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O objetivo deste estudo foi classificar amostras de comprimidos contendo dipirona, cafeína 
e orfenadrina usando espectroscopia no infravermelho próximo e técnicas quimiométricas. O 
conjunto de dados foi de 300 espectros de amostras de três comprimidos por lote e quatro diferentes 
produtores. O pré-processamento foi realizado pelo algoritmo Savitzky-Golay com primeira 
derivada, janela de 17 pontos e polinômio de segunda ordem. A classificação dos comprimidos foi 
conduzida usando modelos quimiométricas baseados na análise de componentes principais (PCA), 
modelagem independente flexível por analogias de classes (SIMCA), algoritmo genético- (GA‑LDA) 
e algoritmo das projeções sucessivas-análise discriminante linear (SPA-LDA). Pela análise PCA, 
observou‑se agrupamentos para cada conjunto de comprimidos. Para o modelo SIMCA, utilizou-
se 15 e 30 medidas espectrais para o conjunto de treinamento dos medicamentos similares e de 
referência, respectivamente. Para o modelo GA-LDA, utilizou-se 12 variáveis, enquanto que o 
modelo SPA‑LDA selecionou somente dois comprimentos de onda, 1572 e 1933 nm. Os modelos 
classificaram corretamente todas as amostras. A metodologia permitiu uma classificação rápida e 
não destrutiva das amostras e sem necessidade de determinações analíticas convencionais.

The objective of this study was to classify samples of tablets containing dipyrone, caffeine and 
orphenadrine using near infrared (NIR) spectroscopy and chemometric techniques. The data set 
had 300 spectra of samples from three tablets per batch and four different manufacturers. The 
pre‑processing was accomplished by Savitzky-Golay algorithm with the first derivative, window with 
17 points and second-order polynomial. The tablet classification was performed using chemometric 
models based on principal component analysis (PCA), soft independent modeling of class analogies 
(SIMCA), genetic algorithm- (GA-LDA) and successive projection algorithm-linear discriminant 
analysis (SPA-LDA). For PCA analysis, clusters were observed for each group of tablets. The SIMCA 
model was built using 15 and 30 spectral measures for the training set of similar drugs and reference 
drugs, respectively. The GA-LDA model used 12 variables, whereas SPA-LDA selected only two 
wavelengths, 1572 and 1933 nm. The methodology allowed a quick and non-destructive classification 
of the tablets and without the need for conventional analytical determinations.

Keywords: chemometrics, drug screening, near infrared spectroscopy, pharmaceuticals, 
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Introduction

Counterfeiting of medicines is part of a broader process 
involving the distribution of drugs that do not meet the 

standards of quality, safety  and efficacy. According 
to the World Health Organization (WHO), spurious/
falsely‑labeled/falsified/counterfeit (SFFC) medicines are 
those wrongly labeled, deliberately or misleading with 
respect to their identity or source. Tampering includes 
reference, similar generic products  and may include 
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products with correct, incorrect, insufficient or missing 
and/or with fake packaging active ingredients.1-3

In most of the developed countries with effective 
systems of regulation and market control (i.e., United States, 
Australia, Canada, Japan, New Zealand and most European 
Union countries), the incidence of SFFC drugs is low, less 
than 1% of the market, according to estimates from the 
countries concerned.3,4 In contrast, the highest incidence 
occurs in regions where the regulatory  and supervisory 
systems are weak. In some developing countries, the 
SFFC drugs reach alarming 25% of the local market, 
which represents about 10% of the global pharmaceutical 
market.4,5

Due to high amount of fraud and risk posed by these 
drugs, pharmaceutical products (medicines, cosmetics and 
related) have been subjected to safety requirements  and 
quality assurance through technical regulations set by 
government authorities. These regulations are supported by 
voluntary technical activities that contribute to the quality 
of products, such as ISO 9001 standard.5

In Brazil, the inspection agencies seized SFFC drugs, 
among them contraceptives, antibiotics  and painkillers, 
more often containing dipyrone in the composition.6 
These drugs continue to be subject to forgery by their 
popularity  and acceptance due to the high levels of 
marketing and consumption.

According to information publicly provided by the 
Boehringer Ingelheim Company, three main substances 
of the class of painkillers, that although being different 
molecules have the same purpose of pain sedation, holds 
95% of the Brazilian market. Drugs with dipyrone lead 
with 39%, followed by paracetamol with 30% and aspirin 
with 26% of the market.

Dipyrone (sodium salt of 1-phenyl-2,3-dimethyl-
4-methylaminomethane sulphonate-5-pyrazolone) 
is a therapeutic agent commonly used as analgesic, 
antipyretic and antispasmodic in various pharmaceutical 
formulations. Restricted in some countries like the United 
States, dipyrone is commercially available in Brazil mainly 
due to its strong analgesic effect and relatively low cost.6‑10 
In some drugs, dipyrone is present in association with 
orphenadrine [(RS)‑N,N‑dimethyl‑2‑[(2‑methylphenyl)
phenylmethoxy]ethanamine dihydrogen 2-hydroxypropane-
1,2,3-tricarboxylate], analgesic with weak antihistaminic 
property, useful for relieving pain associated with 
traumatic or inflammatory muscle contractions,11  and 
with caffeine (1,3,7-trimethylxanthine), an alkaloid 
responsible for promoting increased alert capacity  and 
reduced fatigue,10,12-14 and further has central stimulating 
action  and may exacerbate the excitatory symptoms of 
both previous drugs.

According to Santos et al.,7 in samples with two or 
more active ingredients present in a single formulation, 
the quantification must be performed by high performance 
liquid chromatography (HPLC) with UV detection. 
Although presenting accuracy and precision, the official 
method in question is also characterized by being 
laborious and expensive, often requiring pre-treatment of 
samples, ultra-pure reagents and specialized operators, and 
sample degradation  and production of organic waste 
harmful to the environment take place.15

However, numerous other analytical techniques have 
been proposed for the analysis of drugs, among which 
the near infrared (NIR) spectroscopy,16-20 a rapid  and 
non-destructive technique based on the absorption of 
electromagnetic radiation between 14000 and 4000 cm-1 
(780 to 2500 nm).

The use of multiple analytical channels in the acquisition 
of chemical information for samples, as NIR spectroscopy, 
may be adequately exploited using multivariate analysis, 
extracting as much information as possible of data sets. 
In this context, pattern recognition techniques  and NIR 
spectroscopy have been reported for the development 
of screening methodology for quality control of various 
matrices as fuel,20-23 drink24 and food.25

Soft independent modeling of class analogies 
(SIMCA)26 is a well known supervised pattern recognition 
method that uses principal component analysis (PCA) to 
model the hyperspace of each class. The PCA method 
promotes compression of a large data set and the 
variance is concentrated in few variables called principal 
components, i.e., for a set of k objects measured in sensors 
j generating the matrix Xkxj, PCA reduced the matrix X 
into a product of two other arrays of low dimensionality 
TkxA (scores) and LjxA (loadings). The new variables in T 
present the advantage of being mutually orthogonal and A 
represents the number of new variables considered to be 
significant for the model of each class. The classification 
of new samples is carried out by means of an F-test at a 
given significance level.

The new variables present advantage of being mutually 
orthogonal, allowing the use of all spectral information 
in the construction of the SIMCA model, known as 
full spectrum method. This characteristic permits the 
detection of anomalous samples or outliers, present in 
the data set.26,27

However, when employing full spectrum in the 
construction of mathematic models, many variables are 
redundant and/or non-informative,  and their inclusion 
may affect the quality of the final model. Currently, a 
well‑succeeded alternative to overcome this drawback is 
the use of variable selection techniques.28-31
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Among the various variable selection techniques, 
the genetic algorithm (GA), proposed in the 1960’s by 
John H. Holland, is one of the most widespread.32 The GA 
algorithm is mathematically based on the mechanisms of 
the Theory of Natural Selection by Charles R. Darwin to 
optimize complex systems,33,34 seeking to replicate the 
evolution of the biological mechanism, exploiting all its 
advantages.

Araújo et al.35 proposed the successive projection 
algorithm (SPA) to the variable selection in multiple 
linear regression  (MLR). The SPA algorithm is the 
forward algorithm, with restriction that the selected 
variable in each interation is the least collinear to 
other selected variables. Pontes et al.36 have proposed 
modification in SPA so that it could be coupled with 
linear discriminant analysis (LDA) in the variable 
selection to solve classification problems, that is showing 
satisfactory performance with respect to the classification 
of various matrices such as beer,37 soils38 and quantitative 
structure-activity relationship (QSAR) modeling.39

Thus, the aim of this work was to develop a simple 
method for classification of drugs containing dipyrone, 
orphenadrine  and caffeine by their identification  and 
grouping by manufacturers, because in many cases the 
substitution of a more expensive product by cheaper 
ones is a clear case of falsification. This study used NIR 
spectroscopy combined with chemometric techniques 
for exploratory and classification analysis, with variable 
selection techniques.

Experimental

Samples

Tablets containing dipyrone (300 mg), caffeine 
(50  mg)  and orphenadrine (35 mg) were acquired in 

pharmacies from Ceará and Paraíba States (Brazil). The 
samples belong to four different brands, being one of 
reference (R)  and three similar (S1, S2  and S3), with 
different excipients (Table 1) and manufacturing process. 
Three tablets  per  batch were analyzed, 20 batches of 
reference and 10 batches for each similar brand.

NIR spectra acquisition

Diffuse reflectance spectral measurements were 
performed, without any previous sample treatments or use 
of chemical reagents, using the XDS Rapid ContentTM 
Analyzer (FOSS), with 0.5 nm spectral resolution, equipped 
with holographic net and Si and PbS detection systems. 
Sample spectra were obtained on both sides of each of the 
tablets in the spectral range from 400 to 2500 nm.

Chemometric study

The spectra were preprocessed by a priori selection at 
the interval between 1100 and 2500 nm as work spectral 
region. To remove noise and baseline adjust, the spectra 
were then treated using the Savitzky-Golay algorithm with 
first derivative,40 window of 17 points and second order 
polynomial in the Unscrambler 9.8 software.

The Kennard-Stone (KS) algorithm41 was used to 
partition the data set into training (75 samples, being 15 S1, 
15 S2, 15 S3 and 30 R), validation (25 samples, being 5 S1, 
5 S2, 5 S3 and 10 R) and test (50 samples, being 10 S1, 
10 S2, 10 S3 and 20 R) for construction and validation of 
the SIMCA, GA-LDA and SPA-LDA models.

The training set was used to obtain model parameters, and 
the validation set was used to choose the best number of the 
PCs for each class in the SIMCA model. In the GA-LDA and 
SPA-LDA models, the validation set was used to guide the 
variable selection, a strategy to avoid overfitting.42 The test 

Table 1. Chemical composition of the excipients

S1 S2 S3 R

starch starch starch starch

ethyl alcohol ethyl alcohol ethyl alcohol −

cellulose cellulose − −

povidone povidone povidone −

magnesium stearate magnesium stearate magnesium stearate magnesium stearate

− sodium starch glycolate − sodium starch glycolate

− silicon dioxide − −

− disodium edetate − −

− lactose − −

− sodium metabisulfite − −

− − talc talc
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set comprises external samples to the model and was used to 
evaluate the discriminant capacity of the final model.

GA-LDA was used to select variables employing 
the G function as cost function. The mutation  and 
reproduction probabilities were kept constant, 10 and 60%, 
respectively. The initial population was 100 individuals, 
with 50 generations. SPA-LDA was used in the standard 
conditions, as previously described.36,37

Results and Discussion

Figure 1a shows the raw diffuse reflectance spectra of 
the 150 samples, average of two spectra (two sides of the 
same tablet) in the range 1100 to 2500 nm, obtained under 
0.5 nm resolution. The baseline variation was corrected 
using the Savitzky-Golay filter with first derivative, window 
of 17 points and second-order polynomial. Pre-processed 
spectra are shown in Figure 1b.

Exploratory data analysis

A study of unsupervised pattern recognition was 
conducted using PCA. PCA was used to evaluate the 
discriminating power of the spectra with respect to drug 
manufactures (similar or reference drugs).

Figure 2a details the graphical representation of the 
scores of PC1 versus PC2 of the NIR preprocessed spectra. 
The cumulative variance in the first two PCs is 91%, being 
possible to observe a separation with no overlapping of the 
classes of drugs addressed in this case study.

It is possible to observe based on Figure 2a that S2, 
S3 and R classes are discriminated in PC1, although the 
S1  and S2 classes are overlapped. In Figure 2b, it was 
observed that three wavelengths (1650, 1934 and 2139 nm) 
were more informative in PC1.

The wavelength 1650 nm can be associated to the first 
overtone of aromatics31 certainly due to functional groups of 

Figure 1. Spectra of tablets: (a) raw and (b) derivative.

Figure 2. PCA results: (a) score plot of PC1 versus PC2 and (b) loading plot.



Melo et al. 995Vol. 24, No. 6, 2013

active products. At 1934 nm, transitions such as the second 
overtone of carbonyl, OH of water or RCO2H, RC2HR’ and 
CONH2 groups take place.31 The transitions at 2139 nm are 
associated to ROH and combination bands of CONH2(R).31

The excipient chemical composition of the S2, S3 and R 
drugs presents at least one different compound, explaining 
the non-overlapping of the classes in PC1. However, all 
excipients in S1 are also in S2 (Table 1) perhaps due to 
similarities of composition, the overlapping between S1 and 
S2 occurred in PC1.

On the other hand, S2 presents more excipients than 
S1,  and the differences are sodium starch glycolate, 
silicon dioxide, disodium edetate, lactose  and sodium 
metabisulfite. The presence of these excipients explains the 
non-overlapping between S1 and S2 in PC2 (Figure 2a).

The loading graphs in PC2 (gray dash in Figure 2b) 
present two more significant wavelengths: at 1573 nm 
that occurs in the region of the first aromatic overtone, and 
at 1396  nm with information about the first overtone 
transitions of CH3, CH2 and CH, ArOH, ROH, H2O and NH, 
that permits to discriminate the S1 and S2 drugs.

SIMCA classification

After the data partition, a study of the supervised 
pattern recognition was performed using the SIMCA 
technique at 75, 95 and 99% statistical significance, using 
the full spectral range and validation by test series. All 
samples were correctly classified at the three levels of 
statistical significance employed. The SIMCA models of 
R, S1 and S2 were constructed with 4 PCs and S3 with 
5 PCs.

The results denote the potentiality of the NIR 
spectrometry to identify the counterfeit drugs. However, 

the use of wide spectral ranges, as in this case, makes the 
process of data modeling expensive at the computational 
viewpoint. Therefore, the possibility of obtaining similar 
results to the full spectrum using a representative subset 
of variables was investigated, making final models more 
parsimonious and interpretable.

GA-LDA classification

Using the genetic algorithm coupled with LDA model, 
it was selected 12 variables among the 2784 available, and 
these are highlighted in the average spectrum of all the 
others (Figure 3a).

The variables selected by GA are spread throughout 
the spectrum in regions as the second overtone of CH 
around 1200 nm, the first overtone of CH and SH,  and 
also in combination with the overtone region of CH around 
2200 nm.

Using the 12 selected wavelengths, it was obtained 
the Fisher scores for all the samples of the data set 
(Figure  3b). The Fisher scores consist in the linear 
combination of selected variables. Vector constants of 
the linear combination obtained with training set samples 
minimize intra-class variance and maximize inter-class 
variance.43

There is an even greater effect of homogeneity between 
classes, being obtained no misclassification, using only 
the 12 wavelengths selected by GA in the LDA modeling.

SPA-LDA classification

Figure 4 shows the screen plot associated with the 
variable selection with SPA-LDA, whose cost function 
minimum point was obtained with only two wavelengths.

Figure 3. GA-LDA results: (a) wavelength selected and (b) score fisher calculated employing wavelength selected.
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The wavelengths selected by SPA-LDA were 1572 and 
1933 nm (Figure 5a). Around 1572 nm, it takes place the 
ArCH transition and the first overtone of NH and OH,31 and 
it is possible to observe a good inter-class separation with 
just this variable (Figure 5b). The discrimination inter‑class 
is increased with the bivariate projection between 1572 and 
1933 nm, in which occur transitions of second overtone 
of carbonyl, OH in water, and RCO2H, RC2HR’, CONH2 
groups.31

Ethanol (OH transition) and povidone (NH transition) 
present in the similar drugs  and absent in the reference 
drug certainly contribute to the discrimination between the 
samples. Similar drug S2 appears far from S1 and S3 in 
the subspace defined by selected variables in the SPA‑LDA 
algorithm, reflecting its greater complexity in terms of 
excipient composition (Table 1). On the other hand, the 
presence of sodium starch glycolate only in S2 and R makes 
them nearer (Figure 5b).

S1  and S3 drugs are similar in terms of excipient 
composition, and so, appear as near groups in the Figure 5b. 
The difference between these drugs is the presence of talc 
in S3 and cellulose in S1.

Such characteristics in the only two variables selected 
by SPA were successful enough to discriminate groups 
of drugs in this study, whose models are simple and with 
100% correct classification.

Conclusions

A classification method based on the modeling of 
NIR spectra with PCA, SIMCA and LDA with SPA and 
AG variable selection allowed a successful differentiation 
of the groups of the same drug, belonging to different 
brands. Thus, this method can be applied in the multiple 
identification of drugs contained in a single medicine, with 
use in the pharmaceutical industry as well as in the agencies 
that combat drugs counterfeiting.

The use of the GA-LDA  and SPA-LDA methods 
allowed the homogeneous visualization of the classes 
using only 12 and 2 variables, respectively, with 100% 
correct classification, obtaining similar results to the full 
spectrum.
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