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Este trabalho concentra-se no cálculo do segundo coeficiente virial quântico, a partir de 
um potencial desenvolvido recentemente. Este coeficiente foi determinado com 4-5 algarismos 
significativos na faixa de temperatura de 3 a 100 K. Nossos resultados estão dentro do erro 
experimental. Três contribuições para o valor total deste coeficiente são o espalhamento quântico 
(contribuição de estados no contínuo), o estado ligado (contribuição de estados discretos) e o gás 
ideal quântico; discutimos estas contribuições separadamente. A contribuição mais importante 
é do espalhamento quântico, enquanto que as contribuições menores são dos estados discretos. 
Uma análise da sensibilidade foi realizada em função da temperatura para um parâmetro na região 
de curto alcance do potencial e para três parâmetros na região de longo alcance do potencial. 
Para ambas as temperaturas consideradas, 10 e 100 K, o coeficiente de dispersão C6 foi o mais 
significativo, e o termo dispersão C10 foi o menos significativo para o resultado total. Em geral, a 
precisão exigida para descrever os potenciais diminui com o aumento da temperatura. A precisão 
total e a relação dos parâmetros com os erros experimentais são discutidas.

This paper focuses on the calculation of the quantum second virial coefficient, under a 
recently developed potential. This coefficient was determined to within 4-5 significant figures 
in the temperature range from 3 to 100 K. Our results are within experimental error. The three 
contributions to the overall value of the coefficient are the quantum scattering (continuum state 
contribution), the bound state (discrete state contribution) and the quantum ideal gas; we discuss 
these contributions separately. The most significant contribution is from the scattering states, 
whereas the smaller contributions are from the discrete states. A sensitivity analysis was performed 
as a function of temperature for one parameter in the short-range region of the potential and for 
three parameters in the long-range regions of the potential. For both temperatures considered, 
10 and 100 K, the C6 dispersion coefficient was the most significant, and the C10 dispersion term 
was the least significant to the overall result. In general, the precision required to describe the 
potential decays as the temperature increases. The overall accuracy and the relationship of the 
parameters to the experimental errors are discussed.
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Introduction

A quantum second virial coefficient calculation 
provides important information that is necessary for 
analyzing model potentials, for this calculation involves 
low temperature data.1 These potential energy function 
can be obtained by a direct procedure, such as fitting 
parameters to experimental data, or, conversely, by 

an inverse problem treatment, in which experimental 
properties are treated first.2-5 The potential refinement is 
very important in chemistry and is performed whenever 
new reliable data become available. Accurate values 
of helium properties, such as the low-temperature 
experimental virial coefficient, can be determined6-8 
and experimental 4He2 dimers can be identified.9-15 
Thus, a comparison between theory and experiment is 
an important test for the quality of the interatomic He 
potential.
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Several He-He intermolecular potentials are discussed 
in the literature.16-20 The most recent potential has not 
been tested against thermodynamic and transport property 
data,21 such as the quantum second virial coefficients. In the 
present work, a study of this recent potential was conducted 
using second virial coefficient data at low temperature.The 
quantum virial coefficient can be determined by evaluating 
the quantum ideal gas term, the scattering phase shift 
dependence on angular momentum22-29 and the bound states 
by Levinson’s theorem.25-26

This low-temperature second virial coefficient 
calculation is an important step to test the quality of the 
potential under consideration. Together with this quantum 
calculation, a sensitivity analysis on the dispersion 
coefficients is also performed. This test is very important, 
especially in low energy conditions when the potential 
parameters are more sensitive. The results obtained in the 
present work will be compared to experimental data for the 
helium-helium system.22-24

Experimental

The partial wave method

A numerical solution to the Schrödinger equation is 
the first step to providing information about the quantum 
virial coefficient. In the scattering process, the Schrödinger 
equation can be written as

	 (1)

where k2 = 2µE/ħ2, l is the angular momentum, µ is the 
reduced mass and E is the energy of the relative motion. 
After the collision process, the scattered wave function is

	 (2)

The phase shift, dl, carries all of the necessary 
information to describe the scattering, as it represents a 
phase that is accumulated along the scattering process 
with respect to a free particle. If no potential were 
present, the phase shift would be zero. The phase shift 
was calculated by the renormalized Numerov method, 
which is a very robust numerical procedure for solving 
equation 1.30 Riccati-Bessel functions were used to match 
Schrödinger equation solutions at a maximum scattering 
coordinate.31 At this point, wavefunction continuity are 
imposed and the scattering matrix (or phase shift) can be  
established.32

Quantum virial coefficient

The equation of state for the helium system can be 
represented by p/kBT = r + B(T)2, in which r is the density 
and B(T) is the second virial coefficient. The classical 
second virial coefficient is not appropriate to describe 
the helium equation of state at temperatures lower than 
100 K.22 Instead, the exact quantum second virial coefficient 
expression relating the phase shift and the energy of bound 
state is used for an accurate system description.6,23,24 The 
molar virial expansion is represented in the form

	 (3)

in which e is the He2 binding energy for zero angular 
momentum, kB is Boltzmann’s constant and

	 (4)

with  = 2.556 Å. The dimensionless variables q and q0 were 
conveniently introduced in formulating the problem and are 
related to the collision energy and temperature, respectively. 
For further comparison, if q = 1 for the system under 
consideration, the collision energy will be E = 1.60 × 10–4 eV.  
Moreover, q0 = 1 will correspond to T = 1.85 K. Other 
transformations can be obtained with this reference. As the 
energy increases, the phase shift will gradually approach 
zero, and the integral term in equation 3 will converge.

For the 4He dimer, the ideal part of the second virial 
coefficient, Bideal, considers the Bose statistics, and no 
intermolecular forces are considered.33 This term is 
important at low temperature and approaches zero at higher 
temperature. The inclusion of the discrete energy levels, 
with only one rovibrational state for He2 in the partition 
function, gives rise to the second term in equation  3, 
Bbound. A contribution from the scattering states comes 
from the third term, Bphase, in which the phase shift has 
to be considered. This term is the most important one in 
establishing the second virial coefficient for the helium 
system.22

Potential energy function

For the description of the system, an accurate potential 
developed by Varandas21 was employed. This potential is 
given by a Hartree-Fock short-range energy and a long‑range  
correlation energy, Ep(R) = VHF(R) + Vcor(R), in which,
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	 (5)

and

	 (6)

are used to define the potential. The function, Xn(R), is

	 (7)

The value in atomic units of the damping function 
coefficients are:  = 10.9424025 , a0 = 16.36606, 
a1 = 0.70172, b0 = 17.19338 and b1 = 0.09574. The other 
necessary parameters to determine the potential are given 
in Table 1.

Data in the literature16-20 show that the He dimer 
potential well at 10.9 K and a nuclear equilibrium distance 
of 2.97 Å only support a single bound rovibrational state 
with a binding energy of approximately –1.176 mK,34 
which is the weakest bound state ever discovered. Due to 
this extremely weak interaction, the wave function must 
be delocalized over a large intermolecular distance. The 
mean intermolecular distance for He at the ground state is 
approximately 50 Å.9-15

The minimum energy value (D = 11.0 K) and the 
equilibrium distance (Re = 2.965 Å) predicted by the 
potential used here are in agreement with previous results 
in the literature.16-21 This proposed potential energy curve 
is investigated, by comparing the calculated exact quantum 
second virial coefficient with the experimental results at 
low temperatures.

The quantum scattering calculation

Calculation of the quantum second virial coefficient 
requires a solution to Schrödinger’s equation and, after 
appropriate boundary conditions, the quantum phase 
shift calculation. The renormalized Numerov algorithm 
that propagates the ratio of wave functions was used to 
calculate the scattering matrix from which the phase shift 
was found.30 Propagating the ratio of the wave function at 

two consecutive points, such as  is the essential 

idea behind this renormalized method; here, h is the 
integration step size. This procedure will provide a very 
stable propagator, even into the classically forbidden 
regions. A critical analysis of this method appears in the  
literature.35

Levinson’s theorem relates the zero energy phase shift 
to the number of bound states supported by the potential 
using

dl(q→0) = nlπ	 (8)

Here, nl is the number of bound states for the 
given angular momentum.35 The 4He2 molecule was 
experimentally detected by several groups.9-15 For l ≥ 1 
the helium molecule was not detected, a fact that was also 
confirmed numerically in this study.

For large angular momentum states, the centrifugal term 
will dominate the collision process, and the scattering process 
will occur with negligible changes in potential energy. At 
this point, phase shift will decrease to zero. Therefore, the 
quantity G(q), which is necessary to calculate the second 
virial coefficient, will converge for a maximum angular 
momentum, lmax.

6,23 By angular momentum conservation, one 
can estimate this maximum at lmax ≈ kRmax, in which Rmax is 
the potential range. The quantity lmax is the maximum angular 
momentum required to achieve cross section convergence.

The quantity  is shown in Figure 1, 
using the Varandas potential. The maximum angular 
moment in the range of 20 < lmax < 80 gives a convergence 
of at least 4(lower temperatures)-5(higher temperatures) 
significant figures for energies in the range 0 < q < 80. 
The G(q) curve presents a primary peak near q = 0, which 
is predicted by Levinson’s theorem. As observed for 
temperatures under 30 K, the integration process must be 
performed until q = 14, which is the convergence point for 
the energy. The phase shifts were calculated at intervals 
of Dq  = 0.005. Numerical integration was performed 
using Simpson’s method together with a cubic spline 
interpolator.36,37 Integrated results were confirmed to be 
within 4-5 significant figures.

Table 1. Parameters for the helium potential in atomic units21

VHF parameters Dispersion coefficients

D 2.909582149142803 × 10–5 C6 1.4646

a1 –2.677678262034801 × 10–1 C8 14.112

a2 2.345720241868299 × 10–2 C10 178.13

a3 1.459174818996908 × 10–2 C11 –76.7

a4 1.237617600368155 × 10–5 C12 3093

Re 5.60323206384019 C13 –3806.0

g 2.17613250152118 C14 72016

C15 –171000.0

C16 2276994
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Results and Discussions

The present calculation of the quantum second virial 
coefficient was performed with 4-5 significant figures, 
and the results are shown in Table 2. A comparison is 
made with experimental and theoretical calculation. The 
second virial coefficient error calculated in the present 
work is within 0.1 cm3 mol–1 for temperatures above 10 K, 
but this result increases to 0.63 cm3 mol–1 for T = 3 K. 
Guided by the experimental error of 0.6 cm3 mol–1 for 
lower temperatures, one may conclude that the potential 
used in the present calculation is appropriate in this 
temperature range.8,38

Term contribution

We discuss the individual contributions to the second 
virial coefficient expansion in equation (3). The first term 
is a Bose-Einstein ideal gas contribution, the second term 
is the bound state contribution, and the third term is related 
to atomic interaction as determined by the phase shift 
information.

The quantum ideal gas term,33

	 (9)

is significant at low temperature and decreases in 
importance as the temperature is increased. For example, 
this term contributes approximately 11% at 3 K and 0.7% at 
100 K. Due to the Bose-Einstein statistics, this contribution 
is always negative for the second virial coefficient. For room 
temperature, this term can be neglected.

The existence of a 4He diatomic molecule for the 
potential under consideration makes it necessary to consider 
the bound state term,

	 (10)

This contribution to virial expansion represents 0.07% 
at 3 K and decreases at large temperatures to 10–4% at 
100  K; these values are much smaller than the ideal 
quantum gas correction. In fact, error in the bound state 
energy will not have a considerable effect on the second 
virial coefficient data.

However, the phase shift contribution to virial 
calculation,

	 (11)

is significant; therefore, quantum virial coefficient data 
at low temperatures are a good test of novel potential 
functions. For example, Bphase at 3 K represents 88.6% of 
the total contribution to the coefficient. In Table 3, we show 
the individual contributions of these three terms from 3 K 
to 100 K.

Sensitivity analysis

An important issue involves the question of how the 
potential energy function has to be to reproduce a desired 
property. The answer is provided by the sensitivity 
analysis.39 This question was analyzed, and the results 

Figure 1. A plot of the function g(q) = G(q)qe–q2/q
0
2  at T = 30 K.

Table 2. Second virial coefficients for 4He in units of cm3 mol–1

T, K Experimental8 This work

3.0 –120.3 –119.67

4.0 –85.3 –84.70

5.5 –56.9 –56.55

7.0 –40.8 –40.56

9.0 –27.69 –27.56

11.0 –19.38 –19.31

13.0 –13.65 –13.60

15.0 –9.47 –9.43

17.5 –5.61 –5.58

20.0 –2.75 –2.71

29.0 3.35 3.41

40.0 6.89 6.985

41.0 7.11 7.206

45.0 7.88 7.982

60.0 9.74 9.855

75.0 10.74 10.852

90.0 11.32 11.427

100.0 11.58 11.675
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are shown in Table 4. Accordingly, the uncertainties 
established are greater than those established with the 
Varandas potential.21

The sensitivity of the second virial coefficient is 
greater for the C6 dispersion term and smaller for the C8 
and C10 terms; these results are presented in Figure 2. The 
short‑range g Born-Mayer type parameter importance, 
shown in the figure, is as relevant as the C8 term. The 
temperature dependence of the potential parameters is 
the important information that is obtained from Figure 2. 
It is clear that all terms become less important as the 
temperature is increased.

The second virial coefficient experimental error will 
be assumed to be ± 0.01 cm3 mol–1,8 which is below the 
average experimental error. One might then ask what 

will the allowed error in the potential parameter be, at 
a given temperature, to give this experimental error. As 
stated in the potential model used here,21 the errors in 
the dispersion coefficient C6, C8 and C10 are 10–12, 10–8 
and 10–6, respectively. This result is not compatible with 
the sensitivity of the dispersion coefficient, as presented 
in Table 4. The variation in these parameters, even for 
100 K, is well below the data used in the construction of 
the potential model.21 For lower temperatures, the variation 
in these parameters is more restricted but still below the 
assumed experimental error.

A family of potential energy curves is an acceptable 
method used to reproduce the second quantum virial 
coefficient. For example, the potential used in the present 
work is similar to other potentials in the literature,16 and the 
calculated quantum second virial coefficient will provide 
data within experimental error if these potentials are used; 
we emphasize this point in Table 2. Experimental error 
provides a rule to be followed in modeling potential energy 
function. Therefore, if accurate information is used, such 
as the quantum second virial data, important restriction on 
the potential model is imposed.

Conclusions

Quantum second virial coefficient for the 4He2 system 
were calculated in the present work for a novel potential 
over the temperature range from 3 to 100 K. Calculations 
in this temperature range showed classical or semi-classical 
behavior that were not sufficient to adequately describe 
the second virial data. Our results are in agreement with 
experimental errors. For example, the difference between 
our theoretical results and the experimental data are 
0.63 cm3 mol–1 for T = 3 K and 0.095 cm3 mol–1 for T = 100 K.

Table 3. Calculated quantum second virial coefficient contribution terms 
in cm3 mol–1

T B Bphase  Bideal  Bbound

3.0 –119.67 –105.97 –13.614 –8.5402 × 10–2

4.0 –84.698 –75.814 –8.8424 –4.1601 × 10–2

5.5 –56.552 –51.049 –5.4842 –1.8764 × 10–2

7.0 –40.563 –36.733 –3.8196 –1.0268 × 10–2

9.0 –27.564 –24.939 –2.6200 –5.4778 × 10–3

11.0 –19.307 –17.365 –1.9390 –3.3169 × 10–3

13.0 –13.604 –12.093 –1.5092 –2.1845 × 10–3

15.0 –9.4351 –8.2159 –1.2177 –1.5275 × 10–3

17.5 –5.5823 –4.6150 –0.96628 –1.0390 × 10–3

20.0 –2.7118 –1.9202 –0.79089 –7.4409 × 10–4

29.0 3.4108 3.8640 –0.45296 –2.9390 × 10–4

40.0 6.9847 7.2644 –0.27962 –1.3154 × 10–4

41.0 7.2062 7.4758 –0.26945 –1.2366 × 10–4

45.0 7.9821 8.2165 –0.23434 –9.7986 × 10–5

60.0 9.8550 10.007 –0.15221 –4.7732 × 10–5

75.0 10.852 10.960 –0.10891 –2.7324 × 10–5

90.0 11.427 11.509 –0.082851 –1.7321 × 10–5

100.0 11.675 11.746 –0.070739 –1.3299 × 10–5

Table 4. Acceptable parameter deviation for DB = 0.01 in cm3 mol–1 and 
atomic units

Parameter Sensitivity Deviation Error21

T = 10 K C6 50 2 × 10–4 10–12

C8 10 10–3 10–8

C10 1 10–2 10–6

g 10 10–3 –

T = 100 K C6 10 10–3 10–12

C8 1 10–2 10–8

C10 1 10–2 10–6

g 5 2 × 10–3 –

Figure 2. Parametric sensitivity analysis for C6 (–), C8 (…), C10 (--) and 
g (-.-) in atomic units and cm3 mol–1.
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Contributions from the bound state term, the Bose-
Einstein interaction and the phase shift were discussed. The 
first two terms showed a small influence on this coefficient. 
For example, at 3 K, the bound state contribution is 
0.07% and the Bose-Einstein is 11%, while at the same 
temperature, the phase shift term contributes 89% to the 
total second virial coefficient.

Under the inverse problem theory framework, a 
potential parameter sensitivity analysis was also studied. 
The calculated uncertainties in the parameter were, in fact, 
greater than the precision used to construct the potential 
used in the present calculation. For example, to be within 
experimental error, the dispersion coefficient C6 can have 
uncertainty as small as 10–4 au, which is well above the 
theoretical calculation of 10–14 au.

Theoretical calculations with the potential function 
proposed by Varandas and used in the present work are 
within experimental error. In fact, it was difficult to select 
the best potential that describes helium-helium interaction 
at low temperatures. Sensitivity analysis has shown that the 
precision in the potential parameters is beyond that which 
is required to reproduce the experimental quantum second 
virial coefficient; therefore, a set of potentials is acceptable.
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