
Article 
J. Braz. Chem. Soc., Vol. 24, No. 10, 1623-1634, 2013.

Printed in Brazil - ©2013  Sociedade Brasileira de Química
0103 - 5053  $6.00+0.00 A

http://dx.doi.org/10.5935/0103-5053.20130207

*e-mail: castilho@ufba.br

Hologram- and Descriptor-Based QSAR Studies for a Series of Non-Azoles 
Derivatives Active Against C. neoformans

Lara B. Cunha,a Humberto F. Freitasa and Marcelo S. Castilho*,a,b

a Faculdade de Farmácia, Universidade Federal da Bahia,40170-290 Salvador-BA, Brazil

b Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem,  
Universidade Federal do Rio de Janeiro (CCS/UFRJ), 21944-970 Rio de Janeiro-RJ, Brazil

Durante as últimas décadas as infecções fúngicas têm se tornado um crescente problema 
de saúde, especialmente para pacientes imunocomprometidos. Infelizmente, o padrão-ouro de 
terapia profilática para tal doença é baseada em derivados azólicos, que são mais fungistáticos 
do que fungicidas contra C. neoformans e causam hepatotoxicidade. Objetivando contornar estes 
problemas, inibidores não–azólicos de CYP51 foram planejados. Aqui, um abrangente estudo de 
relação estrutura-atividade foi executado para uma série de 110 moléculas através de um estudo de 
QSAR baseado em hologramas e descritores moleculares. O melhor modelo de QSAR baseado em 
descritores (r2 = 0,92, q2 = 0,90, 6 LVs e r2

pred = 0,86) sugere que o efeito de ressonância (ESpm08r) 
desempenha um papel principal para a atividade antifúngica. O modelo de QSAR baseado em 
hologramas (r2 = 0,87, q2 = 0,81, 6 LVs e r2

pred = 0,84) sustenta esta hipótese. Estas percepções 
obtidas pelas análises integradas dos modelos de QSAR, juntamente com o bom poder preditivo 
comprovam sua utilidade para futuros esforços em planejamento de fármacos. 

Over the last decades fungal infections have become an increasing health problem, especially 
for immunocompromised patients. Unfortunately, the gold standard prophylactic therapy for 
such ailment is based on azole derivatives, which are fungistatic rather than fungicidal against 
C. neoformans and cause hepatotoxicity. Aiming at circumvent these problems, non-azole CYP51 
inhibitors were designed. Herein a comprehensive structure-activity relationships study was carried 
out for a dataset of 110 molecules by means of hologram– and descriptor–based QSAR studies. 
The best descriptor-based QSAR model (r2 = 0.92, q2 = 0.90, 6 LVs and r2

pred = 0.86) suggests 
that resonance effects (ESpm08r) play a major role for antifungal activity. The hologram-based 
QSAR (r2 = 0.87, q2 = 0.81, 6 LVs and r2

pred = 0.84) supports this hypothesis and hints at steric 
properties that should also contribute to non-azole inhibitors potency. The insights provided by the 
integrated analysis of QSAR models, along with their good predictive power prove their usefulness 
to future drug design efforts.
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Introduction

Over the last decades fungal infections have 
become an increasing health problem, especially for 
immunocompromised patients, such as those receiving 
chemotherapy, organ transplant recipients and HIV 
positive patients,1-3 for whom even opportunistic fungi, 
such as Cryptococcus sp present a life-threatens issue. 
In fact Cryptococcal meningoencephalitis, common 
among HIV patients, has a high mortality rate even when 
treated with first-line antifungal drugs.4,5 Currently, the 

standard prophylactic therapy and long term management 
of systemic deep seated fungal infections rely on azole 
derivatives, for instance fluconazole, or combinations 
thereof.1-6 

Unfortunately, the extensive use and prolonged 
therapy with azole antifungal agents have led to 
severe resistance, which significantly limits their use.7 
Infections caused by C. neoformans present an additional 
complexity as it has inherent resistance to fluconazole.8,9 
Furthermore, fungistatic rather than fungicidal activities 
and hepatotoxicity pose as serious drawbacks for azole 
use. Apparently, similarity between human and fungal 
therapeutic targets makes the pharmacophore requirements 
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of azole drugs profoundly correlated to their toxicophore, as 
the binding of heterocyclic nitrogen atom (N-3 of imidazole 
and N-4 of triazole) to the heme iron atom in the active 
site of lanosterol 14α-demethylase (CYP51) enzyme is 
responsible both for the pharmacological outcome and 
the hepatic side-effects. In fact, cases of death due to liver 
failure are ascribed to the coordination of azole drugs 
to the heme of host cytochrome P450 enzymes, such as 
CYP3A4,10,11 whereas their binding towards fungal CYP51 
leads to fungal growth arrest following the accumulation of 
precursor 14α-methylated sterols in the fungi membrane.

Aiming at separating these effects, extensive medicinal 
chemistry efforts have been carried out.12-14 Despite 
novel azole derivatives, for instance posaconazole and 
voriconazole, present lower hepatotoxicity than first 
generation azoles, they still cause liver enzyme elevation.15 
On the other hand, inhibitors that explore specific interactions 
(H-bonding, hydrophobic interaction and so forth) in the 
active site of fungi CYP51, but do not interact with heme 
prosthetic group are expected to have antifungal effect 
only.16 Taking this hypothesis into consideration homology 
modeling strategies guided the design and synthesis of 
diverse non-azole CYP51 inhibitors (Figure 1).10,16,17 

Although this strategy relied on subjective structural 
data and docking studies, compounds that are more 
potent than fluconazole against C. neoformans, have 
been designed. As these compounds are structurally 
different from azole drugs, they probably have dissimilar 
physicochemical requirements for CYP51 inhibition. 
Nevertheless, as far as we are aware, no effort was made 
to investigate their structure-activity relationships from a 
quantitative point of view. The results described herein try 
to shorten this knowledge-gap by means of hologram-based 
and descriptor-based QSAR models that do not require 
structural information from the molecular target and thus 
are less prone to bias induced by other modeling strategies.

Materials and Methods

Data set 

The data set used for the QSAR studies contains 
110 derivatives of isoquinolines, chromenes and 

2-aminetetralines along with their antifungal activity 
(Table 1).2,10,18 The biological property of this dataset 
is reported as MIC80 values, which is the antifungal 
concentration required to inhibit 80% of C. neoformans 
growth. In order to overcome small data variability 
among different experiments, an internal standard was 
employed (MIC80fluconazole) so that the biological data used 
for QSAR models development is based on the ratio  
(MIC80cpd/MIC80fluconazole). These values were converted 
to pMIC80 (-log(MIC80cpd/MIC80fluconazole)) and used as 
dependent variables in the QSAR model development.

The chemical structures were drawn in the 
two‑dimensional (2D) format and converted to 3D 
using CONCORD standard parameters, as available 
in “translate molecular file” tool, from Sybyl-X 1.1 
plataform (Tripos Inc., St. Louis, USA) and then energy 
minimized by conjugated gradient using Tripos force 
field (convergence criteria 0.001 kcal mol−1). Next, 
MOPAC charges were added to each molecule (AM1 
semi-empirical method with the following keywords: 
1SCF XYZ ESP NOINTER NSURF  = 2 SCALE = 
1.4 SCINCR = 0.4 NOMM). This protocol is necessary so 
that charge-related descriptors can be properly calculated 
in DRAGON. A unsupervised method HCA (Hierarchical 
Cluster Analysis), carried out with Pirouette 4.0 software 
(Infometrix, Washington, USA), using the complete 
linkage clustering method (Euclidean distances) and data 
autoscaling, was used to guide to split the complete dataset 
into training (compounds 1-75) and test (compounds 
76-110) sets. (Table 1) Accordingly, at least 1 compound 
from each cluster (similarity degree = 90%) was assigned 
to the test set (Figure 1S).

Descriptor-based QSAR approach

About 2,500 2D molecular descriptors, including 
topological descriptors, connectivity indices, 2D 
autocorrelation and physicochemical descriptors and so 
forth, were computed using the DRAGON 5.5 software 
(Talette SRL, Milan, Italy) and then pre-selected as 
follows: descriptors with high inter-correlation (≥ 97%) or 
those poorly related to the biological property (r2 < 0.10) 
were discarded. This strategy yielded 215 physicochemical 
descriptors that were employed to build multiple linear 
regression models (MLR) with up to 6 descriptors 
per model using genetic algorithm, as available in 
MOBYDIGS 1.0 software (Talette SRL, Milan, Italy). The 
MLR models were evaluated using the following fitting 
criteria: QUIK rule (0.005), asymptotic Q2 rule (−0.005), 
redundancy RP rule (0.05) and overfitting RN rule (0).19,20 
Due to the stochastic nature of the genetic algorithm, the 

Figure 1. Non-azole antifungals designed as lanosterol 14a-demethylase 
inhibitors.
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Table 1. Structural scaffold and pMIC80 values of training and test set compounds

Training set

N° R1 R2 R3 pMIC80

1 −CH2(CH2)3CH3 −OH −OH −1.39

2 −CH2CH2CH=C(CH3)2 −OH −OH −1.67

3 −CH2(CH2)3CH3 =NOH −OH −1.07

4 −CH2(CH2)3CH3 =O −OH −1.69

5 −CH2(CH2)7CH3 =O −OH −1.91

6 −CH2CH(CH3)2 =O −OH −2.02

7 −CH2(CH2)5CH3 =O −OCH3 −1.93

8 −CH2CH2CH=C(CH3)2 =O −OCH3 −1.95

9 −CH2(CH2)3CH3 −OH −OCH3 −1.67

10 −CH2CH2CH=C(CH3)2 −OH −OCH3 −1.65

N° R1 R2 pMIC80

11 −CH2(CH2)5CH3 −OCH3 −1.95

12 −CH2CH2CH=C(CH3)2 −OCH3 −1.98

N° R1 R2 pMIC80 N° R1 R2 pMIC80

13 7−OCH3 −H −0.90 40 6−OCH3 −(CH2)17CH3 −0.90

14 8−OCH3 −H −0.90 41 7−OCH3 −(CH2)17CH3 −0.90

15 5−OH −H −0.90 42 8−OCH3 −(CH2)17CH3 −0.90

16 6−OH −H −0.90 43 6−OH −(CH2)17CH3 −0.90

17 7−OH −H −0.90 44 8−OH −(CH2)17CH3 −0.90

18 7−OCH3 −(CH2)3CH3 −0.90 45 5−OCH3 −0.90

19 8−OCH3 −(CH2)3CH3 −0.90 46 6−OCH3 −0.90

20 5−OH −(CH2)3CH3 −0.90 47 8−OCH3 −0.90

21 7−OH −(CH2)3CH3 −0.90 48 6−OH −0.90

22 5−OCH3 −(CH2)7CH3 −0.30 49 8−OH −0.60

23 7−OCH3 −(CH2)7CH3 −0.30 50 5−OCH3 −0.90

24 8−OH −(CH2)7CH3 0.00 51 7−OCH3 −0.90

25 5−OCH3 −(CH2)8CH3 0.60 52 6−OH −0.90
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N° R1 R2 pMIC80 N° R1 R2 pMIC80

26 6−OCH3 −(CH2)8CH3 0.30 53 7−OH −0.90

27 8−OCH3 −(CH2)8CH3 0.30 54 8−OH −0.90

28 6−OH −(CH2)8CH3 1.20 55 5−OCH3 −0.90

29 7−OCH3 −(CH2)9CH3 0.90 56 6−OH −0.90

30 5−OH −(CH2)9CH3 0.90 57 7−OCH3 −0.90

31 7−OH −(CH2)9CH3 0.30 58 8−OCH3 −0.90

32 8−OH −(CH2)9CH3 0.90 59 5−OH −0.90

33 6−OCH3 −(CH2)11CH3 0.30 60 7−OH −0.90

34 8−OCH3 −(CH2)11CH3 −0.30 61 8−OH −0.90

35 6−OH −(CH2)11CH3 0.60 62 5−OCH3 −0.90

36 7−OCH3 −(CH2)13CH3 −0.30 63 7−OCH3 −0.90

37 8−OCH3 −(CH2)13CH3 −0.60 64 8−OCH3 −0.90

38 5−OH −(CH2)13CH3 0.00 65 7−OH −0.30

39 7−OH −(CH2)13CH3 0.00 66 8−OH −0.60

N° R1 R2 R3 R4 pMIC80

67 −OCH3 −OCH3 −(CH2)3CH3 −H −1.51

68 −H −F −(CH2)3CH3 −H −1.57

69 −OCH3 −OCH3 −(CH2)7CH3 =O −0.52

70 −OCH3 −OCH3 −(CH2)7CH3 −H −0.53

71 −OH −OH −(CH2)7CH3 −H 0.04

72 −H −F −(CH2)8CH3 =O 0.05

73 −H −F −(CH2)8CH3 −H −0.27

74 −OCH3 −OCH3 −(CH2)11CH3 =O −1.06

75 −OCH3 −OCH3 −(CH2)11CH3 −H −0.77

Table 1. continuation
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Test set

N° R1 R2 R3 pMIC80

76 −CH2(CH2)5CH3 −OH −OH −1.04

77 −CH2CH2CH=C(CH3)2 =NOH −OH −1.05

78 −CH2CH2CH=C(CH3)2 =O −OH −1.67

79 −CH2(CH2)3CH3 =O −OCH3 −1.97

80 −CH2(CH2)5CH3 −OH −OCH3 −1.32

        

N° R1 R2 pMIC80

81 −CH2(CH2)3CH3 −OCH3 −2.00

N° R1 R2 pMIC80 N° R1 R2 pMIC80

82 5−OCH3 −H −0.90 94 8−OH −(CH2)13CH3 −0.60

83 6−OCH3 −H −0.90 95 5−OCH3 −(CH2)17CH3 −0.90

84 8−OH −H −0.90 96 5−OH −(CH2)17CH3 −0.90

85 5−OCH3 −(CH2)3CH3 −0.90 97 7−OH −(CH2)17CH3 −0.90

86 6−OCH3 −(CH2)3CH3 −0.90 98 7−OCH3 −0.90

87 6−OH −(CH2)3CH3 −0.90 99 5−OH −0.90

88 7−OH −(CH2)7CH3 −0.30 100 6−OCH3 −0.90

89 7−OCH3 −(CH2)8CH3 0.30 101 5−OH −0.90

90 6−OH −(CH2)9CH3 0.90 102 6−OCH3 −0.90

91 5−OH −(CH2)11CH3 0.00 103 6−OH −0.90

92 5−OCH3 −(CH2)13CH3 −0.60 104 6−OCH3 −0.90

93 6−OH −(CH2)13CH3 0.30 105 6−OH −0.30

Table 1. continuation
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Test set

N° R1 R2 R3 R4 pMIC80

106 −H −F −(CH2)3CH3 =O −1.25

107 −H −F −(CH2)7CH3 −H −0.28

108 −OCH3 −OCH3 −(CH2)8CH3 =O −0.20

109 −OCH3 −OCH3 −(CH2)8CH3 −H −0.21

110 −OH −OH −(CH2)8CH3 −H −0.25

Table 1. continuation

search (Population size = 100, reproduction/mutation 
trade‑off = 0.5, selection bias = 50%) was carried out using 
10 independent populations of 2000 models each that 
evolved for more than 100 generations or at least 2 million 
models. The descriptors found in the 20 best models were 
pooled together, autoscaled and employed to develop 
partial least squares (PLS) models, as implemented in 
the PIROUETTE 4.0 software (Infometrix, Washington, 
USA).19,21,22 

Hologram-based QSAR strategy

Statistical HQSAR modeling was carried out as 
previously described.23,24 Briefly, each molecule in the 
dataset was decomposed into linear, branched, and 
overlapping fragments, which were hashed to a fixed-length 
array (53 to 401 bins) that is called molecular hologram. 
The bin occupancies encode compositional and topological 
molecular information used as independent variables 
in QSAR modeling. Parameters that affect hologram 
generation such as hologram length, fragment size and 
fragment distinction (atoms (A), bonds (B), connections 
(C), hydrogen atoms (H), chirality (Ch), and donor/acceptor 
(DA)) were evaluated during model development, using 
default fragment size 4-7 over the 12 default series of 
hologram lengths. Next, the influence of fragment size 
(2-5, 3-6, 5-8, 6-9, 7-10, 8-11) was further investigated for 
the best model. All models generated in this study were 
investigated using the full cross-validated r2 (q2) Partial 
Least Squares (PLS) Leave-One-Out (LOO) method and 
the stability of best model was evaluated using the mean 
value of full cross-validated r2 (q2) from 25 rounds of 
leave-5-out method.

QSAR model validation

External validation was carried out using a test set of 
35 compounds, which were not considered for the purpose 
of QSAR model development. The predictive ability of 
the models was estimated as described by Schuumann 
and cols.25-27 

Results and Discussion

Hepatotoxicity is one of the main concerns for long-
term treatment of deep-seated fungal infections with 
azole drugs, especially among immune-compromised 
patients that suffer from recurring fungal infections.28 As 
a consequence, medicinal chemistry efforts have been 
directed towards separating azole´s toxicophore from 
their pharmacophore. Some progress has been achieved 
by maximizing the interactions with residues of fungal 
lanosterol 14α-demethylase that are different from or absent 
in the human counterpart, while ruling out interactions with 
the heme group. This strategy is hampered by the lack of 
reliable structural information on the macromolecular 
target, but could benefit from ligand-based strategies, such 
as quantitative structure-activity relationship models that 
rely either on topological or hologram-based descriptors. 

Accordingly, a dataset of 110 isoquinoline, chromene 
and 2-aminetetraline derivatives were split into training 
set (compounds 1-75) and test set (compounds 76-110) so 
that chemical diversity and potency range were similarly 
represented in both sets. (Figure 1S) The antifungal-activity 
against C. neoformans (MIC80) ranges from 1370 mmol L-1 
to 0.5 mmol L-1 (a factor of about 2700) and was measured 
under the same experimental conditions. This fact renders 
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this property suitable for QSAR studies. Although all assays 
were carried out under standardized NCCLS (National 
Committee for Clinical Laboratory Standards) conditions, 
the biological data still bear a minor inter-experiment 
variation, for instance MIC80 values for fluconazole vary 
from 6.5 mmol L-1 to 13.1 mmol L-1. Aiming at overcome 
this dilemma and produce robust QSAR models, the 
MIC80cpd/MIC80fluconazole ratio was employed to calculate 
pMIC80 (−log MIC80cpd/ MIC80fluconazole), the dependent 
variable used in QSAR modeling. This strategy improved 
the overall statistical soundness of the QSAR models due 
to experimental-noise reduction, proving essential to the 
following steps.

Next, 215 topological descriptors, available in 
DRAGON  5.5, were computed and employed to build 
preliminary multiple linear regression QSAR models with 
up to 6 variables, by means of genetic algorithm, using 
MOBYDIGS 1.0. QSAR models with up to 5 variables have 
q2 values below 0.5, but improved results were achieved when  
6 variables were employed (r2 = 0.78, q2 = 0.76). Nevertheless, 
the predictive ability of the MLR models was marginal  
(r2

pred = 0.19). This suggests that the chemical and structural 
features captured in the model do not extend beyond the 
chemical space of training set compounds, limiting its 
usefulness in drug design. In order to improve QSAR model 
applicability domain, we resorted to more powerful statistical 
tools such as partial least square (PLS) and principal 
component analysis (PCA), available in PIROUETTE 4.0 
software. Thus, 32 descriptors, found in the 20 best models 
were pooled together, autoscaled and used for further PCA 
and PLS QSAR model development. The underlying goal 
of using unsupervised chemometric tools, such as PCA, is 
to investigate whether the low predictive power is due to 
insufficient sampling of descriptor space (reduced number of 
descriptors per model) or due to inadequate representation of 
chemical space (i.e., 3D information is required to describe 
the structure-activity relationship for this dataset).

Analysis of the loading plot for the 2 first PCs, which 
account for 67.6% of the data variability (Figure 2), shows 
that the 80% of most potent inhibitors (pMIC80 > 0.01) 
have PC2 values below −2.5, whereas 79% of the average 
potency inhibitors (−1.0 < pMIC80 < 0.0) are grouped 
between −2.5 and 2.0 and 83% of weaker inhibitors 
(pMIC80 < −1.0) lie above 2.0. This result clearly shows 
that PC2 explain the compounds potency, suggesting that 
selected descriptors are capable of explaining the potency 
profile of this dataset and thus are suitable for QSAR 
model development. Accordingly, they were gathered, 
autoscaled and employed for QSAR models development 
by partial least square regression (PLS), as available 
in PIROUETTE  4.0. Initial models show only minor 

improvement in statistical values (r2 = 0.81 and q2 = 0.77, 
6 LVs), but large increase in predictive ability (r2

pred = 0.72), 
in comparison to the predictive power of the RLM model 
(r2

pred = 0.19). In order to further improve the statistical 
soundness of QSAR models, an iterative exclusion of 16 
descriptors that have minor contributions to the regression 
vector was carried out until no improvement in statistical 
values was achieved. The regression vector can be thought 
of as a weighted sum of the loadings included in the model. 
Thus, descriptors with small coefficients do not contribute 
significantly to explain the dependent variable (biological 
activity) and can be discarded from the model. This strategy 
lead to an overall improvement in model adjustment 
(r2 = 0.92, q2 = 0.90) and predictive power (r2

pred = 0.86), 
when 6 latent variables (LV), 96.4% explained variance, 
where employed (Figure 3 and Table 2).

More than statistical soundness, useful QSAR models 
should also provide some insight into the physical-chemical 
and structural requirements for the biological activity.29 This 
sort of information can be gathered from the analysis of 
the regression vector plot, which underscores the relative 
importance of descriptors towards the final QSAR model 
(Figure 4). According to regression vector, B09[C−N] has 
the greatest positive contribution to antifungal activity of 
these compounds.

B09[C−N] describes the presence or absence of carbon 
(from aliphatic side chain or methoxyl group) linked to 
nitrogen at topological distance of 9 bonds. It is interesting 
to note that 93.33% of weak inhibitors (pMIC80 < −1.0) have 
zero value for this descriptor, whereas this moiety is easily 

Figure 2. Loading plot for training set compounds according to PCA. 
Weak inhibitors (open diamond) are clearly separated from average (grey 
squares) and potent (black cycles) non-azole antifungals.
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identified in most of average (73.33%) and potent (93.33%) 
inhibitors (Figure 5). Although this descriptor can be traced 
to different molecular fragments, it is noteworthy that most 
of them are constant throughout the dataset, whereas some 
chemical diversity can be traced to fragments connecting 
methoxyl groups and the nitrogen atom of isoquinoline 
inhibitors (Figure 5). In fact, linear alkyl substituent groups 
with 8 or more atoms connected to nitrogen atom seems to 

Figure 3. Predicted vs. Experimental values of pMIC80 according to the 
best descriptor-based QSAR model.

Table 2. Predicted pMIC80 values for test set compounds according to hologram-based (HQSAR) and descriptor-based QSAR models 

Compounds Experimental pMIC80

HQSAR QSAR

Predicted pMIC80 Residual Predicted pMIC80 Residual

76 −1.04 −1.24 0.20 −1.41 0.37
77 −1.05 −1.35 0.30 −1.29 0.24
78 −1.67 −2.03 0.36 −1.75 0.08
79 −1.97 −1.89 −0.08 −1.87 −0.10
80 −1.32 −1.44 0.12 −1.60 0.28
81 −2.00 −2.05 0.06 −2.10 0.10
82 −0.90 −0.95 0.05 −0.94 0.04
83 −0.90 −0.86 −0.04 −0.87 −0.03
84 −0.90 −0.84 −0.06 −0.92 0.02
85 −0.90 −0.71 −0.19 −0.82 −0.09
86 −0.90 −0.74 −0.17 −0.75 −0.15
87 −0.90 −0.57 −0.34 −0.48 −0.42
88 −0.30 −0.14 −0.16 −0.83 −0.08
89 0.30 0.50 −0.20 0.24 0.06
90 0.90 0.63 0.27 0.53 0.38
91 0.00 0.09 −0.09 −0.04 0.04
92 −0.60 −0.26 −0.35 −0.27 −0.34
93 0.30 −0.02 0.32 0.07 0.23
94 −0.60 −0.11 −0.49 −0.28 −0.33
95 −0.90 −0.96 0.06 −0.72 −0.18
96 −0.90 −0.82 −0.08 −0.69 −0.22
97 −0.90 −0.76 −0.15 −0.50 −0.40
98 −0.90 −1.04 0.14 −0.88 −0.03
99 −0.90 −0.86 −0.05 −0.88 −0.03
100 −0.90 −0.95 0.05 −0.97 0.07
101 −0.90 −0.75 −0.15 −1.01 0.11
102 −0.90 −1.25 0.35 −0.73 −0.17
103 −0.90 −0.76 −0.14 −0.45 −0.45
104 −0.90 −0.79 −0.11 −0.69 −0.22
105 −0.30 −0.52 0.22 −0.41 0.11
106 −1.25 −1.06 −0.19 −0.94 −0.31
107 −0.28 −0.05 −0.23 −0.09 −0.19
108 −0.20 −0.40 0.20 −0.44 0.24
109 −0.21 −0.36 0.14 −0.66 0.44
110 −0.25 0.18 −0.43 −0.11 −0.14

Figure 4. Regression vector plot. Descriptors that increase potency have 
positive leverage, whereas those that reduce potency display negative 
values.
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improve the biological activity of non-azole compounds. 
This hypothesis is reinforced by docking studies carried out 
by Yao, B and cols. (2007) which suggest that such moieties 
might properly interact into the hydrophobic pocket of the 
lanosterol 14a-demethylase.10

On the other hand, ESpm08r which accounts for 
resonance integrals between atoms eight bonds apart30 
shows a negative contribution to the biological activity 
(Figure 6). Then, it is reasonable to assume that moieties 
that affect charge distribution on aromatic rings, such as 
the fused pyranone or the dihydro-pyrane ring, play an 
important role towards the biological activity. 

Ring substituent importance to the biological property 
have already been highlighted by Tang and cols (2008), 
but for a different reason as those authors claim that these 
moieties would contribute to activity through hydrogen 
bonding to Tyr169. Our results do not contradict this 
hypothesis, but adds a new, quantitative, perspective to 

the scenario: Charge distribution, which might strengths 
or weakens a hydrogen bond, contributes significantly to 
non-azoles antifungals potency.

Despite the fact that homology models have played 
their part in novel antifungal drug design campaigns, we 
decided to investigate whether 2D information only would 
suffice to guide the development of second-generation 
non-azole antifungals. Therefore, we resorted to another 
2D QSAR approach, Hologram QSAR, which has been 
proven as effective as many 3D QSAR approaches and 
complements the information provided by descriptor-based 
2D QSAR models.26,27,31,32 Hence, molecular holograms 
were generated for training set compounds using a number 
of fragment distinction combinations (Table 3).

The standard fragment distinction (ABC) shows poor 
fit (r2 = 0.55), which was not improved by the addition 
of hydrogen (H) or chirality (Ch) to fragment distinction 
(compare models 2 and 3 vs. 1). A slight improvement 
was observed when donor and acceptor atoms (DA) was 
considered (r2 = 0.58). The low statistical quality of the 
models might indicate that hologram-based descriptors are 
not suitable to describe non-azole antifungals biological 
property or that the fragment distinction combinations 
investigated so far have contrasting effects to the model. For 

Figure 5. (A) plot of B09[C−N] values versus pMIC80 of training set 
compounds; (B) B09[C−N] descriptor highlighted in different molecules 
of the training set.

Figure 6. (A) Plot of ESpm08r values versus pMIC80 of training set 
compounds; (B) Influence of fused rings over the charge density and 
antifungal activity of selected compounds.
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Table 4. Influence of fragment size over the statistical parameters of the 
3 best HQSAR models

Fragments’ size q2 r2 HL LV

ABCH

2-5 0.47 0.62 71 6

3-6 0.47 0.58 71 4

5-8 0.63 0.76 71 6

6-9 0.66 0.79 71 6

7-10 0.75 0.83 71 6

8-11 0.81 0.87 71 6

ABCHCh

2-5 0.49 0.56 53 3

3-6 0.47 0.55 53 3

5-8 0.56 0.72 53 6

6-9 0.72 0.82 53 6

7-10 0.69 0.81 53 6

8-11 0.74 0.82 53 5

ABH

2-5 0.58 0.75 307 6

3-6 0.48 0.57 307 4

5-8 0.58 0.75 307 6

6-9 0.75 0.83 307 6

7-10 0.75 0.84 307 6

8-11 0.75 0.84 307 6

ACH

2-5 0.47 0.56 71 4

3-6 0.47 0.62 71 6

5-8 0.60 0.75 71 6

6-9 0.72 0.82 71 6

7-10 0.69 0.81 71 6

8-11 0.62 0.78 71 5

ACHCh

2-5 0.46 0.56 307 4

3-6 0.47 0.58 307 4

5-8 0.60 0.78 307 6

6-9 0.69 0.83 307 6

7-10 0.72 0.83 307 6

8-11 0.72 0.83 307 6

ABHCh

2-5 0.48 0.55 151 4

3-6 0.50 0.63 151 6

5-8 0.63 0.76 151 6

6-9 0.69 0.82 151 6

7-10 0.75 0.84 151 6

8-11 0.76 0.84 151 6

instance, use of DA might improve fit, but B could have the 
opposite effect. Aiming at further investigate this hypothesis 
simpler models (5 to 8) were built, in which either B or 
C on the distinction was not employed. This strategy 
provided two models with improved fit, but still with limited 
internal consistency (models 7 and 8). Further addition of 
the fragment distinction C to model 8 resulted in the best 
fitted model, but no significant improvement in internal 
consistency was observed. Aiming at circumvent this 
setback, the influence of fragment size over the statistical 
parameter was also investigated (Table 4). Generally, only 
the model with highest statistical quality is evaluated, but 
as shown below this strategy might be misleading. 

It is well known that fragment-distinction and 
fragment‑size control the number of fragments that are 
generated and then hashed to build the hologram. During 
this step, fragment collision, due to greater number of 
fragments than hologram length, leads to abrupt changes in 
the statistical parameters.33 Thus, it is reasonable to assume 
that even sub-optimal HQSAR models, built with default 
fragment size (4-7 atoms), might provide the best QSAR 
model after fragment-size optimization. Therefore, the 
influence of the size was investigated for all models with 
q2 > 0.50 (Table 4). This strategy revealed a common trend 
among the models: larger sized fragments afford models 
with significantly higher statistical quality, which is the 
best model (Figure S2 and Table 4).

This intriguing feature, obviously, must be related 
to some hidden SAR pattern that was not captured by 

default‑sized HQSAR models. One reasonable explanation 
is that 7-atom length fragments are not enough to explain 
the contribution of the N-alkyl side chain, which according 
to Yao and cols. (2007) and Tang and cols. (2010) is 
essential to activity.

Beside of good statistical quality, QSAR models 
should be able to predict the biological property of 

Table 3. Influence of fragments distinction over HQSAR statistical 
parameters, using standard fragment size (4-7)*

Model
Fragment
distinction

q2 r2 HL LV

1 ABC 0.46 0.55 199 3

2 ABCH 0.53 0.54 71 2

3 ABCHCh 0.53 0.54 53 3

4 ABCHChDA 0.48 0.58 71 3

5 ABH 0.53 0.57 307 3

6 ACH 0.55 0.56 71 3

7 ABCh 0.53 0.67 151 5

8 ACCh 0.52 0.66 151 5

9 ABHCh 0.54 0.57 151 3

10 ACHCh 0.54 0.59 307 3

11 ABCCh 0.52 0.69 401 6

12 ACDA 0.48 0.66 53 6

q2, cross-validated correlation coefficient; r2, noncross-validated 
correlation coefficient; HL, hologram length; LV, optimal number of latent 
variable. Fragment distinction: A, atoms; B, bonds; C, connections; H, 
hydrogen atoms; Ch, chirality; DA, donor and acceptor.
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congeneric molecules and thus guide the development of 
second generation non-azole antifungals. The predictive 
power of the best HQSAR model (Figure 7 and Table 
2), evaluated as described in Material and Methods 
section, (r2

pred = 0.84) is similar to that observed for 
descriptor-based-QSAR model (r2

pred = 0.86). Although it 
should be mentioned that compounds with pMIC80 > 0.5, 
within the training-set, are frequently predicted as less 
potent than they really are. This trend is less obvious in 
descriptor-based QSAR model suggesting that hologram-
based descriptors (molecular holograms) do not cover 
all the information required to explain the biological 
activity of non-azole antifungals that are more potent 
than fluconazole. Nevertheless, it should be possible to 
integrate the information provided by both models to 
reveal structural and chemical properties that are crucial 
for the antifungal activity. As stated before, regression 
vector plot can be used to analyze the contribution of 
each descriptor to the descriptor-based QSAR model. 
Similarly, contribution maps, which graphically represent 
atoms or fragments with positive (yellow or green) or 
detrimental (orange, red) contribution towards antifungal 
activity, can be used to analyze the HQSAR model. A 
shortcoming of this analysis it that fragments that hold 
pharmacophore groups into position can be colored gray 
(neutral contribution), once they are found in weak and 
potent compounds. 

According to contribution map of the less potent 
compound (cpd 06, pMIC80 = −2.02), the aromatic ring 
appears partially colored in red (Figure 8) whereas in potent 
compounds (cpd 35, pMIC80 = 0.60) the aromatic ring is 

widely colored in green and yellow, indicating that this 
ring can either improve or decrease the biological activity. 
Apparently, this coloring scheme can be associated with 
resonance effects once the most potent compound has one 
of the lowest Espm08r values (11.5), whereas the less potent 
one has the highest one (12.2). 

Conclusions 

Although our approach is based uniquely on 2D 
fragments or physical-chemical descriptor, QSAR 
models with good statistical values were developed 
(descriptor-based (r2 = 0.92, q2 = 0.90, 6 LVs and 
r2

pred = 0.86; hologram-based r2 = 0.87, q2 = 0.81, 6 LVs 
and r2

pred = 0.84). Furthermore, the interactive analysis 
of 2D QSAR models showed to be useful to highlight 
the importance of resonance effects towards antifungal 
activity of isoquinoline, chromenes and 2-aminetetralines 
derivatives as well as pinpoint which part of the molecules 
are most influenced by this feature. For instance, HQSAR 
contribution maps suggest that fused rings play a crucial 
role towards the antifungal activity, due to electrostatic 
interactions towards lanosterol 14-alpha demethylase. 
Besides, the great molecular diversity of the dataset along 
with the good predictive ability of the QSAR models 
indicate that molecular features underscored in this study 
should apply not only to training set compounds, but also 
the congeneric molecules that lie within the chemical space 
sampled by isoquinoline, chromenes and 2-aminetetralines 
derivatives. Thus, QSAR models reported herein should 
be useful to guide the design of more potent non-azole 
antifungal compounds. 

Figure 7. Predicted vs. experimental values of pMIC80 according to the 
best Hologram QSAR model.

Figure 8. Contribution maps for weak (upper panel, cpd 06 pMIC80 = −2.02) 
and potent (lower panel, cpd 35 pMIC80 = 0.60) non-azole antifungals 
according to the best HQSAR model.
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Figure S1. Histogram (upper panel) and HCA dendrogram (lower panel) 
for the complete dataset of non-azole antifungals. Test set compounds are 
highlighted in the HCA by a small black circle.

Figure S2. Influence of fragment size over the statistical parameters 
(internal consistence and fit) of the ABCH model.


