555 0.833 0.878 0.437 59 6

26 5-8 A/B/C/H 0.526 0.847 0.876 0.433 353 5

27 6-9 A/B/C/H 0.560 0.804 0.834 0.495 353 4

28 7-10 A/B/C/H 0.656 0.722 0.863 0.456 61 5

q2
LOO, leave-on-out cross-validated correlation coefficient; SEP, cross-validated standard error; r2, noncross-validated correlation coefficient; SEE, noncross-

validated standard error; HL, hologram length; N, optimal number of components. Fragment distinction: A, atoms; B, bonds; C, connections; H, hydrogen 
atoms; Ch, chirality; DA, donor and acceptor.
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size of the active site. In theory, many molecules can bind 
to the site in many positions.

Next, for the CoMFA model construction, we employed 
the compounds from the test set (42-51, Table 1) in order to 
validate this model. The prediction results are listed in Table 
S1 and Figure 6. The analysis of the outcomes showed that 
the compounds in the test set were well predicted by the 

best CoMFA model, indicating that this model has a high 
predictive power and can be used to obtain the interaction 
fields of new compounds. 

To construct the CoMSIA model, we calculated several 
molecular fields (steric-S, electrostatic-E, hydrophobic-H, 
H-bond acceptor-A and donor-D) without using the 
focusing option, and the results are summarized in Table S3. 
From the best initial model (model 8, q2 = 0.229) based on 
electrostatic and hydrophobic contributions, we employed 
the region focusing method to improve the predictive 
power of the model. The main results obtained after the 
focusing are shown in Table S4; it can be seen that the best 
CoMSIA model (q2 = 0.620 and r2 = 0.941) is composed 
by electrostatic and hydrophobic fields (60.9 and 39.1%, 
respectively) and was obtained by a focusing process with 
a weight of 0.5 and a distance of 1.5. It is interesting to 
note that this model, as well as CoMFA one, has high 
electrostatic contribution. Furthermore, hydrophobic 
interactions are also important. PPARd has a large active 
site that presents a small cavity with polar character; 
however, the other amino acids of the active site can 
participate in hydrophobic interactions. Therefore, the 
polar cavity is responsible for activating the receptor, and 
the hydrophobic pocket is responsible for stabilizing the 
ligands in the binding site. Because the polar interactions 
(e.g., hydrogen bonds) involve high energy, when compared 
to the hydrophobic interactions (e.g., van der Waals), it is 
expected that electrostatic effects have a high proportion 
on the obtained CoMSIA model.

Next, we used the compounds from the test set (42-51, 
Table 1) to validate the generated CoMSIA model, and the 
prediction results are listed in Table S1 and Figure 6. After 
analyzing the outcomes, it was possible to conclude that 
the compounds from the test set were well predicted by the 
best CoMSIA model, indicating that this model is robust 
and can be used to plan new compounds. 

Physicochemical discussion

After the construction of 2D and 3D QSAR models, 
we performed theoretical calculations of some molecular 
properties, such as the maps of molecular orbitals (highest 
occupied molecular orbital - HOMO and lowest unoccupied 
molecular orbital - LUMO) and electrostatic surface 
potential (ESP), and correlated them to the 2D and 3D 
contribution maps obtained from the HQSAR, CoMFA and 
CoMSIA models. Figures 7 and 8 show all contribution 
maps obtained for the most (20) and the least potent (36) 
compounds, respectively.

From Figures 7(A) and 8(A), we can observe that 
both molecules display polar contacts with the three main 

Figure 6. Plots of experimental versus predicted pEC50 using HQSAR, 
CoMFA and CoMSIA models. 
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polar amino acids (His323, His449 and Tyr473), shown in 
yellow dotted lines. From the other maps calculated, we 
can note the following findings: (i) HQSAR maps show 
positive (green and yellow) and negative (orange and red) 
contributions. The central N atom from the five-atom ring 
contributes positively in both compounds. For the HQSAR 
map of compound 20 (the most potent), the COOH group 
shows a positive contribution, indicating the importance 
of polar contacts to biological activity. For the 2D map 
of compound 36 (the less potent), the benzene ring and 
o-methyl terminal group show a negative contribution. 
This may possibly be related to their steric hindrance. 
(ii) In our previous HQSAR study,22 we have noted that 
polar groups linked to hydrophobic groups (m-methyl 
anthranilic acid) have influence on PPARd affinity, but 
this can be improved using small polar groups. The most 
potent compound of previous study has pEC50 = 7.9 and 
the most potent compound of this work (compound 20) 

has pEC50 = 8.3. Therefore, this outcome corroborates 
our HQSAR study. (iii) CoMFA electrostatic maps show 
positive (blue) and negative (red) contributions; CoMFA 
steric maps display positive (green) and negative (yellow) 
contributions. Analyzing the CoMFA maps for the least 
potent compound (36), it is possible to observe that the 
steric contributions confirm the negative influence of the 
benzene ring and o-methyl group for biological activity. 
Therefore, this confirmed the HQSAR evidence for the 
negative contribution of these groups. The steric hindrance 
of these groups can possibly block the polar groups from 
approaching polar residues. From the docking of compound 
36, we can note that the COOH group is more distant 
from the polar residues than the polar group of compound 
20. Furthermore, the COOH group in both molecules 
has a positive electrostatic contribution, indicating the 
importance of the polar contacts. The substitution of the 
N atom on the imidazole ring (compound 36) by the S 
atom (compound 20) causes an increase in electrostatic 

Figure 7. Contribution maps for the most potent compound (20). (A) 
molecule docked into the active site; (B) HQSAR, (C) CoMFA, (D) 
CoMSIA, (E) HOMO, (F) LUMO and (G) ESP maps. See online for 
color image.

Figure 8. Contribution maps for the least potent compound (36). (A) 
molecule docked into the active site; (B) HQSAR, (C) CoMFA, (D) 
CoMSIA, (E) HOMO, (F) LUMO and (G) ESP maps. See online for 
color image.
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contribution, demonstrating the role of electronegative 
atoms in this position in improving the biological activity. 
(iv) CoMSIA maps show the same color systems as the 
electrostatic contributions used in the CoMFA analysis. 
Hydrophobic positive contributions are represented in 
white and negative contributions represented in magenta. 
For the most potent compound (20), the benzene and 
methyl groups have positive hydrophobic contributions 
to the biological activity. Both molecules have a negative 
hydrophobic contribution in regards to the linker region 
[-O-(CH2)2-] and a positive electrostatic contribution to 
the COOH region, which is in agreement to the HQSAR 
and CoMFA maps. (v) According Huang et al.,51 we note 
that polar groups (consequently, hydrogen bond donors 
and acceptors) as COOH head are important to PPARd 
affinity. Huang et al.51 have performed a tridimensional 
QSAR based on ligand alignment and they have obtained 
very similar results of electrostatic properties. So, in order 
to develop new PPARd modulators, it is important to 
keep a COOH group or to use a bioisosterism technique 
to preserve electrostatic requirements. (vi) After analysis 
of the HOMO maps, we observe no difference among the 
compounds studied. However, the LUMO maps indicate 
a significant variation in the atomic contributions for this 
orbital, which can explain the differences in biological 
activity. For the most potent compound (20), the main 
atomic LUMO contributions are located at hydrophobic tail 
while the least potent compound (36) has the main LUMO 
contribution located at the COOH group. Since this orbital 
(LUMO) indicates the capacity to accept electrons,52 we 
can identify the possible sites involved in charge transfer 
reactions between the ligand and the protein. (vii) ESP maps 
show the charge distribution into the molecular surfaces. 
There is a large difference of charge among the two 
compounds mainly in the region of polar contacts (COOH 
group). Compound 20 has the most negative surface and 
compound 36 has the most positive surface located at the 
COOH group. This may represent a low ability to accept 
H-bond in this region.

PPARd activation depends on specific interactions, and 
the main ones involve hydrogen bonds with polar residues. 
As the polar interactions are the most energetic, they can 
better stabilize the ligand-receptor complex. Therefore, 
regardless of which residues are involved in the polar 
contacts, it is important that these interactions are strong, 
as well as hydrophobic, in order to stabilize the ligand in 
the binding site, which can be realized by the hydrophobic 
tail and the linker group.

In order to obtain more detailed information on the main 
interactions into the binding site, we decided to calculate its 
volume and hydrophobic profile. The volume of the active 

site was determined with FPocket package53,54 (available 
on http://bioserv.rpbs.univ-paris-diderot.fr/fpocket/index.
html) and Computed Atlas of Surface Topography of 
proteins (CASTp),55 available on http://sts.bioengr.uic.
edu/castp/index.php. The FPocket and CASTp packages 
provided a volume of 1896.2 Å3 and 1896.7 Å3, respectively. 
This data indicates that the PPAR cavity is very large and 
can accommodate a large variety of ligands. From spheres 
generated by FPocket, we can plot the surface of active 
site colored by hydrophobic profile, by employing USFC 
Chimera program.56 Figure 9 shows the surface of binding 
site, where blue color indicates polar areas and orange 
represents hydrophobic regions.

From Figure 9, it is possible to observe that the region 
near to COOH group of ligands (His323, His449 and 
Tyr473) has a polar surface and the entire cavity has a 
hydrophobic surface. In addition to QSAR studies, the 
results obtained from volume and hydrophobic profile 
of binding site provide an insight on the electrostatic and 
hydrophobic interactions with the main residues of the 
binding site, which are important to PPARd activation.

Conclusions

The 2D and 3D QSAR models obtained in this work 
present good internal and external consistency (HQSAR: 
r2 = 0.863 and q2 = 0.656; CoMFA: q2 = 0.714 and 
r2 = 0.993; CoMSIA: q2 = 0.620 and r2 = 0.941). Besides, an 
external validation process has yielded a good correlation 
between experimental and predicted pEC50 values for the 
test set compounds. Furthermore, CoMFA and CoMSIA 
maps as well as quantum chemical plots show a good 
physicochemical interpretation of the possible protein-
ligand interactions. In addition to the generated maps, 
we can note the importance of the COOH group in the 
ligands with the polar contacts in the binding site and 
the influence of the linker group and the hydrophobic 

Figure 9. (A) Cavity obtained from FPocket package; (B) binding site 
surface with natural ligand D32. See online for color image.
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tail used to stabilize the ligand in the active site. The 
presence of more electronegative atoms than nitrogen 
on the imidazole ring of hydrophobic tails increases the 
electrostatic positive contribution and significantly favors 
the biological activity. In order to obtain more detailed 
information on the main interactions into the binding 
site, we calculate its volume and hydrophobic profile, 
which indicate that the PPAR cavity is very large and can 
accommodate a large variety of ligands, as well as the 
entire cavity has a hydrophobic surface. From the findings 
of this study, we can conclude that the combination of 
QSAR studies with molecular modeling techniques is a 
powerful tool to propose molecular modifications in order 
to obtain new structural-based ligands for PPARd, which 
can be used to treat diabetes, cardiovascular diseases and 
metabolic syndrome. 

Supplementary Information

Supplementary data (Tables S1-S4) are available free 
of charge at http://jbcs.sbq.org.br, as PDF file.
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Table S1. Values of experimental and predicted pEC50 from HQSAR, CoMFA and CoMSIA models for test set

Compound Experimental HQSAR CoMFA CoMSIA

Predicted Residue Predicted Residue Predicted Residue

42 6.92 6.89 -0.03 5.84 -1.08 6.50 -0.42

43 7.85 7.75 -0.10 7.32 -0.53 8.08 0.23

44 7.89 7.50 -0.39 7.42 -0.47 8.12 0.23

45 7.89 7.65 -0.24 6.73 -1.16 7.14 -0.75

46 8.52 7.88 -0.64 7.61 -0.91 7.93 -0.59

47 8.30 8.87 0.57 8.73 0.43 9.28 0.98

48 7.33 7.54 0.21 6.64 -0.69 6.45 -0.88

49 8.82 7.88 -0.94 7.83 -0.99 8.40 -0.42

50 6.59 6.90 0.29 6.79 0.20 7.12 0.53

51 6.22 7.76 1.54 7.13 0.91 6.61 0.39

Table S2. Statistical results of the CoMFA analyses

no focus

w = 0.3 w = 0.5 w = 0.7 w = 0.9

d = 0.5 d = 1.0 d = 1.5 d = 0.5 d = 1.0 d = 1.5 d = 0.5 d = 1.0 d = 1.5 d = 0.5 d = 1.0 d = 1.5

LOO q2 0.104 0.109 0.495 0.467 0.450 0.714 0.427 0.16 0.521 0.163 0.107 0.265 -0.236

SEP 1.181 1.115 0.874 0.911 0.925 0.668 0.945 1.082 0.839 1.11 1.179 1.055 1.312

N 6 2 5 6 6 6 6 2 4 4 6 5 2

CV q2 0.046 0.221 0.541 0.419 0.484 0.747 0.339 0.242 0.553 -0.127 0.063 0.183 0.018

SEP 1.201 1.056 0.833 0.951 0.896 0.627 1.015 1.071 0.822 1.237 1.158 1.128 1.219

N 5 3 5 6 6 6 6 5 5 1 3 6 5

NV r2 0.982 0.983 0.991 0.988 0.992 0.993 0.909 0.949 0.979 0.768 0.816 0.773 0.496

SEE 0.168 0.160 0.119 0.136 0.114 0.103 0.376 0.283 0.180 0.601 0.535 0.595 0.886

S* 0.322 0.335 0.356 0.358 0.316 0.340 0.352 0.460 0.390 0.321 0.436 0.465 0.576

E* 0.678 0.665 0.644 0.642 0.684 0.660 0.648 0.540 0.610 0.679 0.564 0.535 0.424

*S (steric) and E (electrostatic) contribuiton. Region focusing was weighted by standard deviation coefficient values (w); cross-validated correlation 
coefficient (q2); cross-validated standard error (SEP); optimal number of components (N); noncross-validated correlation coefficient (r2); noncross-validated 
standard error (SEE).
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Table S3. CoMSIA models using no focusing option

Model 1 2 3 4 5 6 7 8 9 10

S/E/H S/E/H/D S/E S/E/H/A S/E/H/D/A S/H S/H/D E/H E/H/A E/H/D

LOO q2 0.203 0.129 0.153 0.136 0.074 0.156 0.113 0.229 0.067 0.101

SEP 1.114 1.102 1.101 1.143 1.136 1.085 1.112 1.096 1.14 1.119

N 6 2 3 5 2 2 2 6 2 2

CV q2 0.16 0.185 0.154 0.121 0.032 0.224 0.107 0.261 0.12 0.063

SEP 1.068 1.066 1.086 1.107 1.161 1.04 1.116 1.073 1.107 1.142

N 1 2 2 2 2 2 2 6 2 2

NV r2 0.951 0.955 0.937 0.949 0.948 0.874 0.915 0.953 0.944 0.953

SEE 0.277 0.265 0.313 0.281 0.284 0.443 0.364 0.272 0.295 0.272

S 0.139 0.101 0.228 0.115 0.092 0.297 0.168 - - -

E 0.525 0.342 0.772 0.383 0.273 - - 0.603 0.431 0.389

H 0.336 0.240 - 0.258 0.197 0.703 0.365 0.397 0.299 0.276

D - 0.316 - - 0.253 - 0.467 - - 0.335

A - - - 0.244 0.185 - - - 0.270 -

Cross-validated correlation coefficient (q2); cross-validated standard error (SEP); optimal number of components (N); noncross-validated correlation 
coefficient (r2); noncross-validated standard error (SEE).

Table S4. Focused CoMSIA models based on electrostatic and hydrophobic fields

w = 0.3 w = 0.5

d = 0.5 d = 1.0 d = 1.5 d = 2.0 d = 0.5 d = 1.0 d = 1.5 d = 2.0

LOO q2 0.413 0.517 0.535 0.550 0.493 0.614 0.620 0.407

SEP 0.956 0.868 0.851 0.837 0.889 0.776 0.769 0.961

N 6 6 6 6 6 6 6 6

CV q2 0.363 0.603 0.443 0.488 0.507 0.512 0.648 0.289

SEP 0.996 0.786 0.932 0.893 0.877 0.871 0.74 0.982

N 6 6 6 6 6 6 6 1

NV r2 0.955 0.956 0.955 0.954 0.947 0.943 0.941 0.801

SEE 0.266 0.262 0.265 0.268 0.287 0.298 0.304 0.557

E 0.602 0.604 0.604 0.601 0.600 0.594 0.609 0.624

H 0.398 0.396 0.396 0.399 0.400 0.406 0.391 0.376

w = 0.7 w = 0.9

d = 0.5 d = 1.0 d = 1.5 d = 2.0 d = 0.5 d = 1.0 d = 1.5 d = 2.0

LOO q2 0.304 0.376 0.304 0.058 0.064 0.335 0.103 0.206

SEP 0.985 0.958 1.042 1.146 1.158 0.963 1.165 1.081

N 2 4 6 2 3 2 5 4

CV q2 0.370 0.391 0.314 0.061 0.141 0.355 0.124 0.243

SEP 0.962 0.934 1.034 1.144 1.094 0.948 1.151 1.070

N 4 3 6 2 2 2 5 5

NV r2 0.933 0.876 0.816 0.368 0.821 0.772 0.581 0.491

SEE 0.323 0.439 0.536 0.992 0.529 0.596 0.808 0.890

E 0.710 0.704 0.688 0.254 0.606 0.598 0.471 0.270

H 0.290 0.296 0.312 0.746 0.394 0.402 0.529 0.730

Region focusing was weighted by standard deviation coefficient values (w); cross-validated correlation coefficient (q2); cross-validated standard error 
(SEP); optimal number of components (N); noncross-validated correlation coefficient (r2); noncross-validated standard error (SEE).


