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Uma simplificação no SPA-LDA é proposta para contornar a necessidade de conjuntos de 
treinamento e validação separados. O número de graus de liberdade é empregado na função de 
custo para evitar sobreajuste do modelo. Três exemplos são apresentados: classificação de cafés, 
diesel e óleos vegetais empregando espectrometria UV-Vis, NIR e voltametria, respectivamente.

A simplification in SPA-LDA is proposed to circumvent the need for separate training and 
validation sets. The number of degrees of freedom is employed in the cost function to avoid model 
overfitting. Three examples are presented: classification of coffee, diesel and vegetable oils by 
using UV-Vis spectrometry, NIR spectrometry and voltammetry, respectively.
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Introduction

The successive projections algorithm (SPA) is a variable 
selection method originally proposed for the construction 
of multivariate calibration models1 and subsequently 
extended to address classification problems.2 Applications 
of SPA have involved different instrumental techniques and 
samples as summarized in a recent review paper.3

The SPA formulation for classification problems 
involves two phases. In the first phase, a sequence of 
projection operations involving the columns of the 
instrumental response matrix is employed to form subsets 
of variables with small collinearity. In the second phase, 
the best subset is selected on the basis of a cost function 
associated to the risk of incorrect classification by linear 
discriminant analysis (LDA). In Pontes et al.,2 and all 
subsequent papers,4-11 this cost function was evaluated by 
using an external set of validation samples, which were 
not employed in the construction of the LDA model. 
This procedure was adopted to avoid model overfitting, 
which might result if the training set itself was used in the 
evaluation of the cost function.

Within this scope, two inconveniences related to the use 
of a separate validation set could be pointed out. Firstly, the 
analyst is faced with the problem of splitting the available 
samples into representative training and validation sets, 
which may not be a straightforward task. Secondly, if the 
number of samples is too small, it may not be possible to 
split them into two representative sets. Cross-validation 
could be an alternative, but the computational effort 
involved can be substantial, due to the need of constructing 
an LDA model for each sample (or group of samples) 
that is removed from the training set in the course of the 
cross‑validation procedure. Another possibility would be 
the use of the training set itself for validation purposes. 
However, such an internal validation approach may lead 
to overfitting as discussed elsewhere.12

In this context, the present paper proposes a new 
criterion for internal validation in SPA-LDA in which 
the number of degrees of freedom is employed in the 
cost function calculation. As a result, model overfitting is 
avoided without the need to divide the available data into 
separate training and validation sets. The utility of the 
proposed criterion is investigated in a comparative study 
involving external validation and cross-validation. For 
this purpose, three analytical problems are considered, 
namely UV-Vis spectrometric classification of coffee,7 
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voltammetric classification of vegetable oils,5 and 
near‑infrared (NIR) spectrometric classification of diesel.2

Background and Theory

SPA-LDA
SPA-LDA comprises two phases. In Phase 1, the 

instrumental responses of the training samples are disposed 
in a matrix Xtrain of dimensions (Ntrain × K) and then the 
training data are centered in the mean of each class. In 
Xtrain the kth variable xk is associated to the kth column 
vector xk ∈ ℜNtrain. These column vectors are subjected to a 
sequence of projection operations that result in the creation 
of K chains of variables. The kth chain is initialized with 
variable xk and is progressively augmented with variables 
that display the least collinearity with the previous ones. 
Because of the loss of degrees of freedom associated to 
the calculation of the class means, the length of the chains 
of variables constructed in Phase 1 of SPA-LDA is limited 
by Ntrain - C, where Ntrain is the number of training samples 
and C is the number of classes involved in the problem.

In Phase 2, the candidate subsets of variables are 
evaluated according to a cost function related to the average 
risk of incorrect classification over the validation set. This 
cost function is defined as:

	 (1)

where

	 (2)

In equation 2, the numerator MD2[xval,n, 
–x(In)]  is the 

squared Mahalanobis distance13 between the nth validation 
sample xval,n (of class index In) and the mean –x(In) of its true 
class (both row vectors) calculated over the training set. 
This distance is given by

	 (3)

where S is a pooled covariance matrix calculated over the 
training set.14,15 The denominator in equation 2 corresponds 
to the squared Mahalanobis distance between xval,n and 
the center of the nearest wrong class. A small value of gn 
indicates that xval,n is close to the center of its true class 
and distant from the centers of the remaining classes. The 
cost function Jcost is defined as the average value of gn over 
all validation samples (n = 1, 2, ..., Nval). Therefore, the 
minimization of Jcost results in a better separation of the 
samples according to their true classes.

Use of leave-one-out cross-validation
To avoid the need for a separate validation set, the cost 

function Jcost could be evaluated by using leave-one-out 
cross-validation. In this case, the value of gn would be 
calculated by removing the nth sample from the training 
set (xtrain,n) and using it as a validation sample, i.e.,

	 (4)

where the subscript -n in MD2
–n indicates that the class 

means –x(I1), 
–x(I2), …, –x(IC) and pooled covariance matrix 

S are calculated without using xtrain,n. After repeating the 
calculation of gn for n = 1, 2, ..., Ntrain, the resulting cost 
would be given by

	 (5)

It is worth noting that the evaluation of Jcost in 
this manner can be very time-consuming. Indeed, the 
Mahalanobis distance calculations require the determination 
of a new matrix inverse S-1 for each n. Therefore, a matrix 
inversion operation needs to be carried out Ntrain times for 
each candidate subset of variables. For this reason, to the 
authors’ knowledge this alternative has not been exploited 
in previous works involving SPA-LDA.

Internal validation and proposed criterion
An internal validation could be carried out by 

calculating the value of gn as

	 (6)

In this case, the class means –x(I1), 
–x(I2), …, –x(IC) 

and pooled covariance matrix S are calculated by using 
all training samples, including xtrain,n. The resulting 
cost is then calculated as in equation 5. It is worth 
noting that the computational workload is much 
smaller as compared to the use of cross-validation 
because a single matrix inverse S-1 is employed for 
n = 1, 2, ..., Ntrain. However, such a procedure may lead to 
overfitting because the classification model is built and 
validated by using the same samples. As a result, the cost 
would tend to decrease as more variables are included in the 
model. To circumvent this problem, the criterion proposed 
in the present work consists of calculating the cost as

	 (7)
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where L is the number of variables in the candidate subset 
under evaluation. In this case, the denominator consists of 
the number of degrees of freedom, rather than the overall 
number of training samples. Therefore, a candidate subset 
with a larger number of variables (i.e., with a larger value 
of L) will only be favoured if the decrease in the gn values 
is large enough to offset the decrease in the denominator 
of equation 7.

Experimental

Data sets

The coffee data set consists of 175 UV-Vis spectra of 
aqueous extracts of ground coffee, which were recorded 
in the range 225-353 nm. A detailed description of the 
experimental conditions can be found in a previous 
work.7 The problem consists of discriminating the 
samples with respect to type (caffeinated/decaffeinated) 
and conservation state (expired/non-expired shelf life). 
Therefore, four classes are considered in the study, namely 
non-expired decaffeinated, non-expired caffeinated, expired 
decaffeinated, expired caffeinated.

The vegetable oil data set consists of 114 square-wave 
voltammograms of canola, sunflower, corn and soybean oil 
samples in the range −0.9 to −0.04 V. Details regarding the 
optimization of the experimental conditions were presented 
in.5 Some of the samples had been stored for several months 
past the expiry date. These “expired” samples were gathered 
into a single group for classification purposes. Therefore, 
the problem involves five classes (canola, sunflower, corn, 
soybean and expired).

The third data set consists of 128 NIR spectra of diesel 
samples, which were acquired in the range 880-1600 nm. 
A first derivative Savitzky-Golay filter with a second-order 
polynomial and an 11-point window was applied to the 
spectra in order to remove baseline features. The problem 
consists of classifying the diesel samples according to 
sulfur content (low and high) as detailed in Pontes et al..2

Training, validation and test sets

The samples were divided into training, validation, 
and test sets by applying the classic Kennard-Stone (KS) 
uniform sampling algorithm16 to each class separately. The 
number of samples in each set is presented in Table 1. In 
the cross-validation and internal validation procedures, the 
training and validation sets were combined into a single 
training set.

Software

All calculations were carried out by using the 
MATLAB® 2010a software.

Results and Discussion

Figure 1a presents the curves of cost versus number of 
variables included in the LDA model for the coffee data set. 
The curves correspond to the four validation methods under 
investigation (external validation, cross-validation, internal 
validation, and internal validation using the proposed 
criterion). In each of these curves, the number of variables 
was increased up to the point where the pooled covariance 

Table 1. Number of training, validation and test samples in each class

Sample Class
Set

Training Validation Test

Coffee

Non-expired decaffeinated 17 7 7

Non-expired caffeinated 26 14 14

Expired decaffeinated 12 5 5

Expired caffeinated 34 17 17

Total 89 43 43

Vegetable Oil

Canola 9 3 3

Sunflower 10 3 3

Corn 10 3 4

Soybean 10 4 4

Expired 20 10 18

Total 59 23 32

Diesel

Low 26 15 28

High 22 13 24

Total 48 28 52
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matrix S was deemed to be close to singularity, according 
to the default settings of the Matlab software.

As can be seen, the cost for internal validation (with no 
correction to account for the degrees of freedom) exhibits 
decreasing values up to the maximum number of variables 
employed in the construction of the curve, which points to 
an overfitting problem. In contrast, the use of the proposed 
criterion resulted in a cost function profile with a minimum 
point at 17 variables. Interestingly, these variables were 
the same as those selected by cross-validation. The use 
of external validation resulted in 15 variables. As can 
be seen in Figure 1b, the subsets of selected variables 
are remarkably similar, which indicates that the external 

validation, cross-validation, and internal validation (with 
the proposed criterion) procedures are roughly equivalent. 

The LDA models obtained with the selected variables 
were applied to the classification of the test set. As a result, 
all 43 test samples were correctly classified.

The corresponding graphs for the vegetable oil data 
set are presented in Figure 2. Again, if the correction 
for degrees of freedom is not employed, the internal 
validation cost exhibits decreasing values up to the end 
of the curve. In contrast, a minimum point at 12 variables 
was achieved as the result of using the proposed criterion. 
Once more, these variables corresponded to those selected 
by cross-validation. The use of external validation resulted 

Figure 1. Coffee data set: (a) Plots of the cost function versus number of variables included in the LDA model; (b) average UV-Vis spectrum of the data 
set with indication of the selected variables (the same spectrum is also presented with a vertical offset for better visualization of the markers).

Figure 2. Vegetable oil data set: (a) Plots of the cost function versus number of variables included in the LDA model; (b) average voltammogram of the 
data set with indication of the selected variables (the same voltammogram is also presented with a vertical offset for better visualization of the markers).
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in 10 variables. As can be seen in Figure 2b, the subsets 
of selected variables are remarkably similar, which 
corroborates the conclusions obtained with the coffee data 
set. By using the LDA models obtained with the selected 
variables, all 32 test samples were correctly classified.

Finally, Figure 3 presents the results for the diesel data 
set. As in the previous cases, the internal validation cost 
exhibits decreasing values up to the end of the curve. The 
use of the proposed criterion resulted in a cost curve with 
a minimum at 8 variables, which again corresponded to 
those selected by cross-validation. The use of external 
validation resulted in 2 variables. The selected variables are 
presented in Figure 3b. In contrast to the findings obtained 
in the coffee and vegetable oil cases, the external validation 
outcome was markedly different from the result obtained by 
cross-validation and internal validation with the proposed 
criterion. By applying the resulting LDA models to the 
classification of the 52 test samples, 11 errors (external 
validation) and 2 errors (cross-validation/internal validation 
with the proposed criterion) were obtained. In view of the 
worse classification accuracy of the LDA model obtained by 
external validation, it may be argued that the validation set 
was not selected in a suitable manner. Indeed, as discussed 
in the Introduction, the division of the modelling data into 
representative training and validation sets may not be a 
straightforward task. Therefore, these findings support 
the use of either cross-validation or internal validation 
(with appropriate correction for the degrees of freedom) 
as possible alternatives to the use of external validation.

In brief, the classification results obtained in this 
investigation can be summarized as follows. In the coffee 
and vegetable oil case studies, all test samples were 

correctly classified, i.e., the classification accuracy was 
100%, regardless of the validation technique employed in 
SPA-LDA. In the diesel study, the classification accuracy 
was 79% (11 errors out of 52 test samples) with external 
validation and 96% (2 errors out of 52 test samples) with 
cross-validation or internal validation with the proposed 
criterion. In view of the classification errors, the diesel 
results can also be expressed in terms of sensitivity (number 
of true positive decisions/total number of positive cases) 
and specificity (number of true negative decisions/total 
number of negative cases) rates.17 For this purpose, samples 
with low and high sulphur content can be considered as 
negative and positive cases, respectively. As a result, the 
sensitivity and specificity rates were 79% by using external 
validation (6 false positives and 5 false negatives). In 
contrast, the use of cross-validation or internal validation 
with the proposed criterion resulted in a sensitivity rate of 
100% (no false negatives) and a specificity rate of 93% 
(2 false positives).

Conclusions

SPA-LDA has been successfully used to build 
classification models in a variety of analytical applications. 
However, alternatives to the external validation procedure 
employed in the variable selection process had not been 
investigated in previous works.4-11 In this context, the 
present paper proposed a criterion for internal validation 
in SPA-LDA, which accounts for the number of degrees 
of freedom in order to avoid model overfitting. The use 
of SPA-LDA is thus simplified because the analyst is 
no longer required to divide the modeling samples into 

Figure 3. Diesel data set: (a) Plots of the cost function versus number of variables included in the LDA model; (b) average derivative spectrum of the data 
set with indication of the selected variables (the same derivative spectrum is also presented with a vertical offset for better visualization of the markers).
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training and validation sets. In comparison with the use of 
cross-validation, the proposed approach involves a smaller 
computation effort because a single LDA model needs to 
be constructed to evaluate each subset of variables.

The utility of the proposed criterion was investigated 
in three analytical problems, namely UV-Vis spectrometric 
classification of coffee, voltammetric classification of 
vegetable oils, and NIR spectrometric classification of 
diesel. In the coffee and vegetable oil case studies, the same 
variables were selected by using either cross-validation 
or internal validation (with appropriate correction for the 
degrees of freedom) and all the samples in the test set were 
correctly classified. Similar results were obtained by using 
external validation. However, in the diesel case study the 
use of external validation led to an underfitting problem, 
i.e., the number of selected variables was too small, which 
resulted in an LDA model with only 79% of classification 
accuracy in the test set. In contrast, a classification accuracy 
of 96% was obtained by employing either cross-validation 
or internal validation with the proposed criterion. In view 
of the smaller computational effort required by internal 
validation, as compared to cross-validation, the proposed 
criterion can thus be considered a suitable alternative for 
use with SPA-LDA.

Acknowledgment

The authors thank CNPq (research fellowships and 
doctoral scholarships) for partial financial support.

References

	 1. 	Araújo, M. C. U.; Saldanha, T. C. B.; Galvão, R. K. H.; 

Yoneyama, T.; Chame, H. C.; Visani, V.; Chemom. Intell. Lab. 

Syst. 2001, 57, 65.

	 2. 	Pontes, M. J. C.; Galvão, R. K. H.; Araújo, M. C. U.; Moreira, 

P. N. T.; Pessoa Neto, O. D.; José, G. E.; Saldanha, T. C. B.; 

Chemom. Intell. Lab. Syst. 2005, 78, 11.

	 3. 	Soares, S. F. C.; Gomes, A. A.; Galvão Filho, A. R.; Araújo, 

M. C. U; Galvão, R. K. H.; TrAC, Trends Anal. Chem. 2013, 

42, 84.

	 4. 	Pontes, M. J. C.; Cortez, J.; Galvão, R. K. H.; Pasquini, C.; 

Araújo, M. C. U.; Coelho, R. M.; Chiba, M. K.; Abreu, M. F.; 

Madari, B. E.; Anal. Chim. Acta 2009, 642, 12.

	 5. 	Gambarra-Neto, F. F.; Marino, G.; Araújo, M. C. U.; Galvão, 

R. K. H.; Pontes, M. J. C.; Medeiros, E. P.; Lima, R. S.; Talanta 

2009, 77, 1660.

	 6. 	Moreira, E. D. T.; Pontes, M. J. C.; Galvão, R. K. H.; Araújo, 

M. C. U.; Talanta 2009, 79, 1260.

	 7. 	Souto, U. T. C. P.; Pontes, M. J. C.; Silva, E. C.; Galvão, 

R. K. H.; Araújo, M. C. U.; Sanches, F. A. C.; Cunha, F. A. S.; 

Oliveira, M. S. R.; Food Chem. 2010, 119, 368.

	 8. 	Pontes, M. J. C.; Pereira, C. F.; Pimentel, M. F.; Vasconcelos, 

F. V. C.; Silva, A. G. B.; Talanta 2011, 85, 2159.

	 9. 	Ghasemi-Varnamkhasti, M.; Mohtasebi, S. S.; Rodriguez-

Mendeza, M. L.; Gomes, A. A.; Araújo, M. C. U.; Galvão, 

R. K. H.; Talanta 2012, 89, 286.

	 10. 	Silva, C. S.; Borba, F. S. L.; Pimentel, M. F.; Pontes, M. J. C.; 

Honorato, R. S.; Pasquini, C.; Microchem. J. 2013, 109, 122.

	 11. 	Silva, A. C.; Pontes, L. F. B. L.; Pimentel, M. F.; Pontes, 

M. J. C.; Talanta 2012, 93, 129.

	 12. 	Pontes, M. J. C.; Gomes, A. A.; Galvão, R. K. H.; Araújo, 

M. C. U.; NIR News 2012, 23, 6.

	 13. 	Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. L.; Chemom. 

Intell. Lab. Syst. 2000, 50, 1.

	 14. 	Wu, W.; Mallet, Y.; Walczak, B.; Penninckx, W.; Massart, D. L.; 

Heuerding, S.; Erni, F.; Anal. Chim. Acta 1996, 329, 257.

	 15. 	Duda, R. O.; Hart, P. E.; Stork, D. G.; Pattern Classification, 

2nd ed.; Wiley: New York, 2001.

	 16. 	Kennard, R. W.; Stone, L. A.; Technometrics 1969, 11, 137.

	 17. 	Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; 

De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J.; Handbook of 

Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, 

1997.

Submitted: June 21, 2013

Published online: November 6, 2013

FAPESP has sponsored the publication of this article.


